
Developing ColdFusion MX Applications

with CFML

Trademarks
Afterburner, AppletAce, Attain, Attain Enterprise Learning System, Attain Essentials, Attain Objects for Dreamweaver, Authorware,
Authorware Attain, Authorware Interactive Studio, Authorware Star, Authorware Synergy, Backstage, Backstage Designer, Backstage
Desktop Studio, Backstage Enterprise Studio, Backstage Internet Studio, ColdFusion, Design in Motion, Director, Director
Multimedia Studio, Doc Around the Clock, Dreamweaver, Dreamweaver Attain, Drumbeat, Drumbeat 2000, Extreme 3D, Fireworks,
Flash, Fontographer, FreeHand, FreeHand Graphics Studio, Generator, Generator Developer's Studio, Generator Dynamic Graphics
Server, JRun, Knowledge Objects, Knowledge Stream, Knowledge Track, Lingo, Live Effects, Macromedia, Macromedia M Logo &
Design, Macromedia Flash, Macromedia Xres, Macromind, Macromind Action, MAGIC, Mediamaker, Object Authoring, Power
Applets, Priority Access, Roundtrip HTML, Scriptlets, SoundEdit, ShockRave, Shockmachine, Shockwave, Shockwave Remote,
Shockwave Internet Studio, Showcase, Tools to Power Your Ideas, Universal Media, Virtuoso, Web Design 101, Whirlwind and Xtra
are trademarks of Macromedia, Inc. and may be registered in the United States or in other jurisdictions including internationally. Other
product names, logos, designs, titles, words or phrases mentioned within this publication may be trademarks, servicemarks, or
tradenames of Macromedia, Inc. or other entities and may be registered in certain jurisdictions including internationally.

This product includes code licensed from RSA Data Security.

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not responsible for
the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your own risk. Macromedia
provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia endorses or accepts any
responsibility for the content on those third-party sites.

Apple Disclaimer
APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE ENCLOSED
COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY
NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS. THERE MAY BE OTHER
RIGHTS THAT YOU MAY HAVE WHICH VARY FROM STATE TO STATE.

Copyright © 1999–2002 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced, translated,
or converted to any electronic or machine-readable form in whole or in part without prior written approval of Macromedia, Inc.
Part Number ZCF60M800

Acknowledgments
Project Management: Stephen M. Gilson

Writing: Hal Lichtin, Stephen M. Gilson, Michael Stillman, David Golden

Editing: Linda Adler, Noreen Maher

First Edition: May 2002

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

CONTENTS
ABOUT THIS BOOK . XXI

Using this book . xxii
Book structure and contents . xxii
Approaches to using this book . xxii

Developer resources .xxiv
About Macromedia ColdFusion MX documentation. xxv

Printed and online documentation set . xxv
Viewing online documentation. .xxvi

Getting answers .xxvi
Contacting Macromedia .xxvi

CHAPTER 1 Introduction to ColdFusion MX .1

About Internet applications and web application servers .2
About web pages and Internet applications. .2
About web application servers. .2

About ColdFusion MX .4
The ColdFusion scripting environment .4
ColdFusion Markup Language .4
ColdFusion application services .6
The ColdFusion MX Administrator .6

Using ColdFusion MX with Macromedia Flash MX .7
About J2EE and the ColdFusion architecture .8

About ColdFusion and the J2EE platform .8
J2EE infrastructure services and J2EE application server. .8

ColdFusion features described in this book .10

PART I The CFML Programming Language . 13

CHAPTER 2 Elements of CFML . 15

Introduction .16
Character case .16
Tags .17

Tag syntax .17
Built-in tags .17
Custom tags .18
iii

Functions. .19
Built-in functions .19
User-defined functions .19

Expressions .21
Constants .21
Variables .22

Variable scopes .22
Data types .24
ColdFusion components .25
CFScript .26
Flow control .27

cfif, cfelseif, and cfelse. .27
cfswitch, cfcase, and cfdefaultcase .28
cfloop and cfbreak .28
cfabort and cfexit .30

Comments. .31
Special characters .31
Reserved words .32

CHAPTER 3 Using ColdFusion Variables . 33

Creating variables .34
Variable naming rules .34

Variable characteristics .35
Data types .35

Numbers .36
Strings .37
Booleans .38
Date-Time values .39
Binary data type and Base64 encoding .40
Complex data types .41

Using periods in variable references .45
Understanding variables and periods .46
Creating variables with periods .47

Data type conversion .49
Operation-driven evaluation. .49
Conversion between types .49
Evaluation and type conversion issues. .51
Examples of type conversion in expression evaluation. .54

About scopes .55
Scope types. .55
Creating and using variables in scopes .57
Using scopes .59

Ensuring variable existence .60
Testing for a variable’s existence .60
Using the cfparam tag. .61

Validating data types .62
Using cfparam to validate the data type .62

Passing variables to custom tags and UDFs .64
Passing variables to CFML tags and UDFs .64
Passing variables to CFX tags .64
iv Contents

CHAPTER 4 Using Expressions and Pound Signs. 65

Expressions .66
Operator types .66
Operator precedence and evaluation ordering. .69
Using functions as operators .69

Using pound signs .71
Using pound signs in ColdFusion tag attribute values .71
Using pound signs in tag bodies .72
Using pound signs in strings. .72
Nested pound signs .73
Using pound signs in expressions .74

Dynamic expressions and dynamic variables .74
About dynamic variables. .74
About dynamic expressions and dynamic evaluation. .74
Dynamic variable naming without dynamic evaluation .75
Using dynamic evaluation .77
Using the IIF function .80
Example: a dynamic shopping cart .82

CHAPTER 5 Using Arrays and Structures. 87

About arrays .88
Basic array concepts .88
About ColdFusion arrays .88

Basic array techniques .90
Referencing array elements .90
Creating arrays .90
Adding elements to an array .92
Deleting elements from an array .93
Copying arrays .94

Populating arrays with data .95
Populating an array with the ArraySet function .95
Populating an array with the cfloop tag .95
Populating an array from a query .97

Array functions .98
About structures .99

Structure notation .99
Referencing complex structures .100

Creating and using structures. .102
Creating structures .102
Adding data elements to structures .102
Updating values in structures .102
Getting information about structures and keys .103
Copying structures .105
Deleting structure elements and structures .107
Looping through structures .107

Structure example .109
Structure functions .113
Contents v

CHAPTER 6 Extending ColdFusion Pages with

CFML Scripting .115

About CFScript .116
Comparing tags and CFScript .116

The CFScript language .118
Identifying CFScript. .118
Variables. .118
Expressions. .118
Statements .118
Statement blocks .119
Comments .119
Reserved words. .120
Differences from JavaScript .120
CFScript limitation .120
CFScript functional equivalents to ColdFusion tags .120

Using CFScript statements. .122
Using assignment statements and functions .122
Using conditional processing statements. .122
Using looping statements .124

Handling exceptions .129
CFScript example .130

CHAPTER 7 Using Regular Expressions in Functions 133

About regular expressions. .134
Using ColdFusion regular expression functions .134
Basic regular expression syntax .135

Regular expression syntax. .136
Using character sets .136
Finding repeating characters .137
Case sensitivity in regular expressions .138
Using subexpressions .138
Using special characters .138
Using escape sequences. .141
Using character classes .143

Using backreferences .144
Using backreferences in replacement strings .144
Omitting subexpressions from backreferences. .146

Returning matched subexpressions. .147
Specifying minimal matching .149

Regular expression examples .152
Regular expressions in CFML. .152

Types of regular expression technologies .154

PART II Reusing CFML Code . 155

CHAPTER 8 Reusing Code in ColdFusion Pages. 157

About reusable CFML elements. .158
Including pages with the cfinclude tag .158

Using the cfinclude tag .159
vi Contents

Recommended uses .160
Calling user-defined functions .161

Calling UDFs .161
Recommended uses .161
For more information. .161

Using custom CFML tags .162
Calling custom CFML tags. .162
Recommended uses .163
For more information. .163

Using CFX tags .164
Calling CFX tags .164
Recommended uses .164
For more information. .164

Using ColdFusion components .165
Creating and using ColdFusion components .165
Recommended uses .165
For more information. .165

Selecting among ColdFusion code reuse methods .166

CHAPTER 9 Writing and Calling User-Defined Functions 167

About user-defined functions. .168
Calling user-defined functions .169
Creating user-defined functions .169

Creating functions using CFScript .169
Creating functions using tags .170
Rules for function definitions .170
Defining functions in CFScript .174
Defining functions using the cffunction tag .177

Calling functions and using variables .180
Passing arguments .180
Referencing caller variables .180
Using function-only variables .181
Using arguments .181

A User-defined function example. .182
Defining the function using CFScript .182
Defining the function using the cffunction tag .183

Using UDFs effectively .184
Using Application.cfm and function include files .184
Specifying the scope of a function. .184
Using the Request scope for static variables and constants .186
Using function names as function arguments .186
Handling query results using UDFs .187
Identifying and checking for UDFs .188
Using the Evaluate function .188
Passing complex data .189
Using recursion .190
Handling errors in UDFs .191
Contents vii

CHAPTER 10 Creating and Using Custom CFML Tags. 197

Creating custom tags .198
Creating and calling custom tags .198
Securing custom tags .201
Accessing existing custom tags .201

Passing data to custom tags .202
Passing values to and from custom tags. .202
Using tag attributes summary .203
Custom tag example with attributes .204
Passing custom tag attributes using CFML structures .205

Managing custom tags .207
Securing custom tags .207
Encoding custom tags. .207

Executing custom tags .208
Accessing tag instance data .208
Handling end tags .208
Processing body text .210
Terminating tag execution .211

Nesting custom tags. .212
Passing data between nested custom tags .212
Variable scopes and special variables .213
High-level data exchange .213

CHAPTER 11 Building and Using ColdFusion Components 217

About ColdFusion components .218
Applying design patterns to component development. .218

Building ColdFusion components .219
Defining component methods .220

Interacting with component methods .222
Invoking component methods .222
Passing parameters to component methods. .226
Returning values from component methods .232

Using advanced ColdFusion component functionality .234
Building secure ColdFusion components .234
Using component packages. .237
Using component inheritance. .239
Using component metadata .240

CHAPTER 12 Building Custom CFXAPI Tags. 243

What are CFX tags? .244
Before you begin developing CFX tags in Java .245

Sample Java CFX tags. .245
Setting up your development environment to develop CFX tags in Java245
Customizing and configuring Java .246

Writing a Java CFX tag .247
Calling the CFX tag from a ColdFusion page .247
Processing requests .248
Loading Java CFX classes .250
Automatic class reloading .250
Life cycle of Java CFX tags .251
viii Contents

ZipBrowser example .251
Approaches to debugging Java CFX tags .253

Outputting debugging information .253
Debugging in a Java IDE .253
Using the debugging classes .254

Developing CFX tags in C++. .256
Sample C++ CFX tags .256
Setting up your C++ development environment .256
Compiling C++ CFX tags .256
Locating your C++ library files on Unix .256
Implementing C++ CFX tags .256
Debugging C++ CFX tags .257
Registering CFX tags .257

PART III Developing CFML Applications .259

CHAPTER 13 Designing and Optimizing a ColdFusion

Application . 261

About applications. .262
Elements of a ColdFusion application .262

The application framework. .262
Application-level settings and functions .263
Reusable application elements .264
Shared variables .264
Application security and user identification .264

Mapping an application. .265
Processing the Application.cfm and OnRequestEnd.cfm pages.265
Defining the directory structure .266

Creating the Application.cfm page. .268
Naming the application .268
Setting the client, application, and session variables options .268
Defining page processing settings .269
Setting application default variables and constants .269
Processing logins. .269
Handling errors .270
Example: an Application.cfm page .270

Optimizing ColdFusion applications .272
Caching ColdFusion pages that change infrequently .272
Caching parts of ColdFusion pages. .274
Optimizing database use. .277
Providing visual feedback to the user .280

CHAPTER 14 Handling Errors. 281

About error handling in ColdFusion .282
Understanding errors .283

About error causes and recovery .283
ColdFusion error types .284
About ColdFusion exceptions. .284
How ColdFusion handles errors .287
Contents ix

Error messages and the standard error format .289
Determining error-handling strategies .291

Handling missing template errors .291
Handling form field validation errors .291
Handling compiler exceptions .291
Handling runtime exceptions .292

Specifying custom error messages with cferror .293
Specifying a custom error page .293
Creating an error application page .294

Logging errors with the cflog tag .297
Handling runtime exceptions with ColdFusion tags. .299

Exception-handling tags .299
Using cftry and cfcatch tags .299
Using cftry: an example .304
Using the cfthrow tag .308
Using the cfrethrow tag .309
Example: using nested tags, cfthrow, and cfrethrow .310

CHAPTER 15 Using Persistent Data and Locking 315

About persistent scope variables .316
ColdFusion persistent variables and ColdFusion structures. .317
ColdFusion persistent variable issues .317

Managing the client state .318
About client and session variables .319
Maintaining client identity .320

Configuring and using client variables .323
Enabling client variables .323
Using client variables .325

Configuring and using session variables .328
What is a session? .328
Configuring and enabling session variables .329
Storing session data in session variables. .330
Standard session variables .330
Getting a list of session variables .331
Creating and deleting session variables .331
Accessing and changing session variables. .331
Ending a session .332

Configuring and using application variables. .333
Configuring and enabling application variables .333
Storing application data in application variables .333
Using application variables .334

Using server variables .335
Locking code with cflock .336

Sample locking scenarios .336
Using the cflock tag with write-once variables .338
Using the cflock tag .338
Considering lock granularity. .341
Nesting locks and avoiding deadlocks .341

Examples of cflock .343
x Contents

CHAPTER 16 Securing Applications .347

ColdFusion security features .348
About resource security .349
About user security .351

Security tags and functions .353
About web server authentication and application authentication 353
Controlling ColdFusion login behavior .354
The cflogin structure .356
Using ColdFusion security without cookies .356
A basic authentication security scenario .356
An application authentication security scenario .357

Implementing user security .360
Basic authentication user security example .360
Application-based user security example .362
Using application-based security with a browser’s login dialog .368
Using an LDAP Directory for security information .369

CHAPTER 17 Developing Globalized Applications.373

Introduction to globalization .374
Defining globalization .374
Importance of globalization ColdFusion applications .375
How ColdFusion supports globalization. .375
Character sets and locales .375

About character encodings .377
The Unicode character encoding .377

Locales. .378
Setting the locale .378

Processing a request in ColdFusion .379
Determining the character set of a ColdFusion page. .379
Determining the character set of server output .380

Tags and functions for globalizing .382
Using tags for globalizing applications .382
Using functions for globalizing applications .382

Handling data in ColdFusion .385
Input data from URLs and HTML forms. .385
Reading and writing file data .387
Databases .387
E-mail .387
HTTP .387
LDAP. .388
WDDX .388
COM .388
CORBA .388
Searching and indexing. .388

CHAPTER 18 Debugging and Troubleshooting Applications . . .389

Configuring debugging in the ColdFusion MX Administrator. .390
Debugging Settings page .390
Debugging IP addresses page .392
Contents xi

Using debugging information from browser pages .393
General debugging information .394
Execution Time .395
Database Activity .397
Exceptions .399
Trace points .399
Scope variables .400
Using the dockable.cfm output format .400

Controlling debugging information in CFML .402
Generating debugging information for an individual query .402
Controlling debugging output with the cfsetting tag .402
Using the IsDebugMode function to run code selectively .403

Using the cftrace tag to trace execution .404
About the cftrace tag .404
Using tracing .406
Calling the cftrace tag .407

Using the Code Compatibility Analyzer. .409
Troubleshooting common problems .410

CFML syntax errors .410
Data source access and queries .411
HTTP/URL .411

PART IV Accessing and Using Data . 413

CHAPTER 19 Introduction to Databases and SQL. 415

What is a database? .416
Using multiple database tables .417
Database permissions .418
Commits, rollbacks, and transactions .418
Database design guidelines .419

Using SQL. .420
SQL example .420
Basic SQL syntax elements .421
Reading data from a database .422
Modifying a database .425

Writing queries using an editor .428
Writing queries using Dreamweaver MX .428
Writing queries using ColdFusion Studio and Macromedia HomeSite+.430

CHAPTER 20 Accessing and Retrieving Data433

Working with dynamic data. .434
Retrieving data. .435

The cfquery tag .435
The cfquery tag syntax .435
Building queries .436

Outputting query data. .438
Query output notes and considerations .439

Getting information about query results .441
Query variable notes and considerations .442
xii Contents

Enhancing security with cfqueryparam .443
About query string parameters .443
Using cfqueryparam .443

CHAPTER 21 Updating Your Database . 445

About updating your database .446
Inserting data. .446

Creating an HTML insert form .446
Data entry form notes and considerations. .448
Creating an action page to insert data .448

Updating data .452
Creating an update form. .452
Creating an action page to update data .455

Deleting data .459
Deleting a single record .459
Deleting multiple records .460

CHAPTER 22 Using Query of Queries . 461

About record sets .462
Referencing queries as objects .462
Creating a record set. .462
Creating a record set with a function .463

About Query of Queries .465
Benefits of Query of Queries .465
Performing a Query of Queries. .465

Query of Queries user guide .474
Using dot notation .474
Using joins .474
Using unions .474
Using conditional operators .477
Using aggregate functions. .480
Using group by and having expressions .481
Using ORDER BY clauses .481
Using aliases .482
Handling null values. .483
Escaping reserved keywords .483

BNF for Query of Queries. .486

CHAPTER 23 Managing LDAP Directories 489

About LDAP .490
The LDAP information structure .492

Entry .492
Attribute. .492
Distinguished name (DN) .493
Schema. .493

Using LDAP with ColdFusion. .495
Querying an LDAP directory. .496

Scope .496
Search filter .496
Contents xiii

Getting all the attributes of an entry .498
Example: querying an LDAP directory .498

Updating an LDAP directory. .503
Adding a directory entry .503
Deleting a directory entry .509
Updating a directory entry .510
Adding and deleting attributes of a directory entry .512
Changing a directory entry’s DN .513

Advanced topics. .514
Specifying an attribute that includes a comma or semicolon .514
Using cfldap output .514
Viewing a directory schema .514
Referrals .519
Managing LDAP security .520

CHAPTER 24 Building a Search Interface 521

About Verity .522
Using Verity with ColdFusion .522
Advantages of using Verity .523
Supported file types .523
Support for international languages .526

Creating a search tool for ColdFusion applications .528
Creating a collection with the ColdFusion MX Administrator .528
About indexing a collection .530
Indexing and building a search interface with the Verity Wizard 530
Creating a ColdFusion search tool programmatically .535

Using the cfsearch tag .542
Working with record sets .545

Indexing database record sets .545
Indexing cfldap query results .549
Indexing cfpop query results .550
Using database-directed indexing .551

CHAPTER 25 Using Verity Search Expressions 553

About Verity query types .554
Using simple queries .555

Stemming in simple queries .555
Preventing stemming .557

Using explicit queries .558
Using AND, OR, and NOT .558
Using wildcards and special characters .559

Composing search expressions .562
Case sensitivity .562
Prefix and infix notation. .562
Commas in expressions. .562
Precedence rules .563
Delimiters in expressions .563
Operators and modifiers .563

Refining your searches with zones and fields .573
xiv Contents

PART V Requesting and Presenting Information 577

CHAPTER 26 Retrieving and Formatting Data 579

Using forms to specify the data to retrieve .580
HTML form tag syntax .580
Form controls. .581
Form notes and considerations .584

Working with action pages. .585
Processing form variables on action pages .585
Dynamically generating SQL statements .585
Creating action pages .586
Testing for a variable's existence .587
Requiring users to enter values in form fields .588
Form variable notes and considerations .588

Working with queries and data .589
Using HTML tables to display query results. .589
Formatting individual data items .590
Building flexible search interfaces .591

Returning results to the user .593
Handling no query results .593
Returning results incrementally .594

Dynamically populating list boxes .597
Creating dynamic check boxes and multiple-selection

list boxes. .599
Check boxes .599
Multiple selection lists .601

Validating form field data types .603

CHAPTER 27 Building Dynamic Forms .607

Creating forms with the cfform tag .608
Using HTML and cfform. .608
The cfform controls .608
Preserving input data with preservedata .609
Browser considerations .610

Building tree controls with cftree .611
Grouping output from a query .612
The cftree form variables .613
Input validation .614
Structuring tree controls .614
Image names in a cftree .616
Embedding URLs in a cftree .617
Specifying the tree item in the URL .618

Building drop-down list boxes .619
Building text input boxes .620
Building slider bar controls .621
Creating data grids with cfgrid. .622

Working with a data grid and entering data .622
Creating an editable grid .624
Contents xv

Embedding Java applets .633
Registering a Java applet .633
Using cfapplet to embed an applet .635
Handling form variables from an applet .636

Input validation with cfform controls .637
Validating with regular expressions. .637

Input validation with JavaScript. .642
Handling failed validation .642
Example: validating an e-mail address. .643

CHAPTER 28 Charting and Graphing Data 645

Creating a chart .646
Chart types .646
Creating a basic chart .647

Administering charts .649
Charting data. .650

Charting a query. .650
Charting individual data points .653
Combining a query and data points .654
Charting multiple data collections .654
Writing a chart to a variable .656

Controlling chart appearance. .658
Common chart characteristics .658
Setting x-axis and y-axis characteristics .660
Creating a bar chart .661
Setting pie chart characteristics .662
Creating an area chart. .664
Setting curve chart characteristics .666

Linking charts to URLs .667
Dynamically linking from a pie chart .667
Linking to JavaScript from a pie chart .670

CHAPTER 29 Using the Flash Remoting Service 673

About using the Flash Remoting service with ColdFusion .674
Planning your Flash application .674

Using the Flash Remoting service with ColdFusion pages .675
Using Flash with ColdFusion components. .680
Using the Flash Remoting service with server-side ActionScript .682
Using the Flash Remoting service with ColdFusion Java objects .683
Handling errors with ColdFusion and Flash .684

PART VI Using Web Elements and External Objects 685

CHAPTER 30 Using XML and WDDX .687

About XML and ColdFusion .688
The XML document object .689

A simple XML document .689
Basic view. .690
xvi Contents

DOM node view .690
XML document structures .691

ColdFusion XML tag and functions .694
Using an XML object .696

Referencing the contents of an XML object .696
Assigning data to an XML object .697

Creating and saving an XML document object .698
Creating a new XML document object using the cfxml tag. .698
Creating a new XML document object using the XmlNew function.698
Creating an XML document object from existing XML .699
Saving and exporting an XML document object .699

Modifying a ColdFusion XML object .700
Functions for XML object management .700
Treating elements with the same name as an array .701
XML document object management reference .702
Adding, deleting, and modifying XML elements .703
Using XML and ColdFusion queries .708

Transforming documents with XSLT .710
Extracting data with XPath .711
Example: using XML in a ColdFusion application. .712
Moving complex data across the web with WDDX .717

Uses of WDDX .717
How WDDX works .718

Using WDDX .722
Using the cfwddx tag .722
Validating WDDX data .722
Using JavaScript objects .723
Converting CFML data to a JavaScript object .723
Transferring data from the browser to the server. .723
Storing complex data in a string .726

CHAPTER 31 Using Web Services .729

Web services .730
Accessing a web service .730
Basic web service concepts .731

Working with WSDL files .733
Creating a WSDL file .733
Viewing a WSDL file using Dreamweaver MX. .733
Reading a WSDL file .734

Consuming web services .736
About the examples in this section .736
Passing parameters to a web service. .736
Handling return values from a web service .737
Using cfinvoke to consume a web service .737
Using CFScript to consume a web service. .739
Calling web services from a Flash client .740
Catching errors when consuming web services .740
Handling inout and out parameters .740
Configuring web services in the ColdFusion Administrator .741
Data conversions between ColdFusion and WSDL data types .741
Contents xvii

Consuming ColdFusion web services .742
Publishing web services .744

Creating components for web services .744
Specifying data types of function arguments and return values .744
Producing WSDL files .745
Using ColdFusion components to define data types for web services 748
Securing your web services .749
Best practices for publishing web services .752

Handling complex data types. .753
Consuming web services that use complex data types .753
Publishing web services that use complex data types .756

CHAPTER 32 Integrating J2EE and Java Elements in

CFML Applications .759

About ColdFusion, Java, and J2EE .760
About ColdFusion and client-side JavaScript and applets .760
About ColdFusion and JSP. .760
About ColdFusion and Servlets .761
About ColdFusion and Java objects .761

Using JSP tags and tag libraries .762
Using a JSP tag in a ColdFusion page. .762
Example: using the random tag library .763

Interoperating with JSP pages and servlets .764
Integrating JSP and servlets in a ColdFusion application .764
Examples: using JSP with CFML .766

Using Java objects .769
Using basic object techniques .769
Creating and using a simple Java class. .771
Java and ColdFusion data type conversions .774
Handling Java exceptions .776
Examples: using Java with CFML. .777

CHAPTER 33 Integrating COM and CORBA Objects in

CFML Applications .785

About COM and CORBA. .786
About objects .786
About COM and DCOM .786
About CORBA. .786

Creating and using objects .788
Creating objects .788
Using properties .788
Calling methods .788
Calling nested objects .789

Getting started with COM and DCOM .790
COM Requirements. .790
Registering the object .790
Finding the component ProgID and methods .790
Using the OLE/COM Object Viewer. .791
xviii Contents

Creating and using COM objects .793
Connecting to COM objects .793
Setting properties and invoking methods .794
COM object considerations .794

Getting started with CORBA .797
Creating and using CORBA objects. .797

Creating CORBA objects .797
Using CORBA objects in ColdFusion .799
Handling exceptions. .804

CORBA example. .805

PART VII Using External Resources . 807

CHAPTER 34 Sending and Receiving E-Mail 809

Using ColdFusion with mail servers. .810
Sending e-mail messages .811

Sending SMTP e-mail with cfmail .811
Sample uses of cfmail .813

Sending form-based e-mail .813
Sending query-based e-mail .813
Sending e-mail to multiple recipients .814

Customizing e-mail for multiple recipients .815
Using cfmailparam. .817

Attaching files to a message. .817
Adding a custom header to a message .817

Advanced sending options .818
Sending mail as HTML .818
Error logging and undelivered messages .818

Receiving e-mail messages .819
Using cfpop .819
The cfpop query variables .820

Handling POP mail. .821

CHAPTER 35 Interacting with Remote Servers829

About interacting with remote servers .830
Using cfhttp to interact with the web. .830

Using the cfhttp Get method .830
Creating a query object from a text file .835
Using the cfhttp Post method .837
Performing file operations with cfftp .841

Caching connections across multiple pages .843
Connection actions and attributes .844

CHAPTER 36 Managing Files on the Server 845

About file management .846
Using cffile .846

Uploading files .846
Moving, renaming, copying, and deleting server files .852
Reading, writing, and appending to a text file. .852
Contents xix

Using cfdirectory .856
Returning file information .856

Using cfcontent .858
About MIME types .858
Changing the MIME content type with cfcontent .858

INDEX .863
xx Contents

ABOUT THIS BOOK
Developing ColdFusion Applications provides the tools needed to develop Internet
applications using Macromedia ColdFusion MX. This book is intended for web
application programmers who are learning ColdFusion MX or wish to extended their
ColdFusion MX programming knowledge. It provides a solid grounding in the tools that
ColdFusion MX provides to develop web applications.

Because of the power and flexibility of ColdFusion MX, you can create many different
types of web applications of varying complexity. As you become more familiar with the
material presented in this manual, and begin to develop your own applications, you will
want to refer to CFML Reference for details about various tags and functions.

Contents

• Using this book ..xxii

• Developer resources ... xxiv

• About Macromedia ColdFusion MX documentation.. xxv

• Getting answers ... xxvi

• Contacting Macromedia .. xxvi
xxi

Using this book
This book can to help anyone with a basic understanding of HTML learn to develop
ColdFusion. However, this book is most useful if you have basic ColdFusion experience,
or have read Getting Started Building ColdFusion MX Applications. The Getting Started
book provides an introduction to ColdFusion and helps you develop the basic knowledge
that will make using this book easier.

Book structure and contents
The book is divided into seven parts, as follows:

Each chapter includes basic information plus detailed coverage of the topic that should
be of use to experienced ColdFusion developers.

Approaches to using this book
This section describes approaches to using this book for beginning ColdFusion
developers, developers with some experience who want to develop expertise, and
advanced developers who want to learn about the new and enhanced features of
ColdFusion MX.

Part Description

The CFML Programming
Language

The Elements of CFML including variables, expressions,
dynamic code, CFScript, and regular expressions.

Reusing CFML Code Techniques for writing code once and using it many times,
including the cfinclude tag, user-defined functions, custom
CFML tags, ColdFusion components, and CFXAPI tags.

Developing CFML
Applications

How to develop a complete ColdFusion application. Includes
information on error handling, sharing data, locking code,
securing access, internationalization, debugging, and
troubleshooting.

Accessing and Using
Data

Methods for accessing and using data sources, including an
introduction to SQL and information on using SQL data bases,
LDAP directory services, and the Verity search engine

Requesting and
Presenting Information

How to dynamically request information from users and display
results on the user’s browser, including graphing data and
providing data to Flash clients.

Using Web Elements
and External Objects

How to use XML, Java objects including Enterprise JavaBeans,
JSP pages, web services (including creating web services in
ColdFusion), and COM and CORBA objects.

Using External
Resources

Methods for getting and sending e-mail, accessing remote
servers using HTTP and FTP, and accessing files and
directories.
xxii About This Book

Beginning with ColdFusion

If you learning ColdFusion, a path such as the following might be most effective:

1 Chapter 1 through Chapter 4 to learn the basics of the XML language.

2 Chapter 19 through Chapter 21 to learn about using databases.

3 Chapter 26 and Chapter 27 to learn about requesting data from users.

At this point, you should have a basic understanding of the basic elements of
ColdFusion and can create simple ColdFusion applications. To learn to produce
more complete and robust applications, you could proceed with the following
chapters.

4 Chapter 13 through Chapter 18 to learn how to build a complete ColdFusion
application.

5 Chapter 22 to learn how to use queries effectively.

6 Chapter 5 through Chapter 11 to learn to use more advanced features of CFML,
including ways to reuse code.

You can then read the remaining chapters as you add new features to your ColdFusion
application.

Developing an in-depth knowledge of ColdFusion

If you have a basic understanding of ColdFusion as presented in Getting Started Building
ColdFusion MX Applications or the Fast Track to ColdFusion course, you might want to
start at Chapter 1 and work through to the end of the book, skipping any specialized
chapters that you are unlikely to need.

Learning about new and modified ColdFusion features

If you are an advanced ColdFusion developer, you might want to learn about new or
changed ColdFusion MX features. In this case, you start with Migrating ColdFusion 5
Applications; then read selected chapters in this book. The following chapters document
features that are new or substantially enhanced in ColdFusion MX:
• Chapter 9, Writing and Calling User-Defined Functions
• Chapter 11, Building and Using ColdFusion Components
• Chapter 16, Securing Applications
• Chapter 17, Developing Globalized Applications
• Chapter 18, Debugging and Troubleshooting Applications
• Chapter 28, Charting and Graphing Data
• Chapter 29, Using the Flash Remoting Service
• Chapter 30, Using XML and WDDX
• Chapter 31, Using Web Services
• Chapter 32, Integrating J2EE and Java Elements in CFML Applications

Nearly all chapters contain information that is new in ColdFusion MX, so you should
also review all other chapters for useful information. The index and the table of contents
are useful tools for finding new features or changed documentation.
Using this book xxiii

Developer resources
Macromedia, Inc. is committed to setting the standard for customer support in developer
education, documentation, technical support, and professional services. The
Macromedia website is designed to give you quick access to the entire range of online
resources. The following table shows the locations of these resources:

Resource Description URL

Macromedia
website

General information about Macromedia
products and services

http://www.macromedia.com

Information on
ColdFusion

Detailed product information on
ColdFusion and related topics

http://www.macromedia.com/coldfusion

Macromedia
ColdFusion
Support Center

Professional support programs that
Macromedia offers

http://www.macromedia.com/support/
coldfusion

ColdFusion
Online Forums

Access to experienced ColdFusion
developers through participation in the
Online Forums, where you can post
messages and read replies on many
subjects relating to ColdFusion

http://webforums.macromedia.com/
coldfusion/

Installation
Support

Support for installation-related issues for
all Macromedia products

http://www.macromedia.com/support/
coldfusion/installation.html

Training Information about classes, on-site training,
and online courses offered by Macromedia

http://www.macromedia.com/support/training

Developer
Resources

All the resources that you need to stay on
the cutting edge of ColdFusion
development, including online discussion
groups, Knowledge Base, technical
papers, and more

http://www.macromedia.com/desdev/
developer/

Reference Desk Development tips, articles,
documentation, and white papers

http://www.macromedia.com/v1/developer/
TechnologyReference/index.cfm

Macromedia
Alliance

Connection with the growing network of
solution providers, application developers,
resellers, and hosting services creating
solutions with ColdFusion

http://www.macromedia.com/partners/
xxiv About This Book

About Macromedia ColdFusion MX documentation
The ColdFusion documentation is designed to provide support for the complete
spectrum of participants. The print and online versions are organized to let you quickly
locate the information that you need. The ColdFusion online documentation is provided
in HTML and Adobe Acrobat formats.

Printed and online documentation set
The ColdFusion documentation set consists of the following titles:

Book Description

Installing ColdFusion
MX

Describes system installation and basic configuration for Windows
NT, Windows 2000, Solaris, Linux, and HP-UX.

Administering
ColdFusion MX

Describes how to use the ColdFusion Administrator to manage the
ColdFusion environment, including connecting to your data
sources and configuring security for your applications,

Developing ColdFusion
MX Applications with
CFML

Describes how to develop your dynamic web applications,
including retrieving and updating your data, using structures, and
forms.

Getting Started
Building ColdFusion
MX Applications

Contains an overview of ColdFusion features and application
development procedures. Includes a tutorial that guides you
through the process of developing an example ColdFusion
application.

Using Server-Side
ActionScript in
ColdFusion MX

Describes how Macromedia Flash movies executing on a client
browser can call ActionScript code running on the ColdFusion
server. Includes examples of server-side ActionScript and a syntax
guide for developing ActionScript pages on the server.

Migrating ColdFusion 5
Applications

Describes how to migrate a ColdFusion 5 application to
ColdFusion MX. This book describes the code compatibility
analyzer that evaluates your ColdFusion 5 code to determine any
incompatibilities within it.

CFML Reference Provides descriptions, syntax, usage, and code examples for all
ColdFusion tags, functions, and variables.

CFML Quick
Reference

A brief guide that shows the syntax of ColdFusion tags, functions,
and variables.

Working with Verity
Tools

Describes Verity search tools and utilities that you can use for
configuring the Verity K2 Server search engine, as well as creating,
managing, and troubleshooting Verity collections.

Using ClusterCATS Describes how to use Macromedia ClusterCATS, the clustering
technology that provides load-balancing and failover services to
assure high availability for your web servers.
About Macromedia ColdFusion MX documentation xxv

Viewing online documentation
All ColdFusion documentation is available online in HTML and Adobe Acrobat Portable
Document Format (PDF) files. To view the HTML documentation, open the following
URL on the web server running ColdFusion: http://web_root/cfdocs/dochome.htm.

ColdFusion documentation in Acrobat format is available on the ColdFusion product
CD-ROM.

Getting answers
One of the best ways to solve particular programming problems is to tap into the vast
expertise of the ColdFusion developer communities on the ColdFusion Forums. Other
developers on the forum can help you figure out how to do just about anything with
ColdFusion. The search facility can also help you search messages from the previous 12
months, allowing you to learn how others have solved a problem that you might be
facing. The Forums is a great resource for learning ColdFusion, but it is also a great place
to see the ColdFusion developer community in action.

Contacting Macromedia

Corporate
headquarters

Macromedia, Inc.
600 Townsend Street
San Francisco, CA 94103

Tel: 415.252.2000
Fax: 415.626.0554

Web: http:// www.macromedia.com

Technical support Macromedia offers a range of telephone and web-based
support options. Go to http://www.macromedia.com/support/
coldfusionfor a complete description of technical support
services.

You can make postings to the ColdFusion Support Forum
(http://webforums.macromedia.com/coldfusion) at any time.

Sales Toll Free: 888.939.2545

Tel: 617.219.2100
Fax: 617.219.2101

E-mail: sales@macromedia.com

Web: http://www.macromedia.com/store
xxvi About This Book

CHAPTER 1

Introduction to ColdFusion MX
This chapter describes ColdFusion MX and the role it plays in Internet applications,
including Flash MX based applications. It also provides an introduction to the topics
discussed in this book.

Contents

• About Internet applications and web application servers .. 2

• About ColdFusion MX.. 4

• Using ColdFusion MX with Macromedia Flash MX.. 7

• About J2EE and the ColdFusion architecture .. 8

• ColdFusion features described in this book.. 10
1

About Internet applications and web application servers
With ColdFusion MX, you develop Internet applications that run on web application
servers. The following sections introduce Internet applications and web application
servers. Later sections explain the specific role that ColdFusion MX plays in this
environment.

About web pages and Internet applications
The Internet has evolved from a collection of static HTML pages to an application
deployment platform. First, the Internet changed from consisting of static web pages to
providing dynamic, interactive content. Rather than providing unchanging content
where organizations merely advertise goods and services, dynamic pages enable
companies to conduct business ranging from e-commerce to managing internal business
processes. For example, a static HTML page lets a bookstore publish its location, list
services such as the ability to place special orders, and advertise upcoming events like
book signings. A dynamic website for the same bookstore lets customers order books
online, write reviews of books they read, and even get suggestions for purchasing books
based on their reading preferences.

More recently, the Internet has become the underlying infrastructure for a wide variety of
applications. With the arrival of technologies such as XML, web services, J2EE (Java 2
Platform, Enterprise Edition), and Microsoft .NET, the Internet has become a
multifaceted tool for integrating business activities. Now, enterprises can use the Internet
to integrate distributed activities, such as customer service, order entry, order fulfillment,
and billing.

ColdFusion MX is a rapid application development environment that lets you build
dynamic websites and Internet applications quickly and easily. It lets you develop
sophisticated websites and Internet applications without knowing the details of many
complex technologies, yet it lets advanced developers take advantage of the full
capabilities of many of the latest Internet technologies.

About web application servers
To understand ColdFusion, you must first understand the role of web application servers.
Typically, web browsers make requests, and web servers, such as Microsoft IIS and the
Apache web server, fulfill those requests by returning the requested information to the
browser. This information includes, but is not limited to, HTML and Macromedia Flash
files.

However, a web server’s capabilities is limited because all it does is wait for requests to
arrive and attempt to fulfill those requests as soon as possible. A web server does not let
you do the following tasks:
• Interact with a database, other resource, or other application.
• Serve customized information based on user preferences or requests.
• Validate user input.

A web server, basically, locates information and returns it to a web browser.
2 Chapter 1 Introduction to ColdFusion MX

To extend the capabilities of a web server, you use a web application server, a software
program that extends the web server’s capabilities to do tasks such as those in the
preceding list.

How a web server and web application server work together

The following steps explain how a web server and web application server work together
to process a page request:

1 The user requests a page by typing a URL in a browser, and the web server receives
the request.

2 The web server looks at the file extension to determine whether a web application
server must process the page. Then, one of the following actions occur:

• If the user requests a file that is a simple web page (often one with an HTM or
HTML extension), the web server fulfills the request and sends the file to the
browser.

• If the user requests a file that is a page that a web application server must process
(one with a CFM, CFML, or CFC extension for ColdFusion requests), the web
server passes the request to the web application server. The web application server
processes the page and sends the results to the web server, which returns those
results to the browser. The following figure shows this process:

Because web application servers interpret programming instructions and generate output
that a web browser can interpret, they let web developers build highly interactive and
data-rich websites, which can do tasks such as the following:
• Query other database applications for data.
• Dynamically populate form elements.
• Dynamically generate Flash application data.
• Provide application security
• Integrate with other systems using standard protocols such as HTTP, FTP, LDAP,

POP, and SMTP
• Create shopping carts and e-commerce websites.
• Respond with an e-mail message immediately after a user submits a form.
• Return the results of keyword searches.
About Internet applications and web application servers 3

About ColdFusion MX
ColdFusion MX is a rapid scripting environment server for creating Rich Internet
Applications. ColdFusion MX CFML is an easy-to-learn tag-based scripting language,
with connectivity to enterprise data and powerful built-in search and charting
capabilities. ColdFusion MX enables developers to easily build and deploy dynamic
websites, content publishing systems, self-service applications, commerce sites, and more.

ColdFusion MX consists of the following core components:
• ColdFusion scripting environment
• ColdFusion Application Services
• The ColdFusion Administrator

The following sections describe these core components in more detail.

The ColdFusion scripting environment
The ColdFusion scripting environment provides an efficient development model for
Internet applications. At the heart of the ColdFusion scripting environment is the
ColdFusion Markup Language (CFML), a tag-based programming language that
encapsulates many of the low-level details of web programming in high-level tags and
functions.

ColdFusion Markup Language
ColdFusion Markup Language (CFML) is a tag-based language, similar to HTML, that
uses special tags and functions. With CFML, you can enhance standard HTML files with
database commands, conditional operators, high-level formatting functions, and other
elements to rapidly produce easy-to-maintain web applications. However, CFML is not
limited to enhancing HTML. For example, you can create Macromedia Flash MX
applications consisting entirely of Flash elements and CFML. Similarly, you can use
CFML to create web services for use by other applications.

The following sections briefly describe basic CFML elements. For more information, see
Chapter 2, “Elements of CFML” on page 15.

CFML tags

CFML looks similar to HTML—it includes starting and, in most cases, ending tags, and
each tag is enclosed in angle brackets. All ending tags are preceded with a forward slash (/
) and all tag names are preceded with cf; for example:

<cftagname>
tag body text and CFML

</cftagname>

CFML increases productivity by providing a layer of abstraction that hides many
low-level details involved with Internet application programming. At the same time,
CFML is extremely powerful and flexible. ColdFusion lets you easily build applications
that integrate files, databases, legacy systems, mail servers, FTP servers, objects, and
components.
4 Chapter 1 Introduction to ColdFusion MX

CFML includes approximately 100 tags. ColdFusion tags serve many functions. They
provide programming constructs, such as conditional processing and loop structures.
They also provide services, such as charting and graphing, full-text search, access to
protocols such as FTP, SMTP/POP, and HTTP, and much more. The following table
lists a few examples of commonly-used ColdFusion tags:

CFML Reference describes the CFML tags in detail.

CFML functions and CFScript

CFML includes approximately 270 built-in functions. These functions perform a variety
of roles, including string manipulation, data management, and system functions. CFML
also includes a built-in scripting language, CFScript, that lets you write code in that is
familiar to programmers and JavaScript writers.

CFML extensions

You can extend CFML further by creating custom tags or user-defined functions
(UDFs), or by integrating COM, C++, and Java components (such as JSP tag libraries).
You can also create ColdFusion components, which encapsulate related functions and
properties and provide a consistent interface for accessing them.

All these features let you easily create reusable functionality that is customized to the
types of applications or websites that you are building.

CFML development tools

Macromedia Dreamweaver MX helps you develop ColdFusion applications efficiently. It
includes many features that simplify and enhance ColdFusion development, including
tools for debugging CFML. Because CFML is written in an HTML-like text format, and
you often use HTML in ColdFusion pages, you can also use an HTML editor or a text
editor, such as Notepad, to write ColdFusion applications.

Tag Purpose

cfquery Establishes a connection to a database (if one does not exist), executes a
query, and returns results to the ColdFusion environment.

cfoutput Displays output that can contain the results of processing ColdFusion
functions, variables, and expressions.

cfset Sets the value of a ColdFusion variable.

cfmail Lets an application send SMTP mail messages using application variables,
query results, or server files. (Another tag, cfpop, gets mail.)

cfchart Converts application data or query results into graphs, such as bar charts or pie
charts, in Flash, JPG, or PNG format.

cfobject Invokes objects written in other programming languages, including COM
components, Java objects such as Enterprise JavaBeans, or CORBA objects.
About ColdFusion MX 5

Server-side ActionScript

Another feature of the ColdFusion scripting environment is server-side ActionScript.
ActionScript is the JavaScript-based language used to write application logic in
Macromedia Flash MX. By bringing this language to the server, ColdFusion MX enables
Flash developers to use their familiar scripting environment to connect to ColdFusion
resources and deliver the results to client-side applications using the integrated
Macromedia Flash Remoting service. Using server-side ActionScript Flash programmers
can create ColdFusion services, such as SQL queries, for use by Flash clients.

For more information about using Server-Side ActionScript in ColdFusion MX, see
Using Server-Side ActionScript in ColdFusion MX.

ColdFusion application services
The ColdFusion application services are a set of built-in services that extend the
capabilities of the ColdFusion scripting environment. These services include the
following:
• Charting and graphing service Generates visual data representations including line,

bar, pie, and other charts.
• Full-text search service Searches documents and databases using the Verity search

engine.
• Flash Remoting service Provides a high performance protocol for exchanging data

with Flash MX clients.

The ColdFusion MX Administrator
The ColdFusion MX Administrator configures and manages the ColdFusion application
server. It is a secure web-based application that you can access using any web browser,
from any computer with an Internet connection.

You can manage the following options with the ColdFusion Administrator:
• ColdFusion data sources
• Debugging and logging output
• Server settings
• Application security

For more information about the ColdFusion Administrator, see Administering ColdFusion
MX.
6 Chapter 1 Introduction to ColdFusion MX

Using ColdFusion MX with Macromedia Flash MX
Macromedia Flash MX is designed to overcome the many limitations of HTML and
solve the problem of providing efficient, interactive, user interfaces for Internet
applications. ColdFusion MX is designed to provide a fast efficient environment for
developing and providing data-driven Internet applications on your server. Using the
following features, ColdFusion MX and Flash MX can work together in a seamless
manner to provide complete interactive Internet applications:
• ColdFusion MX native Flash connectivity Lets Flash MX clients interact with

ColdFusion MX in an efficient, secure, and reliable way. Flash MX includes
ActionScript commands that connect to ColdFusion components (CFC) and
ColdFusion pages. Flash clients communicate with ColdFusion applications using
Action Message Format protocol over HTTP, which provides fast, lightweight, binary
data transfer between the Flash client and ColdFusion.

• Flash MX development application debugger Lets you trace your application
logic as it executes between Flash and ColdFusion.

• ColdFusion MX Server-Side ActionScript Lets Flash programmers familiar with
ActionScript create ColdFusion services, such as SQL queries, for use by Flash clients.

Together, these features let developers build integrated applications that run on the Flash
client and the ColdFusion scripting environment.

For more information about using Server-Side ActionScript in ColdFusion MX, see
Using Server-Side ActionScript in ColdFusion MX. For more information on developing
Flash applications in ColdFusion, see Chapter 29, “Using the Flash Remoting Service”
on page 673. For more information about using Flash MX, go to the following URL:

http://www.macromedia.com.
Using ColdFusion MX with Macromedia Flash MX 7

About J2EE and the ColdFusion architecture
As the Internet software market has matured, the infrastructure services required by
distributed Internet applications, including ColdFusion applications, have become
increasingly standardized. The most widely adopted standard today is the Java 2
Platform, Enterprise Edition (J2EE) specification. J2EE provides a common set of
infrastructure services for accessing databases, protocols, and operating system
functionality, across multiple operating systems.

About ColdFusion and the J2EE platform
ColdFusion MX uses the J2EE infrastructure for many of its base services. By
implementing the ColdFusion scripting environment on top of the J2EE platform,
ColdFusion MX takes advantage of the power of the J2EE platform, but provides this
power through the easy-to-use ColdFusion scripting environment.

ColdFusion MX consists of a family of products that differ in how they integrate with
and use J2EE services. (Some ColdFusion editions might not be available at the time of
the first ColdFusion MX release.)
• ColdFusion MX Server is a standalone servers that includes the entire infrastructure

necessary to run ColdFusion applications, including an embedded Java™ server
based on Macromedia JRun technology.

• ColdFusion MX for J2EE Application Servers consists of editions of ColdFusion MX
that enable you to add ColdFusion MX capabilities to a J2EE server installation,
including Macromedia JRun and other J2EE application servers.

The following figure shows how these editions are structured. Each edition supports the
same ColdFusion scripting environment and includes the built-in application services,
while the different editions enable developers to deploy ColdFusion MX in the
configuration of their choice.

J2EE infrastructure services and J2EE application server
ColdFusion MX is implemented on the Java technology platform provided by a J2EE
application server. It uses either an integrated J2EE infrastructure that uses Macromedia
JRun technology, or an independent J2EE application server. The Java technology
8 Chapter 1 Introduction to ColdFusion MX

platform provides much of the core functionality required by ColdFusion, including
database connectivity, naming and directory services, and other runtime services.

Because ColdFusion is built on a J2EE platform, you can easily integrate J2EE and Java
functionality into your ColdFusion application. As a result, ColdFusion pages can do any
of the following:
• Use custom JSP (Java Server Pages) tags from JSP tag libraries
• Interoperate with JSP pages
• Use Java servlets
• Use Java objects, including the J2EE Java API, JavaBeans, and Enterprise JavaBeans

For more information on using J2EE features in ColdFusion, see Chapter 32,
“Integrating J2EE and Java Elements in CFML Applications” on page 759.
About J2EE and the ColdFusion architecture 9

ColdFusion features described in this book
ColdFusion provides a comprehensive set of features for developing and managing
Internet applications. These features enhance the speed and ease of development, and let
you dynamically deploy your applications, integrate new and legacy technologies, and
build secure applications.

The following table describes the primary ColdFusion features that are discussed in this
book, and lists the chapters that describe them. This table is only a summary of major
CFML features; this book also includes information about other features. Also, this table
does not include features that are described in other books.

Feature Description Chapters

CFML language CFML is a fully featured tag-oriented Internet application
language. It includes a wide range of tags, functions,
variables, and expressions.

2–5

CFScript CFScript is a server-side scripting language that provides a
subset of ColdFusion functionality in script syntax.

6

Regular
expressions

ColdFusion provides several functions that use regular
expressions for string manipulation. It also lets you use
regular expressions in text input tags.

7, 25

Reusable
elements

ColdFusion lets you create several types of elements, such
as user-defined functions and ColdFusion components,
that you write once and can use many times.

8-12

User-defined
functions

(UDFs)

You can use CFScript or the cffunction tag to create your
own functions. These functions can incorporate all of the
built-in ColdFusion tags and functions, plus other
extensions.

9

Custom CFML
tags

You can create custom ColdFusion tags using CFML.
These tags can have bodies and can call other custom
tags.

10

ColdFusion
components

ColdFusion components encapsulate multiple functions
and related data in a single logical unit. ColdFusion
components can have many uses, and are particularly
useful in creating web services and Flash interfaces for
your application.

11

ColdFusion
extension (CFX)
tags

You can create custom tags in Java or C++. These tags can
use features that are only available when using
programming languages. However, CFX tags cannot have
tag bodies.

12

ColdFusion
application
structure

ColdFusion supports many ways of building an application,
and includes specific features, such as the Application.cfm
page, built-in security features, and shared scopes, that
help you optimize your application structure.

13-17

Error handling
mechanisms

ColdFusion provides several mechanisms for handling
data, including custom error pages and exception-handling
tags and functions, such as cftry and cfcatch.

14
10 Chapter 1 Introduction to ColdFusion MX

Shared and
persistent variable
scopes

Using shared and persistent scopes, you can make data
available to a single user over one or many browser
sessions, or to multiple users of an application or server.

15

Code locking You lock sections of code that access in-memory shared
scopes or use external resources that are not safe for
multiple simultaneous access.

15

Application
security

ColdFusion provides mechanisms, including the cflogin
tag, for authenticating users and authorizing them to
access specific sections of your application. You can also
use resource security, which secures access to ColdFusion
resources based on the ColdFusion page location.

16

Application
globalization

ColdFusion supports global applications that use different
character sets and locales, and provides tags and functions
designed to support globalizing your applications.

17

Debugging tools Using debugging output, the cftrace tag, logging features,
and the Code Analyzer, you can locate and fix coding
errors.

18

Database access
and management

ColdFusion can access SQL databases to retrieve, add,
and modify data. This feature is one of the core functions of
many dynamic applications.

19–21

Queries of Queries You can use a subset of standard SQL within ColdFusion
to manipulate any data that is represented as a record set,
including database query results, LDAP directory
information, and other data.

22

LDAP directory
access and
management

ColdFusion applications can access and manipulate data in
LDAP (Lightweight Directory Access Protocol) directory
services. These directories are often used for security
validation data and other directory-like information.

23

Indexing and
searching data

ColdFusion applications can provide full-text search
capabilities for documents and data sources using the
Verity search engine.

24-25

Dynamic forms With ColdFusion, you can use HTML and forms to control
the data displayed by a dynamic web page. You can also
use the cfform tag to enrich your forms with sophisticated
graphical controls, and perform input data validation.

26-27

Data graphing You can use the cfchart tag to display your data
graphically.

28

Macromedia Flash
integration

You can use native Flash connectivity built into
Macromedia ColdFusion MX to help build dynamic Flash
user interfaces for ColdFusion applications.

29

XML document
processing and
creation

ColdFusion applications can create, use, and manipulate
XML documents. ColdFusion also provides tools to use
Web Distributed Data Exchange (WDDX), an XML dialect
for transmitting structured data.

30

Feature Description Chapters
ColdFusion features described in this book 11

Web services ColdFusion applications can use available SOAP-based
web services, including Microsoft .NET services.
ColdFusion applications can also use ColdFusion
components to provide web services to other applications
over the Internet.

31

Java and J2EE
Integration

You can integrate J2EE elements, including JSP pages,
JSP tag libraries, and Java objects, including Enterprise
JavaBeans (EJBs), into your ColdFusion application.

32

COM and
CORBA objects

The cfobject tag lets you use COM (Component Object
Model) or DCOM (Distributed Component Object Model)
and CORBA (Common Object Request Broker) objects in
your ColdFusion applications.

33

E-mail messages You can add interactive e-mail features to your ColdFusion
applications using the cfmail and cfpop tags.

34

HTTP and FTP The cfhttp and cfftp tags provide simple methods of
using HTTP (Hypertext Transfer Protocol) and FTP (File
Transfer Protocol) communications in your application.

35

File and directory
access

You can use the cffile, cfdirectory, and cfcontent tags
to read, write, and manage files and directories on the
server.

36

Feature Description Chapters
12 Chapter 1 Introduction to ColdFusion MX

PART I

The CFML Programming

Language
This part describes the elements of the CFML programming language. It
tells you how to use CFML tags, functions, variables and expressions, the
CFScript scripting language, and regular expressions.

The following chapters are included:

Elements of CFML.. 15

Using ColdFusion Variables... 33

Using Expressions and Pound Signs .. 65

Using Arrays and Structures ...87

Extending ColdFusion Pages with CFML Scripting ...115

Using Regular Expressions in Functions .. 133

CHAPTER 2

Elements of CFML
This chapter provides an overview of the basic elements of CFML, including tags,
functions, constants, variables, expressions, and CFScript. The chapters in Part I of this
book describe these topics in detail.

Contents

• Introduction .. 16

• Character case.. 16

• Tags ... 17

• Functions... 19

• Expressions .. 21

• Constants .. 21

• Variables .. 22

• Data types ... 24

• ColdFusion components.. 25

• CFScript.. 26

• Flow control .. 27

• Comments... 31

• Special characters ... 31

• Reserved words .. 32
15

Introduction
This chapter introduces and describes the basic elements of CFML. These elements make
CFML a powerful tool for developing interactive web applications. Because CFML is a
dynamic application development tool, it has many of the features of a programming
language, including the following:
• Functions
• Expressions
• Variables and constants
• Flow-control constructs such as if-then and loops

CFML also has a “language within a language”, CFScript, which enables you to use a
syntax similar to JavaScript for many operations.

This chapter introduces these elements and other basic CFML entities such as data types,
comments, escape characters, and reserved words.

The remainder of Part I of this book provides more detailed information on many of the
basic CFML elements. The rest of this book helps you use these elements effectively in
your applications.

Character case
The ColdFusion Server is case-insensitive. For example, the following all represent the
cfset tag: cfset, CFSET, CFSet, and even cfsEt. However, you should get in the habit of
consistently using the same case rules in your programs; for example:
• Develop consistent rules for case use, and stick to them. If you use lowercase

characters for some tag names, use them for all tag names.
• Always use the same case for a variable. For example, do not use both myvariable and

MyVariable to represent the same variable on a page.

If you follow these rules, you will prevent errors on application pages where you use both
CFML and case-sensitive languages, such as JavaScript,
16 Chapter 2 Elements of CFML

Tags
ColdFusion tags tell the ColdFusion Server that it must process information. The
ColdFusion Server only processes tag contents; it returns text outside of ColdFusion to
the web server unchanged. ColdFusion provides a wide variety of built-in tags and lets
you create custom tags.

Tag syntax
ColdFusion tags have the same format as HTML tags. They are enclosed in angle
brackets (< and >) and can have zero or more named attributes. Many ColdFusion tags
have bodies; that is, they have beginning and end tags with text to be processed between
them. For example:

<cfoutput>
Hello #YourName#!

</cfoutput>

Other tags, such as cfset and cfftp,never have bodies; all the required information goes
between the beginning (<) character and the ending (>) character, as in the following
example:

<cfset YourName="Bob">

Sometimes, although the tag can have a body, you do not need to put anything in it
because the attributes specify all the required information. You can omit the end tag and
put a forward slash character before the closing (>) character, as in the following example:

<cfexecute name="C:\winNT\System32\netstat.exe" arguments = "-e"
outputfile="C:\Temp\out.txt" timeout = "1" />

Note: The cfset tag differs from other tags in that it has neither a body nor arguments.
Instead, the tag encloses an assignment statement that assigns a value to a variable.

Built-in tags
Over 80 built-in tags make up the heart of ColdFusion. These tags have many uses,
including the following:
• Manipulating variables
• Creating interactive forms
• Accessing and manipulating databases
• Displaying data
• Controlling the flow of execution on the ColdFusion page
• Handling errors
• Processing ColdFusion pages
• Managing the CFML application framework
• Manipulating files and directories
• Using external tools and objects, including Verity collections, COM, Java, and

CORBA objects, and executable programs
• Using protocols, such as mail, http, ftp, and pop

Much of this document describes how to use these tags effectively. CFML Reference
documents each tag in detail.
Tags 17

Custom tags
ColdFusion lets you create custom tags. You can create two types of custom tags:
• CFML custom tags that are ColdFusion pages
• CFX tags that you write in a programing language such as Java or C++

Custom tags can encapsulate frequently used business logic or display code. These tags
enable you to place frequently used code in one place and call it from many places.
Custom tags also let you abstract complex logic into a single, simple interface. They
provide an easy way to distribute your code to others; you can even distribute encrypted
versions of the tags to prevent access to the tag logic.

Currently, over 1,000 custom tags are available on the Macromedia developer’s exchange
(http://www.coldfusion.com/Developer/Gallery/index.cfm). They perform tasks ranging
from checking if Cookies and JavaScript are enabled on the client's browser to moving
items from one list box to another. Many of these tags are free and include source code.

CFML custom tags

When you write a custom tag in CFML, you can take advantage of all the features of the
ColdFusion language, including all built-in tags and even other custom tags. CFML
custom tags can include body sections and end tags. Because they are written in CFML,
you do not need to know a programming language such as Java. CFML custom tags
provide more capabilities than user-defined functions, but are less efficient.

For more information on CFML custom tags, see Chapter 10, “Creating and Using
Custom CFML Tags” on page 197. For information about, and comparisons among,
ways to reuse ColdFusion code, including CFML custom tags, user-defined functions,
and CFX tags, see Chapter 8, “Reusing Code in ColdFusion Pages” on page 157.

CFX Tags

CFX tags are ColdFusion custom tags that you write in a programming language such as
Java or C++. These tags can take full advantage of all the tools and resources provided by
these languages, including their access to runtime environments. CFX tags also generally
execute faster than CFML custom tags because they are compiled. CFX tags can be
cross-platform, but are often platform-specific, for example if they take advantage of
COM objects or the Windows API.

For more information on CFX tags, see Chapter 12, “Building Custom CFXAPI Tags”
on page 243.
18 Chapter 2 Elements of CFML

Functions
Functions typically manipulate data and return a result. CFML includes over 250
built-in functions. You can also use CFScript to create user-defined functions (UDFs),
sometimes referred to as custom functions.

Functions have the following general form:

functionName([argument1[, argument2]]...)

Some functions, such as the Now function take no arguments. Other functions require one
or more comma-separated arguments and can have additional optional arguments. All
ColdFusion functions return a value. For example, Round(3.14159) returns the value 3.

Built-in functions
ColdFusion built-in functions perform a variety of tasks, including, but not limited to,
the following:
• Creating and manipulating complex data variables, such as arrays, lists, and structures
• Creating and manipulating queries
• Creating, analyzing, manipulating, and formatting strings and date and time values
• Evaluating the values of dynamic data
• Determining the type of a variable value
• Converting data between formats
• Performing mathematical operations
• Getting system information and resources

For alphabetical and categorized lists of ColdFusion functions, see CFML Reference.

You use built-in functions throughout ColdFusion pages. Built-in functions are
frequently used in a cfset or cfoutput tag to prepare data for display or further use. For
example, the following line displays today’s date in the format October 12, 2001:

<cfoutput>#DateFormat(Now(), "mmmm d, yyyy")#</cfoutput>

Note that this code uses two nested functions. The Now function returns a ColdFusion
date-time value representing the current date and time. The DateFormat function takes
the value returned by the Now function and converts it to the desired string representation.

Functions are also valuable in CFScript scripts. ColdFusion does not support ColdFusion
tags in CFScript, so you must use functions to access ColdFusion functionality in scripts.

User-defined functions
You can write your own functions, user-defined functions (UDFs). You can use these
functions in ColdFusion expressions or in CFScript. You can call a user-defined function
anywhere you can use a built-in CFML function. You create UDFs using the cffunction
tag or the CFScript function statement. UDFs that you create using the cffunction tag
can include ColdFusion tags and functions. UDFs that you create in CFScript can only
include functions.

User-defined functions let you encapsulate logic and operations that you use frequently
in a single unit. This way, you can write the code once and use it multiple times. UDFs
ensure consistency of coding and enable you to structure your CFML more efficiently.
Functions 19

Typical user-defined functions include mathematical routines, such as a function to
calculate the logarithm of a number; string manipulation routines, such as a function to
convert a numeric monetary value to a string such as "two dollars and three cents"; and
can even include encryption and decryption routines.

Note: The Common Function Library Project at http://www.cflib.org includes a number of
free libraries of user-defined functions.

For more information on user-defined functions, see Chapter 9, “Writing and Calling
User-Defined Functions” on page 167.
20 Chapter 2 Elements of CFML

Expressions
ColdFusion expressions consist of operands and operators. Operands are comprised of
constants and variables, such as “Hello” or MyVariable. Operators, such as the string
concatenation operator (&) or the division operator (/) are the verbs that act on the
operands. ColdFusion functions also act as operators.

The simplest expression consists of a single operand with no operators. Complex
expressions consist of multiple operands and operators. For example, the following
statements are all ColdFusion expressions:

12
MyVariable
(1 + 1)/2
"father" & "Mother"
Form.divisor/Form.dividend
Round(3.14159)

The following sections briefly describe constants and variables. For detailed information
on using variables, see Chapter 3, “Using ColdFusion Variables” on page 33. For detailed
information on expressions and operators, see Chapter 4, “Using Expressions and Pound
Signs” on page 65.

Constants
The value of a constant does not change during program execution. Constants are simple
scalar values that you can use within expressions and functions, such as “Robert Trent
Jones” and 123.45. Constants can be integers, real numbers, time and date values,
Boolean values, or text strings. ColdFusion does not allow you to give names to
constants.
Expressions 21

Variables
Variables are the most frequently used operands in ColdFusion expressions. Variable
values can be set and reset, and can be passed as attributes to CFML tags. Variables can be
passed as parameters to functions, and can replace most constants.

ColdFusion has a number of built-in variables that provide information about the server
and are returned by ColdFusion tags. For a list of the ColdFusion built-in variables, see
CFML Reference.

The following two characteristics classify a variable:
• The scope of the variable, which indicates where the information is available and how

long the variable persists
• The data type of the variable’s value, which indicates the kind of information a

variable represents, such as number, string, or date

The following section lists and briefly describes the variable scopes. “Data types” on page
24 lists data types (which also apply to constant values). For detailed information on
ColdFusion variables, including data types, scopes, and their use, see Chapter 3, “Using
ColdFusion Variables” on page 33.

Variable scopes
The following table briefly lists ColdFusion variable scopes:

Scope Description

Variables
(local)

The default scope for variables of any type that are created with the cfset
and cfparam tags. A local variable is available only on the page on which it is
created and any included pages.

Form The variables passed from a form page to its action page as the result of
submitting the form.

URL The parameters passed to the current page in the URL that is used to call it.

Attributes The values passed by a calling page to a custom tag in the custom tag’s
attributes. Used only in custom tag pages.

Caller A reference, available in a custom tag, to the Variables scope of the page
that calls the tag. Used only in custom tag pages.

ThisTag Variables that are specific to a custom tag, including built-in variables that
provide information about the tag. Used only in custom tag pages. A
nested custom tag can use the cfassociate tag to return values to the
calling tag’s ThisTag scope.

Request Variables that are available to all pages, including custom tags and nested
custom tags, that are processed in response to an HTTP request. Used to
hold data that must be available for the duration of one HTTP request.

CGI Environment variables identifying the context in which a page was
requested. The variables available depend on the browser and server
software.

Cookie Variables maintained in a user’s browser as cookies.
22 Chapter 2 Elements of CFML

Client Variables that are associated with one client. Client variables let you
maintain state as a user moves from page to page in an application and are
available across browser sessions.

Session Variables that are associated with one client and persist only as long as the
client maintains a session.

Application Variables that are associated with one, named, application on a server. The
cfapplication tag name attribute specifies the application name.

Server Variables that are associated with the current ColdFusion Server. This
scope lets you define variables that are available to all your ColdFusion
pages, across multiple applications.

Flash Variables sent by a Macromedia Flash movie to ColdFusion and returned
by ColdFusion to the movie.

Arguments Variables passed in a call to a user-defined function or ColdFusion
component method.

This Variables that are declared inside a ColdFusion component or in a
cffunction tag that is not part of a ColdFusion component.

function local Variables that are declared in a user-defined function and exist only while
the function executes.

Scope Description
Variables 23

Data types
ColdFusion is considered typeless because you do not explicitly specify variable data
types. However, ColdFusion data, the constants and the data that variables represent, do
have data types, which correspond to the ways the data is stored on the computer.

ColdFusion data belongs to the following type categories:

For more information on ColdFusion data types, see Chapter 3, “Using ColdFusion
Variables” on page 33.

Category Description and types

Simple Represents one value. You can use simple data types directly in
ColdFusion expressions. ColdFusion simple data types are:

• strings, such as "This is a test."

• integers, such as 356

• real numbers, such as -3.14159

• Boolean values, True or False

• date-time values, such as 3:00 PM July 12, 2001

Complex A container for data. Complex variables generally represent more than
one value. ColdFusion built-in complex data types are:

• arrays

• structures

• queries

Binary Raw data, such as the contents of a GIF file or an executable program
file

Object COM, CORBA, Java, web services, and ColdFusion Component
objects: Complex objects that you create and access using the
cfobject tag and other specialized tags.
24 Chapter 2 Elements of CFML

ColdFusion components
ColdFusion components encapsulate multiple, related, functions. A ColdFusion
component is essentially a set of related user-defined functions and variables, with
additional functionality to provide and control access to the component contents.
ColdFusion components can make their data private, so that it is available to all
functions (also called methods) in the component, but not to any application that uses
the component.

ColdFusion components have the following features:
• They are designed to provide related services in a single unit.
• They can provide web services and make them available over the internet.
• They can providing ColdFusion services that Flash clients can call directly.
• They have several features that are familiar to object-oriented programmers including

data hiding, inheritance, packages, and introspection.

For more information on ColdFusion components, see Chapter 11, “Building and Using
ColdFusion Components” on page 217
ColdFusion components 25

CFScript
CFScript is a language within a language. CFScript is a scripting language that is similar
to JavaScript but is simpler to use. Also, unlike JavaScript CFScript only runs on the
ColdFusion Server; it does not run on the client system. A CFScript script can use all
ColdFusion functions and all ColdFusion variables that are available in the script’s scope.

CFScript provides a compact and efficient way to write ColdFusion logic. Typical uses of
CFScript include:
• Simplifying and speeding variable setting
• Building compact flow control structures
• Encapsulating business logic in user-defined functions

The following sample script populates an array and locates the first array entry that starts
with the word “key”. It shows several of the elements of CFScript, including setting
variables, loop structures, script code blocks, and function calls. Also, the code uses a
cfoutput tag to display its results. While you can use CFScript for output, the cfoutput
tag is usually easier to use.

<cfscript>
strings = ArrayNew(1);
strings[1]="the";
strings[2]="key to our";
strings[4]="idea";
for(i=1 ; i LE 4 ; i = i+1)
{

if(Find("key",strings[i],1))
break; }

</cfscript>
<cfoutput>Entry #i# starts with "key"</cfoutput>

You use CFScript to create user-defined functions

For more information on CFScript, see Chapter 6, “Extending ColdFusion Pages with
CFML Scripting” on page 115. For more information on user-defined functions, see
Chapter 9, “Writing and Calling User-Defined Functions” on page 167.
26 Chapter 2 Elements of CFML

Flow control
ColdFusion provides several tags that let you control how a page gets executed. These
tags generally correspond to programming language flow control statements, such as if,
then, and else. The following tags provide ColdFusion flow control.

This section provides a basic introduction to using flow-control tags. CFScript also
provides a set of flow-control statements. For information on using flow-control
statements in CFScript, see Chapter 6, “Extending ColdFusion Pages with CFML
Scripting” on page 115. For more details on using flow-control tags, see the reference
pages for these tags in CFML Reference.

cfif, cfelseif, and cfelse
The cfif, cfelseif, and cfelse tags provide if-then-else conditional processing, as
follows:

1 The cfif tag tests a condition and executes its body if the condition is True.

2 If the preceding cfif (or cfelseif) test condition is False, the cfelseif tag tests
another condition and executes its body if that condition is True.

3 The cfelse tag can optionally follow a cfif tag and zero or more cfelseif tags. Its
body executes if all the preceding tags’ test conditions are False.

The following example shows the use of the cfif, cfelseif, and cfelse tags. If the value
of the type variable is “Date,” the date displays; if the value is “Time,” the time; displays
otherwise, both the time and date display.

<cfif type IS "Date">
<cfoutput>#DateFormat(Now())#</cfoutput>

<cfelseif type IS "Time">
<cfoutput>#TimeFormat(Now())#</cfoutput>

<cfelse>
<cfoutput>#TimeFormat(Now())#, #DateFormat(Now())#</cfoutput>

</cfif>

Tags Purpose

cfif, cfelseif, cfelse Select sections of code based on whether expressions are
True or False.

cfswitch, cfcase,
cfdefaultcase

Select among sections of code based on the value of an
expression. Case processing is not limited to True and
False conditions.

cfloop, cfbreak Loop through code based on any of the following values:
entries in a list, keys in a structure or external object, entries
in a query column, an index, or the value of a conditional
expression.

cfabort, cfexit End processing of a ColdFusion page or custom tag.
Flow control 27

cfswitch, cfcase, and cfdefaultcase
The cfswitch, cfcase, and cfdefaultcase tags let you to select among different code
blocks based on the value of an expression. ColdFusion processes these tags as as follows:

1 The cfswitch tag evaluates an expression. The cfswitch tag body contains one or
more cfcase tags and optionally includes cfdefaultcase tag.

2 Each cfcase tag in the cfswitch tag body specifies a value or set of values. If a value
matches the value determined by the expression in the cfswitch tag, ColdFusion runs
the code in the body of the cfcase tag and then exits the cfswitch tag. If two cfcase
tags have the same condition, ColdFusion generates an error.

3 If none of the cfcase tags match the value determined by the cfswitch tag, and the
cfswitch tag body includes a cfdefaultcase tag, ColdFusion runs the code in the
cfdefaultcase tag body.

Note: Although the cfdefaultcase tag does not have to follow all cfcase tags, it is good
programming practice to put it at the end of the cfswitch statement.

The cfswitch tag provides better performance than a cfif tag with multiple cfelseif
tags, and is easier to read. Switch processing is commonly used when different actions are
required based on a a string variable such as a month or request identifier.

The following example shows switch processing:

<cfoutput query = "GetEmployees">
<cfswitch expression = #Department#>

<cfcase value = "Sales">
#FirstName# #LastName# is in Sales

</cfcase>
<cfcase value = "Accounting">

#FirstName# #LastName# is in Accounting

</cfcase>
<cfcase value = "Administration">

#FirstName# #LastName# is in Administration

</cfcase>
<cfdefaultcase>#FirstName# #LastName# is not in Sales,

Accounting, or Administration.

</cfdefaultcase>

</cfswitch>
</cfoutput>

cfloop and cfbreak
The cfloop tag loops through the tag body zero or more times based on a condition
specified by the tag attributes. The cfbreak tag exits a cfloop tag.
28 Chapter 2 Elements of CFML

cfloop

The cfloop tag provides five types of loops:

The following example shows a simple index loop:

<cfloop index = "LoopCount" from = 1 to = 5>
The loop index is <cfoutput>#LoopCount#</cfoutput>.

</cfloop>

The following example shows a simple conditional loop. The code does the following:

1 Sets up a ten-element array with the word "kumquats" in the fourth entry.

2 Loops through the array until it encounters an array element containing "kumquats"
or it reaches the end of the array.

3 Prints out the value of the Boolean variable that indicates whether it found the word
kumquats and the array index at which it exited the loop.

<cfset myArray = ArrayNew(1)>
<!--- Use ArraySet to initialize the first ten elements to 123 --->
<cfset ArraySet(myArray, 1, 10, 123)>
<cfset myArray[4] = "kumquats">

<cfset foundit = False>
<cfset i = 0>
<cfloop condition = "(NOT foundit) AND (i LT ArrayLen(myArray))">

<cfset i = i + 1>
<cfif myArray[i] IS "kumquats">

<cfset foundit = True>
</cfif>

</cfloop>
<cfoutput>
i is #i#

foundit is #foundit#

</cfoutput>

Note: You can get an infinite conditional loop if you do not force an end condition. In this
example, the loop is infinite if you omit the <cfset i = i + 1> statement. To end an infinite
loop, stop the ColdFusion application server.

Loop type Description

Index Loops through the body of the tag and increments a counter variable by
a specified amount after each loop until the counter reaches a specified
value.

Conditional Checks a condition and runs the body of the tag if the condition is Tru.e

Query Loops through the body of the tag once for each row in a query.

List Loops through the body of the tag once for each entry in a list.

Collection Loops through the body of the tag once for each key in a ColdFusion
structure or item in a COM/DCOM object.
Flow control 29

cfbreak

The cfbreak tag exits the cfloop tag. You typically use it in a cfif tag to exit the loop if a
particular condition occurs. The following example shows the use of a cfbreak tag in a
query loop:

<cfloop query="fruitOrder">
<cfif fruit IS "kumquat">

<cfoutput>You cannot order kumquats!
</cfoutput>
<cfbreak>

</cfif>
<cfoutput>You have ordered #quantity# #fruit#.
</cfoutput>

</cfloop>

cfabort and cfexit
The cfabort tag stops processing of the current page at the location of the cfabort tag.
ColdFusion returns to the user or calling tag everything that was processed before the
cfabort tag. You can optionally specify an error message to display. You can use the
cfabort tag as the body of a cfif tag to stop processing a page when a condition, typically
an error, occurs.

The cfexit tag controls the processing of a custom tag, and can only be used in
ColdFusion custom tags. For more information see, “Terminating tag execution,” in
Chapter 10 and CFML Reference.
30 Chapter 2 Elements of CFML

Comments
ColdFusion comments have a similar format to HTML comments. However, they use
three dash characters instead of two; for example:

<!--- This is a ColdFusion Comment. Browsers do not receive it. --->

The ColdFusion Server removes all ColdFusion comments from the page before
returning it to the web server. As a result, the page that a user browser receives does not
include the comment, and users cannot see it even if they view the page source.

You can embed CFML comments in begin tags (not just tag bodies), functions calls, and
variable text in pound signs. ColdFusion ignores the text in comments such as the
following:

<cfset MyVar = var1 <!--- & var2 --->>
<cfoutput>#Dateformat(now() <!---, "dddd, mmmm yyyy" --->)#</cfoutput>

This technique can be useful if you want to temporarily comment out parts of
expressions or optional attributes or arguments.

Note: You cannot embed comments inside a tag names or function name, such as
<cf_My<!--- New --->CustomTag>. You also cannot embed comments inside strings, as in the
following example: IsDefined("My<!--- New --->Variable").

Special characters
The double quotation marks ("), single quotation mark ('), and pound sign (#) characters
have special meaning to ColdFusion. To include any of them in a string, double the
character; for example, use ## to represent a single # character.

The need to escape the single- and double-quotation marks is context-sensitive. Inside a
double-quoted string, you do not need to escape single-quote (apostrophe) characters.
Inside a single-quoted string, you do not escape double-quote characters.

The following example illustrates escaping special characters, including the use of mixed
single and double quotes.

<cfset mystring = "We all said ""For He's a jolly good fellow.""">
<cfset mystring2 = 'Then we said "For She''s a jolly good fellow".'>
<cfoutput>

#mystring#

#mystring2#

Here is a pound sign: ##

</cfoutput>

The output looks like this:

We all said "For He's a jolly good fellow."
Then we said "For She's a jolly good fellow."
Here is a pound sign: #
Comments 31

Reserved words
As with any programming tool, you cannot use just any word or name for ColdFusion
variables, UDFs and custom tags. You must avoid using any name that can be confused
with a ColdFusion element. In some cases, if you use a word that ColdFusion uses, for
example, a built-in structure name. you can overwrite the ColdFusion data.

The following list indicates words you must not use for ColdFusion variables,
user-defined function names, or custom tag names. While some of these words can be
used safely in some situations, you can prevent errors by avoiding them entirely. For a
complete list of reserved words, see CFML Reference.
• Built-in function names, such as Now or Hash
• Scope names, such as Form or Session
• Any name starting with cf. However, when you call a CFML custom tag directly, you

prefix the custom tag page name with cf_.
• Operators, such as NE or IS
• The names of any built-in data structures, such as Error or File
• The names of any built-in variables, such as RecordCount or CGI variable names
• CFScript language element names such as for, default, or continue

You must also not create form field names ending in any of the following, except to
specify a form field validation rule using a hidden form field name. (For more
information on form field validation, see “Validating form field data types,” in
Chapter 26.)
• _integer
• _float
• _range
• _date
• _time
• _eurodate

Remember that ColdFusion is not case-sensitive. For example, all of the following are
reserved words: IS, Is, iS, and is.
32 Chapter 2 Elements of CFML

CHAPTER 3

Using ColdFusion Variables
This chapter provides detailed information on ColdFusion variables and their use.
ColdFusion variables are the most frequently used operands in ColdFusion expressions.
Variable values can be set and reset, and can be passed as attributes to CFML tags.
Variables can be passed as parameters to functions, and can replace most constants.

This chapter describes how to create and use variables. It provides information on how
variables can represent different types of data and how the data types get converted. It
also discusses how variables exists in different scopes and provides an introduction to how
the scopes are used. Finally, it provides additional information required to use variables
correctly.

Contents

• Creating variables .. 34

• Variable characteristics ... 35

• Data types ... 35

• Using periods in variable references.. 45

• Data type conversion ... 49

• About scopes.. 55

• Ensuring variable existence .. 60

• Validating data types.. 62

• Passing variables to custom tags and UDFs .. 64
33

Creating variables
You create most ColdFusion variables by assigning them values. (You must use the
ArrayNew function to create arrays.) Most commonly, you create variables by using the
cfset tag. You can also use the cfparam tag, and assignment statements in CFScript. Tags
that create data objects also create variables. For example, the cfquery tag creates a query
object variable.

ColdFusion automatically creates some variables that provide information about the
results of certain tags or operations. ColdFusion also automatically generates variables in
certain scopes, such as Client and Server. For information on these special variables, see
CFML Reference and the documentation of the CFML tags that create these variables.

ColdFusion generates an error when it tries to use a variable before it is created. This can
happen, for example, when processing data from an incompletely filled form. To prevent
such errors, test for the variable’s existence before you use it. For more information on
testing for variable existence, see “Ensuring variable existence” on page 60.

For more information on how to create variables, see “Creating and using variables in
scopes” on page 57.

Variable naming rules
Variable names must conform to Java naming rules. When naming ColdFusion variables
and form fields, follow these guidelines:
• A variable name must begin with a letter, underscore, or Unicode currency symbol.
• The initial character can by followed by any number of letters, numbers, and

underscore characters. Unicode currency symbols are also allowed.
• A variable name cannot contain spaces.
• A query result is a type of variable, so it cannot have the same name as another local

variable in the current ColdFusion application page.
• ColdFusion variables are not case-sensitive. However, consistent capitalization makes

the code easier to read.
• When creating a form with fields that are used in a query, match form field names

with the corresponding database field names.
• Prefix each variable’s name with its scope. Although some ColdFusion programmers

do not use the Variables prefix for local variable names, you should use prefixes for all
other scopes. Using scope prefixes makes variable names clearer and increases code
efficiency. In some cases, you must prefix the scope. For more information, see
“About scopes” on page 55.

• Periods separate the components of structure or object names. They also separate a
variable scope from the variable name. You cannot use periods in simple variable
names, with the exception of variables in the Cookie and Client scopes. For more
information on using periods, see “Using periods in variable references” on page 45

Note: In some cases, when you use an existing variable name, you must put pound signs (#)
around the name to allow ColdFusion to distinguish it from string or HTML text, and to insert
its value, as opposed to its name. For more information, see the section “Using pound signs,”
in Chapter 4.
34 Chapter 3 Using ColdFusion Variables

Variable characteristics
You can classify a variable using the following characteristics:
• The data type of the variable value, which indicates the kind of information a variable

represents, such as number, string, or date
• The scope of the variable, which indicates where the information is available and how

long the variable persists

The following sections provide detailed information on Data types and scopes.

Data types
ColdFusion is often referred to as typeless because you do not assign types to variables
and ColdFusion does not associate a type with the variable name. However, the data that
a variable represents does have a type, and the data type affects how ColdFusion evaluates
an expression or function argument. ColdFusion can automatically convert many data
types into others when it evaluates expressions. For simple data, such as numbers and
strings, the data type is unimportant until the variable is used in an expression or as a
function argument.

ColdFusion variable data belongs to one of the following type categories:
• Simple One value. ColdFusion simple data types include numbers, strings,

Booleans, and date-time variables. You can use simple data types directly in
ColdFusion expressions.

• Complex A container for data. Complex variables generally represent more than
one value. ColdFusion built-in complex data types include arrays, structures, queries,
and XML document objects.
You cannot use a complex variable, such as an array, directly in a ColdFusion
expression, but you can use simple data type elements of a complex variable in an
expression.

For example, with a one-dimensional array of numbers called myArray, you cannot
use the expression myArray * 5. However, you could use an expression myArray[3] *
5 to multiply the third element in the array by five.

• Binary Raw data, such as the contents of a GIF file or an executable program file.
• Objects Complex constructs. Often, objects encapsulate both data and functional

operations. The following table lists the types of objects that ColdFusion can use, and
identifies the chapters that describe how to use them:

Object type See

Component Object Model
(COM)

Chapter 33, “Integrating COM and CORBA Objects in
CFML Applications” on page 785

Common Object Request
Broker Architecture (CORBA)

Chapter 33, “Integrating COM and CORBA Objects in
CFML Applications” on page 785

Java Chapter 32, “Integrating J2EE and Java Elements in
CFML Applications” on page 759
Variable characteristics 35

Data type notes

Although ColdFusion variables do not have types, it is often convenient to refer to a
variable’s type as a shorthand for the type of data that the variable represents.

ColdFusion can validate the type of data contained in form fields and query parameters.
Form more information on form field data type validation, see “Validating form field
data types,” in Chapter 26. For more information on query parameter validation, see
“Using cfqueryparam,” in Chapter 20.

The cfdump tag displays the entire contents of a variable, including ColdFusion complex
data structures. It is an excellent tool for debugging complex data and the code that
handles it.

ColdFusion provides the following functions for identifying the data type of a variable:
• IsArray
• IsBinary
• IsBoolean
• IsObject
• IsQuery
• IsSimpleValue
• IsStruct
• IsXMLDoc

ColdFusion also includes the following functions for determining whether a string can be
represented as another simple data type:
• IsDate
• IsNumeric

ColdFusion does not use a null data type. However, if ColdFusion receives a null value
from an external source such as a database, a Java object, or some other mechanism, it
maintains the null until you use it as a simple value. At that time, ColdFusion converts
the null to an empty string ("").

Numbers
ColdFusion supports integers and real numbers. You can intermix integers and real
numbers in expressions; for example, 1.2 + 3 evaluates to 4.2.

ColdFusion component Chapter 11, “Building and Using ColdFusion
Components” on page 217

Web service Chapter 31, “Using Web Services” on page 729

Object type See
36 Chapter 3 Using ColdFusion Variables

Integers

ColdFusion supports integers between -2,147,483,648 and 2,147,483,647 (32-bit
signed integers). You can assign a value outside this range to a variable, but ColdFusion
initially stores the number as a string. If you use it in an arithmetic expression,
ColdFusion converts it into a floating point value, preserving its value, but losing
precision as the following example shows:

<cfset mybignum=12345678901234567890>
<cfset mybignumtimes10=(mybignum * 10)>
<cfoutput>mybignum is: #mybignum#</cfoutput>

<cfoutput>mybignumtimes10 is: #mybignumtimes10# </cfoutput>

This code generates the following output:

mybignum is: 12345678901234567890
mybignumtimes10 is: 1.23456789012E+020

Real numbers

Real numbers, numbers with a decimal part, are also known as floating point numbers.
ColdFusion real numbers can range from approximately -10300 to approximately 10300.
A real number can have up to 12 significant digits. As with integers, you can assign a
variable a value with more digits, but the data is stored as a string. The string is converted
to a real number, and can lose precision, when you use it in an arithmetic expression.

You can represent real numbers in scientific notation. This format is xEy, where x is a
positive or negative real number in the range 1.0 (inclusive) to 10 (exclusive), and y is an
integer. The value of a number in scientific notation is x times 10y. For example, 4.0E2 is
4.0 times 102, which equals 400. Similarly, 2.5E-2 is 2.5 times 10-2, which equals 0.025.
Scientific notation is useful for writing very large and very small numbers.

Strings
In ColdFusion, text values are stored in strings. You specify strings by enclosing them in
either single or double quotation marks. For example, the following two strings are
equivalent:

"This is a string"
'This is a string'

You can write an empty string in the following ways:
• "" (a pair of double quotation marks with nothing in between)
• '' (a pair of single quotation marks with nothing in between)

Strings can be any length, limited by the amount of available memory on the ColdFusion
Server. There is, however, a 64K limit on the size of text data that can be read from and
written to a ColdFusion database or HTML text area. The ColdFusion Administrator
lets you increase the limit for database string transfers, but doing so can reduce server
performance. To change the limit, select the Enable retrieval of long text option on the
Advanced Settings page for the data source.
Data types 37

Escaping quotes and pound signs

To include a single-quotation character in a string that is single-quoted, use two single
quotation marks (known as escaping the single quotes). The following example uses
escaped single quotes:

<cfset myString='This is a single quote: '' This is a double quote: "'>
<cfoutput>#mystring#</cfoutput>

To include a double-quote character in a double-quoted string, use two double quotes
(known as escaping the double quote). The following example uses escaped double
quotes:

<cfset myString="This is a single quote: ' This is a double quote: """>
<cfoutput>#mystring#</cfoutput>

Because strings can be in either double quotes or single quotes, both of the preceding
examples display the same text:

This is a single quote: ' This is a double quote: "

Note: To insert a pound sign in a string, you must escape the pound sign, as in:
"This is a pound sign ##"

Lists

ColdFusion includes functions that operate on lists, but it does not have a list data type.
In ColdFusion, a list is just a string that consists of multiple entries separated by
delimiter characters.

The default delimiter for lists is the comma. If you use any other character to separate list
elements, you must specify the delimiter in the list function. You can also specify
multiple delimiter characters. For example, you can tell ColdFusion to interpret a comma
or a semicolon as a delimiter, as the following example shows:

<cfset MyList="1,2;3,4;5">
<cfoutput>
List length using ; and , as delimiters: #listlen(Mylist, ";,")#

List length using only , as a delimiter: #listlen(Mylist)#

</cfoutput>

This example displays the following output:

List length using ; and , as delimiters: 5
List length using only , as a delimiter: 3

Each delimiter must be a single character. For example, you cannot tell ColdFusion to
require two hyphens in a row as a delimiter.

If a list has two delimiters in a row, ColdFusion ignores the empty element. For example,
if MyList is "1,2,,3,,4,,,5" and the delimiter is the comma, the list has five elements and
list functions treat it the same as "1,2,3,4,5".

Booleans
A Boolean value represents whether something is true or false. ColdFusion has two
special constants—True and False— to represent these values. For example, the Boolean
expression 1 IS 1 evaluates to True. The expression "Monkey" CONTAINS "Money"
evaluates to False.
38 Chapter 3 Using ColdFusion Variables

You can use Boolean constants directly in expressions, as in the following example:

<cfset UserHasBeenHere = True>

In Boolean expressions, True, nonzero numbers, and the string “Yes” are equivalent, and
False, 0, and the string “No” are equivalent.

Boolean evaluation is not case-sensitive. For example, True, TRUE, and true are
equivalent.

Date-Time values
ColdFusion can perform operations on date and time values. Date-time values identify a
date and time in the range 100 AD to 9999 AD. Although you can specify just a date or
a time, ColdFusion uses one data type representation, called a date-time object, for date,
time, and date and time values.

ColdFusion provides many functions to create and manipulate date-time values and to
return all or part of the value in several different formats.

You can enter date and time values directly in a cfset tag with a constant as follows:

<cfset myDate = "October 30, 2001">

When you do this, ColdFusion stores the information as a string. If you use a date-time
function, ColdFusion stores the value as a date-time object, which is a separate simple
data type. When possible, use date-time functions such as CreateDate and CreateTime to
specify dates and times, because these functions can prevent you from specifying the date
or time in an invalid format and they create a date-time object immediately.

Date and time formats

You can directly enter a date, time, or date and time, using standard U.S. date formats.
ColdFusion processes the two-digit-year values 0 to 29 as twenty-first century dates; it
processes the two-digit-year values 30 to 99 as twentieth century dates. Time values are
accurate to the second. The following table lists valid date and time formats:

To specify Use these formats

Date October 30, 2001
Oct 30, 2001
Oct. 30, 2001
10/30/01
2001-10-30

10-30-2001
Data types 39

Locale-specific dates and times

ColdFusion provides several functions that let you input and output dates and times (and
numbers and currency values) in formats that are specific to the current locale. A locale
identifies a language and locality, such as English (US) or French (Swiss). Use these
functions to input or output dates and times in formats other than the U.S. standard
formats. (Use the SetLocale function to specify the locale.) The following example shows
how to do this:

<cfset oldlocale = SetLocale("French (Standard)")>
<cfoutput>#LSDateFormat(Now(), "ddd, mmmm dd, yyyy")#</CFOUTPUT>

This code outputs a line like the following:

ven., juin 15, 2001

For more information on international functions, see CFML Reference.

How ColdFusion stores dates and times

ColdFusion stores and manipulates dates and times as date-time objects. Date-time
objects store data on a time line as real numbers. This storage method increases
processing efficiency and directly mimics the method used by many popular database
systems. In date-time objects, one day is equal to the difference between two successive
integers. The time portion of the date-and-time value is stored in the fractional part of
the real number. The value 0 represents 12:00 AM 12/30/1899.

Although you can use arithmetic operations to manipulate date-and-time values directly,
this method can result in code that is difficult to understand and maintain. Use the
ColdFusion date-time manipulation functions instead.

Binary data type and Base64 encoding
Binary data is raw data, such as the contents of a GIF file or an executable program file.
You do not normally use binary data directly, but you can use the cffile tag to read a
binary file into a variable, typically for conversion to Base64 encoding before
transmitting the file by e-mail.

Time 02:34:12
2:34a
2:34am
02:34am
2am

Date and Time Any combination of valid date and time formats, such as these:

October 30, 2001 02:34:12
Oct 30, 2001 2:34a
Oct. 30, 2001 2:34am
10/30/1 02:34am
2001-10-30 2am

10-30-2001 2am

To specify Use these formats
40 Chapter 3 Using ColdFusion Variables

Base64 format encodes the data in the lowest six bits of each byte. It ensures that binary
data and non-ANSI character data can be transmitted by e-mail without corruption. The
MIME specification defines the Base64 encoding method.

ColdFusion does not have a Base64 data type; it processes Base64 encoded data as string
data.

ColdFusion provides the following functions that convert among string data, binary data,
and Base64 encoded string data:

The ToString function cannot convert Base64 encoded data directly to an unencoded
string. Use the following procedure to convert Base64 encoded data that was originally a
string back to a readable string:

1 Use the ToBinary function to convert the Base64 data into binary format.

2 Use the ToString function to convert the binary data to string.

For example, the following two lines print the same results:

<cfoutput>This is a test</cfoutput>

<cfoutput>#ToString(ToBinary(ToBase64("This is a test")))#</cfoutput>

Do not use binary data or Base64 data directly in ColdFusion expressions.

Complex data types
Arrays, structures, and queries are ColdFusion built-in complex data types. Structures
and queries are sometimes referred to as objects, because they are containers for data, not
individual data values.

For details on using arrays and structures, see Chapter 5, “Using Arrays and Structures”
on page 87.

Arrays

Arrays are a way of storing multiple values in a table-like format that can have one or
more dimensions. To create an array and specify its initial dimensions, use the
ColdFusion ArrayNew function. For example, the following line creates an empty
two-dimensional array:

<cfset myarray=ArrayNew(2)>

You reference elements using numeric indexes, with one index for each dimension. For
example, the following code sets one element of a two-dimensional array to the current
date and time.

Function Description

ToBase64 Converts string and binary data to Base64 encoded data.

ToBinary Converts Base64 encoded data to binary data.

ToString Converts most simple data types to string data. It can convert numbers,
date-time objects, and boolean values. (It converts date-time objects to
ODBC timestamp strings.) It cannot convert binary data that includes bytes
that are not printable characters.
Data types 41

<cfset myarray[1][2]=Now()>

The ArrayNew function can create arrays with up to three dimensions. However, there is
no limit on array size or maximum dimension. To create arrays with more than three
dimensions, create arrays of arrays.

After you create an array, you can use functions or direct references to manipulate its
contents.

When you assign an existing array to a new variable, ColdFusion creates a new array and
copies the old array’s contents to the new array. The following example creates a copy of
the original array:

<cfset newArray=myArray>

For more information on using Arrays, see Chapter 5, “Using Arrays and Structures” on
page 87.

Structures

ColdFusion structures consist of key-value pairs, where the keys are text strings and the
values can be any ColdFusion data type, including other structures. Structures let you
build a collection of related variables that are grouped under a single name. To create a
structure, use the ColdFusion StructNew function. For example, the following line creates
a new, empty, structure called depts:

<cfset depts=StructNew()>

You can also create a structure by assigning a value in the structure. For example, the
following line creates a new structure called MyStruct with a key MyValue equal to 2.

<cfset MyStruct.MyValue=2>

Note: In previous ColdFusion versions, this line created a Variables scope variable named
"MyStruct.MyValue" with the value 2.

After you create a structure, you can use functions or direct references to manipulate its
contents, including adding key/value pairs.

You can use either of the following methods to reference elements stored in a structure:
• StructureName.KeyName
• StructureName["KeyName"]

The following examples show these methods:

depts.John="Sales"
depts["John"]="Sales"

When you assign an existing structure to a new variable, ColdFusion does not create a
new structure. Instead, the new variable accesses the same data (location) in memory as
the original structure variable. In other words, both variables are references to the same
object.

For example, the following code creates a new variable myStructure2 that references the
same structure as the myStructure variable:

<CFSET myStructure2=myStructure>
42 Chapter 3 Using ColdFusion Variables

When you change the contents of myStructure2, you also change the contents of
myStructure. To copy the contents of a structure, use the ColdFusion Duplicate
function, which copies the contents of structures and other complex data types.

Structure key names can be the names of complex data objects, including structures or
arrays. This lets you create arbitrarily complex structures.

For more information on using Structures, see Chapter 5, “Using Arrays and Structures”
on page 87.

Queries

A query object, sometimes referred to as a query, query result, or record set, is a complex
ColdFusion data type that represents data in a set of named columns, similar to the
columns of a database table. The following ColdFusion tags can create query objects:
• cfquery
• cfdirectory
• cfhttp
• cfldap

• cfpop
• cfprocresult

In these tags, the name attribute specifies the query object’s variable name. The QueryNew
function also creates queries.

When you assign a query to a new variable, ColdFusion does not copy the query object.
Instead, both names point to the same record set data. For example, the following code
creates a new variable myQuery2 that references the same record set as the myQuery
variable.

<CFSET myQuery2 = myQuery>

If you make changes to data in myQuery, myQuery2 also shows those changes.

You reference query columns by specifying the query name, a period, and the column
name; for example:

myQuery.Dept_ID

When you reference query columns inside tags, such as cfoutput and cfloop, in which
you specify the query name in a tag attribute, you do not have to specify the query name.

You can access query columns as if they are one-dimensional arrays. For example, the
following code assigns the contents of the second row of the Employee column in the
myQuery query to the variable myVar:

<CFSET myVar = myQuery.Employee[2]>

You cannot use array notation to refer to a row (of all columns) of a query.
Data types 43

Working with structures and queries

Because structure variables and query variables are references to objects, the rules in the
following sections apply to both types of data.

Multiple references to an object

When multiple variables refer to a structure or query object, the object continues to exist
as long as at least one reference to the object exists. The following example shows how
this works:

<cfscript> depts = structnew();</cfscript>
<cfset newStructure=depts>
<cfset depts.John="Sales">
<cfset depts=0>
<cfoutput>

#newStructure.John#

#depts#

</cfoutput>

This example displays the following output:

Sales
0

After the <cfset depts=0> tag executes, the depts variable does not refer to a structure; it
is a simple variable with the value 0. However, the variable newStructure still refers to the
original structure object.

Assigning objects to scopes

You can give a query or structure a different scope by assigning it to a new variable in the
other scope. For example, the following line creates a server variable,
Server.SScopeQuery, using the local myquery variable:

<CFSET Server.SScopeQuery = myquery>

To clear the server scope query variable, reassign the query object, as follows:

<CFSET Server.SScopeQuery = 0>

This deletes the reference to the object from the server scope, but does not remove any
other references that might exist.

Copying and duplicating objects

You can use the Duplicate function to make a true copy of a structure or query object.
Changes to the copy do not affect the original.

Using a query column

When you are not inside a cfloop, cfoutput, or cfmail tag that has a query attribute, you
can treat a query column as an array. However, query column references do not always
behave as you might expect. This section explains the behavior of references to query
columns using the results of the following cfquery tag in its examples:
44 Chapter 3 Using ColdFusion Variables

<cfquery dataSource="CompanyInfo" name="myQuery">
SELECT FirstName, LastName
FROM Employee

</cfquery>

To reference elements in a query column, use the row number as an array index. For
example, both of the following lines display the word "ben":

<cfoutput> #myQuery.Firstname[1]# </cfoutput>

<cfoutput> #myQuery["Firstname"][1]# </cfoutput>

ColdFusion behavior is less straightforward, however, when you use the query column
references myQuery.Firstname and myQuery["Firstname"] without using an array index;
as the two reference formats produce different results.

Here are the rules for these references:

If you refer to myQuery.Firstname, ColdFusion automatically converts it to the first row
in the column. For example, the following line prints outs the word "ben":

<cfset myCol = myQuery.Firstname >
<cfoutput>#mycol#</cfoutput>

But the following lines display an error message:

<cfset myCol = myQuery.Firstname >
<cfoutput>#mycol[1]#</cfoutput>

If you refer to Query["Firstname"], ColdFusion does not automatically convert it to the
first row of the column. For example, the following line results in an error message
indicating that ColdFusion cannot convert a complex type to a simple value:

<cfoutput> #myQuery['Firstname']# </cfoutput>

Similarly, the following code prints out the name "marjorie", the value of the second row
in the column

<cfset myCol = myQuery["Firstname"]>
<cfoutput>#mycol[2]#</cfoutput>

However, when you make an assignment that requires a simple value, ColdFusion
automatically converts the query column to the value of the first row. For example, the
following code displays the name "ben":

<cfoutput> #myQuery.Firstname# </cfoutput>

<cfset myVar= myQuery['Firstname']>
<cfoutput> #myVar# </cfoutput>

Using periods in variable references
ColdFusion uses the period (.) to separate elements of a complex variable such as a
structure, query, XML document object, or external object, as in MyStruct.KeyName. A
period also separates a variable scope identifier from the variable name, as in
Variables.myVariable or CGI.HTTP_COOKIE.

With the exception of Cookie and Client scope variables (which must always be simple
variable types), you cannot normally include periods in simple variable names. However,
ColdFusion makes some exceptions that accommodate legacy and third-party code that
does not conform to this requirement.
Using periods in variable references 45

Note: For more information on scopes, see “About scopes” on page 55. For more
information on references to arrays and structures, see Chapter 5, “Using Arrays and
Structures” on page 87. For more information on references to XML document objects, see
Chapter 30, “Using XML and WDDX” on page 687.

Understanding variables and periods
The following descriptions use a sample variable named MyVar.a.b to explain how
ColdFusion uses periods when getting setting the variable value.

Getting a variable

ColdFusion can correctly get variable values even if a simple variable name includes a
period. For example, the following set of steps shows how ColdFusion gets MyVar.a.b, as
in <cfset Var2 = myVar.a.b> or IsDefined(myVar.a.b):

1 Looks for myVar in an internal table of names (the symbol table).

2 If myVar is the name of a complex object, including a scope, looks for an element
named a in the object.

If myVar is not the name of a complex object, it checks whether myVar.a is the name
of a complex object and skips step 3.

3 If myVar is the name of a complex object, it checks whether a is a complex object,

4 If a or myVar.a is the name of a complex object, it checks whether b is the name of a
simple variable, and returns the value of b.

If myVar is a complex object but a is not a complex object, it checks whether a.b is
the name of a simple variable and returns its value.

If myVar.a is not a complex object, it checks whether myVar.a.B is the name of a
simple variable and returns its value.

This way, even if myVar.a.b is a simple variable name, ColdFusion correctly resolves the
variable name and can get its value.

You can also use array notation to get a simple variable with a name that includes periods.
In this form of array notation, you use the scope name (or the complex variable that
contains the simple variable) as the “array” name. You put the simple variable name, in
single or double quotation marks, inside the square bracket.

Using array notation is more efficient than using plain dot notation because ColdFusion
does not have to analyze and look up all the possible key combinations. For example,
both of the following lines write the value of myVar.a.b, but the second line is more
efficient than the first:

<cfoutput>myVar.a.b is: #myVar.a.b#
</cfoutput>
<cfoutput>myVar.a.b is: #Variables["myVar.a.b"]#
</cfoutput>

Setting a variable

ColdFusion cannot be as flexible when it sets a variable value as when it gets a variable,
because it must determine the type of variable to create or set. Therefore, the rules for
variable names that you set are stricter. Also, the rules vary depending on whether or not
the first part of the variable name is the Cookie or Client scope identifier.
46 Chapter 3 Using ColdFusion Variables

For example, assume you have the following code:

<cfset myVar.a.b = "This is a test">

If a variable myVar does not exist, it creates a structure named myVar, creates a structure
named a in the structure myVar, creates a key named b in myVar.a, and gives it the value
"This is a test". If either myVar or myVar.a exist and is not a structure, ColdFusion
generates an error.

In other words, ColdFusion uses the same rules as in the Getting a variable section to
resolve the variable name until it finds a name that does not exist yet. It then creates any
structures that are needed to create a key named b inside a structure, and assigns the value
to the key.

However, if the name before the first period is either Cookie or Client, ColdFusion uses a
different rule. It treats all the text. including any periods, that follow the scope name as
the name of a simple variable, because Cookie and Client scope variables must be simple.
As a result if you have the following code, you see that ColdFusion creates a single, simple
Client scope variable named myVar.a.b:

<cfset Client.myVar.a.b = "This is a test">
<cfdump var=#Client.myVar.a.b#>

Creating variables with periods
You should avoid creating the names of simple variables (including arrays) that include
periods. However, ColdFusion provides mechanisms for handling cases where you must
do so, for example, to maintain compatibility with names of variables in external data
sources or to integrate your application with existing code that uses periods in variable
names. The following sections describe how to create simple variable names that include
periods.

Using brackets to create variables with periods

You can create a variable name that includes periods by using associative array structure
notation, as described in “Structure notation,” in Chapter 5. To do so, you must do the
following:
• Refer to the variable as part of a structure. You can always do this, because

ColdFusion considers all scopes to be structures. For more information on scopes, see
“About scopes” on page 55

• Put the variable name that must include a period inside square brackets and single or
double quotation marks,

The following example shows this technique:

<cfset Variables['My.Variable.With.Periods'] = 12>
<cfset Request["Another.Variable.With.Periods"] = "Test variable">
<cfoutput>

My.Variable.With.Periods is: #My.Variable.With.Periods#

Request.Another.Variable.With.Periods is:

#Request.Another.Variable.With.Periods#

</cfoutput>
Using periods in variable references 47

Creating Client and Cookie variables with periods

To create a Client or Cookie variable with a name that includes one or more periods,
simply assign the variable a value. For example, the following line creates a Cookie named
User.Preferences.CreditCard:

<cfset Cookie.User.Preferences.CreditCard>
48 Chapter 3 Using ColdFusion Variables

Data type conversion
ColdFusion automatically converts between data types to satisfy the requirements of an
expression’s operations, including a function’s argument requirements. As a result, you
generally don’t need to be concerned about compatibility between data types and the
conversions from one data type to another. However, understanding how ColdFusion
evaluates data values and converts data between types can help you prevent errors and
code more effectively.

Operation-driven evaluation
Conventional programming languages enforce strict rules about mixing objects of
different types in expressions. For example, in a language such as C++ or Basic, the
expression ("8" * 10) produces an error because the multiplication operator requires two
numerical operands and "8" is a string. When you program in such languages, you must
convert between data types to ensure error-free program execution. For example, the
previous expression might have to be written as (ToNumber("8") * 10).

In ColdFusion, however, the expression ("8" * 10) evaluates to the number 80 without
generating an error. When ColdFusion processes the multiplication operator, it
automatically attempts to convert its operands to numbers. Since "8" can be successfully
converted to the number 8, the expression evaluates to 80.

ColdFusion processes expressions and functions in the following sequence:

1 For each operator in an expression, it determines the required operands. (For
example, the multiplication operator requires numeric operands and the
CONTAINS operator requires string operands.)

For functions, it determines the type required for each function argument. (For
example, the Min function requires two numbers as arguments and the Len function
requires a string.)

2 It evaluates all operands or function arguments.

3 It converts all operands or arguments whose types differ from the required type. If a
conversion fails, it reports an error.

Conversion between types
Although the expression evaluation mechanism in ColdFusion is very powerful, it cannot
automatically convert all data. For example, the expression "eight" * 10 produces an
error because ColdFusion cannot convert the string "eight" to the number 8. Therefore,
you must understand the rules for conversion between data types.

The following table explains how conversions are performed. The first column shows
values to convert. The remaining columns show the result of conversion to the listed data
type.

Value As Boolean As number As date-time As string

"Yes" True 1 Error "Yes"

"No" False 0 Error "No"
Data type conversion 49

ColdFusion cannot convert complex types, such as arrays, queries, and COM objects to
other types. However, it can convert simple data elements of complex types to other
simple data types.

Type conversion notes

The following sections detail specific rules and considerations for converting between
types.

The cfoutput tag

The cfoutput tag always displays data as a string. As a result, when you display a variable
using the cfoutput tag, ColdFusion applies the type conversion rules to any non-string
data before displaying it. For example, the cfoutput tag displays a date-time value as an
ODBC timestamp.

Case-insensitivity and Boolean conversion

Because ColdFusion expression evaluation is not case-sensitive, Yes, YES, and yes are
equivalent; False, FALSE, and false are equivalent; No, NO, and no are equivalent; and
True, TRUE, and true are equivalent.

True True 1 Error "Yes"

False False 0 Error "No"

Number True if Number
is not 0, False
otherwise.

Number See “Date-time values”
earlier in this chapter.

String
representation
of the number.

String If "Yes" or "No",
or if the string
can be
converted to a
number, it is
treated as
listed above.

If it represents a
number (for
example, "1,000"
or "12.36E-12"), it
is converted to
the
corresponding
number. If it
represents a
date-time (see
next column), it is
converted to the
numeric value of
the
corresponding
date-time object.

If it is an ODBC date, time,
or timestamp (for example
"{ts '2001-06-14
11:30:13'}", or if it is
expressed in a standard
US date or time format,
including the use of full or
abbreviated month names,
it is converted to the
corresponding date-time
value.

Days of week or unusual
punctuation result in error.

Dashes, forward-slashes,
and spaces are generally
allowed.

String

Date Error The numeric value
of the date-time
object.

Date An ODBC
timestamp.

Value As Boolean As number As date-time As string
50 Chapter 3 Using ColdFusion Variables

Converting binary data

ColdFusion cannot automatically convert binary data to other data types. To convert
binary data use the ToBase64 and ToString functions. For more information, see “Binary
data type and Base64 encoding” on page 40.

Converting date and time data

To ensure that a date and time value is expressed as a real number, add zero to the
variable. The following example shows this:

<cfset mynow = now()>
Use cfoutput to display the result of the now function:

<cfoutput>#mynow#</cfoutput>

Now add 0 to the result and display it again:

<cfset mynow = mynow + 0>
<cfoutput>#mynow#</cfoutput>

At 5:34 PM on November 7, 2001, its output looked like this:

Using cfoutput to display the result of the now function:
{ts '2001-11-07 17:34:01'}
Now Add 0 to the result and display it:
37202.731956

Converting numeric values

When ColdFusion evaluates an expression that includes both integers and real numbers,
the result is a real number. To convert a real number to an integer, use a ColdFusion
function. The Int, Round, Fix, and Ceiling functions convert real numbers to integers,
and differ in their treatment of the fractional part of the number.

If you use a hidden form field with a name that has the suffix _integer or _range to
validate a form input field, ColdFusion truncates real numbers entered into the field and
passes the resulting integer to the action page.

If you use a hidden form field with a name that has the suffix _integer, _float, or _range
to validate a form input field, and the entered data contains a dollar amount (including a
dollar sign) or a numeric value with commas, ColdFusion considers the input to be valid,
removes the dollar sign or commas from the value, and passes the resulting integer or real
number to the action page.

Evaluation and type conversion issues
The following sections explain several issues that you might encounter with type
evaluation and conversion.

Comparing variables to True or False

You might expect the following two cfif tags to produce the same results:

<cfif myVariable>
<cfoutput>myVariable equals #myVariable# and is True
</cfoutput>

</cfif>
Data type conversion 51

<cfif myVariable IS True>
<cfoutput>myVariable equals #myVariable# and is True
</cfoutput>

</cfif>

However, if myVariable has a numeric value such as 12, only the first example produces a
result. In the second case, the value of myVariable is not converted to a Boolean data
type, because the IS operator does not require a specific data type and just tests the two
values for identity. Therefore, ColdFusion compares the value 12 with the constant True.
The two are not equal, so nothing is printed. If myVariable is 1, "Yes", or True, however,
both examples print the same result, because ColdFusion considers these to be identical
to Boolean True.

If you use the following code, the output statement does display, because the contents of
the variable, 12, is not equal to the Boolean value False.

<cfif myVariable IS NOT False>
<cfoutput>myVariable equals #myVariable# and IS NOT False
</cfoutput>

</cfif>

As a result, you should use the test <cfif testvariable>, and not use the IS comparison
operator when testing whether a variable is True or False. This issue is a case of the more
general problem of ambiguous type expression evaluation, described in the following
section.

Ambiguous type expressions and strings

When ColdFusion evaluates an expression that does not require strings, including all
comparison operations, such as IS or GT, it checks whether it can convert each string value
to a number or date-time object. If so, ColdFusion converts it to the corresponding
number or date-time value (which is stored as a number). It then uses the number in the
expression.

Short strings, such as 1a and 2P, can produce unexpected results. ColdFusion can
interpret a single "a" as AM and a single "P" as PM. This can cause ColdFusion to
interpret strings as date-time values in cases where this was not intended.

Similarly, if the strings can be interpreted as numbers, you might get unexpected results.

For example, ColdFusion interprets the following expressions as shown:

To prevent such ambiguities when you compare strings, use the ColdFusion string
comparison functions Compare and CompareNoCase, instead of the comparison operators.

Expression Interpreted as

<cfif "1a" EQ "01:00"> If 1:00am is 1:00am.

<cfif "1P" GT "2A"> If 1:00pm is later than 2:00am.

<cfset age="4a">
<cfset age=age + 7>

Treat the variable age as 4:00 am, convert it to the
date-time value 0.16666666667, and add 7 to make it
7.16666666667.

<cfif "0.0" is "0"> If 0 is 0.
52 Chapter 3 Using ColdFusion Variables

You can also use the IsDate function to determine whether a string can be interpreted as a
date-time value, or to add characters to a string before comparison to avoid incorrect
interpretation.

Date-time functions and queries when ODBC is not supported

Many CFML functions, including the Now, CreateDate, CreateTime, and CreateDateTime
functions, return date-time objects. ColdFusion creates Open Database Connectivity
(ODBC) timestamp values when it converts date-time objects to strings. As a result, you
might get unexpected results when using dates with a database driver that does not
support ODBC escape sequences., or when you use SQL in a query of queries.

If you use SQL to insert data into a database or in a WHERE clause to select data from a
database, and the database driver does not support ODBC-formatted dates, use the
DateFormat function to convert the date-time value to a valid format for the driver. This
rule also applies to queries of queries.

For example, the following SQL statement uses the DateFormat function in a query of
queries to select rows that have MyDate values in the future:

<cfquery name="MyQofQQ" dbtype="query">
SELECT *
FROM DateQuery
WHERE MyDate >= '#DateFormat(Now())#'
</cfquery>

The following query of queries fails with the error message “Error: {ts is not a valid date,”
because the ColdFusion Now function returns an ODBC timestamp:

<cfquery name="MyQofQQ" dbtype="query">
SELECT *
FROM DateQuery
WHERE MyDate >= '#now()#'
</cfquery>

Using JavaCast with overloaded Java methods

You can overload Java methods so a class can have several identically named methods that
differ only in parameter data types. At runtime, the Java virtual machine (VM) attempts
to resolve the specific method to use, based on the types of the parameters passed in the
call. Because ColdFusion does not use explicit types, you cannot predict which version of
the method the VM will use.

The ColdFusion JavaCast function helps you ensure that the right method executes by
specifying the Java type of a variable, as in the following example:

<cfset emp.SetJobGrade(JavaCast("int", JobGrade))>

The JavaCast function takes two parameters: a string representing the Java data type and
the variable whose type you are setting. You can specify the following Java data types:
bool, int, long, float, double, and String.

For more information on the JavaCast function, see CFML Reference.
Data type conversion 53

The effect of quotes

To ensure that ColdFusion properly interprets string data, surround strings in single or
double quotes. For example, ColdFusion evaluates “10/2/2001” as a string that can be
converted into a date-time object. However, it evaluates 10/2/2001 as a mathematical
expression, 5/2001, which evaluates to 0.00249875062469.

Examples of type conversion in expression evaluation
The following examples demonstrate ColdFusion expression evaluation.

Example 1

2 * True + "YES" - ('y' & "es")

Result value as string: "2"

Explanation: (2*True) is equal to 2; (“YES”- “yes”) is equal to 0; 2 + 0 equals 2.

Example 2

True AND 2 * 3

Result value as string: “YES”

Explanation: 6 is converted to Boolean True because it is nonzero; True AND True is
True.

Example 3

"Five is " & 5

Result value as string: “Five is 5”

Explanation: 5 is converted to the string “5”.

Example 4

DateFormat("October 30, 2001" + 1)

Result value as string: “31-Oct-01”

Explanation: The addition operator forces the string “October 30, 2001” to be converted
to a date-time object and then to a number. The number is incremented by one. The
DateFormat function requires its argument to be a date-time object; thus, the result of
the addition is converted to a date-time object. One is added to the date-time object,
moving it ahead by one day to October 31, 2001.
54 Chapter 3 Using ColdFusion Variables

About scopes
Variables differ in the source of the data, the places in your code where they are
meaningful, and how long their values persist. These considerations are generally referred
to as a variable’s scope. Commonly used scopes include the Variables scope, the default
scope for variables that you create, and the Request scope, which is available for the
duration of an HTTP request.

Note: User-defined functions also belong to scopes. For more information on user-defined
function scopes see “Specifying the scope of a function,” in Chapter 9.

Scope types
The following table lists the types of ColdFusion scopes and describes their uses:

Scope Description

Variables
(local)

The default scope for variables of any type that are created with the cfset
and cfparam tags. A local variable is available only on the page on which it is
created and any included pages (see also the Caller scope).

Form Contains variables passed from a Form page to its action page as the result
of submitting the form. (If you use the HTML form tag, you must use
method="post".) For information on using the Form scope, see Chapter 26,
“Retrieving and Formatting Data” on page 579.

URL Contains parameters passed to the current page in the URL that is used to
call it. The parameters are appended to the URL in the format
?variablename = value[&variablename=value...]; for example
www.MyCompany.com/inputpage.cfm?productCode=A12CD1510&
quantity=3.

Attributes Used only in custom tag pages. Contains the values passed by the calling
page in the custom tag’s attributes. For information on using the Attributes
scope, see Chapter 10, “Creating and Using Custom CFML Tags” on
page 197.

Caller Used only in custom tag pages. The custom tag’s Caller scope is a
reference to the calling page’s Variables scope. Any variables that you
create or change in the custom tag page using the Caller scope are visible
in the calling page’s Variables scope. For information on using the Caller
scope, see Chapter 10, “Creating and Using Custom CFML Tags” on
page 197

ThisTag Used only in custom tag pages. The ThisTag scope is active for the current
invocation of the tag. If a custom tag contains a nested tag, any ThisTag
scope values you set before calling the nested tag are preserved when the
nested tag returns to the calling tag.

The ThisTag scope includes three built-in variables that identify the tag’s
execution mode, contain the tag’s generated contents, and indicate
whether the tag has an end tag.

A nested custom tag can use the cfassociate tag to return values to the
calling tag’s ThisTag scope. For more information on the ThisTag scope,
see “Accessing tag instance data,” in Chapter 10.
About scopes 55

Request Used to hold data that must be available for the duration of one HTTP
request. The Request scope is available to all pages, including custom tags
and nested custom tags, that are processed in response to the request.

This scope is useful for nested (child/parent) tags. This scope can often be
used in place of the Application scope, to avoid the need for locking
variables. Several chapters discuss using the Request scope.

CGI Contains environment variables identifying the context in which a page was
requested. The variables available depend on the browser and server
software. For a list of the commonly used CGI variables, see CFML
Reference.

Cookie Contains variables maintained in a user’s browser as cookies. Cookies are
typically stored in a file on the browser, so they are available across browser
sessions and applications. You can create memory-only Cookie variables,
which are not available after the user closes the browser. Cookie scope
variable names can include periods.

Client Contains variables that are associated with one client. Client variables let
you maintain state as a user moves from page to page in an application,
and are available across browser sessions. By default, Client variables are
stored in the system registry, but you can store them in a cookie or a
database. Client variables cannot be complex data types and can include
periods in their names. For information on using the Client scope, see
Chapter 15, “Using Persistent Data and Locking” on page 315.

Session Contains variables that are associated with one client and persist only as
long as the client maintains a session. They are stored in the server’s
memory and can be set to time out after a period of inactivity. You cannot
use application variables on server clusters where more than one computer
can process requests from a single session. For information on using the
Session scope, see Chapter 15, “Using Persistent Data and Locking” on
page 315.

Application Contains variables that are associated with one, named application on a
server. The cfapplication tag name attribute specifies the application
name. For information on using the Application scope, see Chapter 15,
“Using Persistent Data and Locking” on page 315.

Server Contains variables that are associated with the current ColdFusion Server.
This scope lets you define variables that are available to all your ColdFusion
pages, across multiple applications. For information on using the Server
scope, see Chapter 15, “Using Persistent Data and Locking” on page 315.

Flash Variables sent by a Macromedia Flash movie to ColdFusion and returned
by ColdFusion to the movie. For more information on the Flash scope, see
Chapter 29, “Using the Flash Remoting Service” on page 673.

Arguments Variables passed in a call to a user-defined function or ColdFusion
component method. For more information see “About the Arguments
scope,” in Chapter 9.

Scope Description
56 Chapter 3 Using ColdFusion Variables

Caution: To prevent data corruption, you lock code that uses Session, Application, or
Server scope variables. For more information on using these scopes and locking access to
code, see Chapter 15, “Using Persistent Data and Locking” on page 315.

Creating and using variables in scopes
The following table shows how you create and refer to variables in different scopes in
your code. For more information on the mechanisms for creating variables in most
scopes, see “Creating variables” on page 34.

This Variables that are declared inside a ColdFusion component or in a
cffunction tag that is not part of a ColdFusion component. These variables
exist only while a function executes.

function local Contains variables that are declared inside a user-defined function that you
create using CFScript and exist only while a function executes. For
information on using function local variables, see Chapter 9, “Writing and
Calling User-Defined Functions” on page 167.

Scope Description

Scope
prefix
(type)

Prefix
required to
reference Where available Created by

Variables

(Local)

No On the current page. Cannot be
accessed by a form’s action page
(unless the form page is also the action
page). Variables in this scope used on a
page that calls a custom tag can be
accessed in the custom tag by using its
Caller scope; however, they are not
available to any nested custom tags.

Specifying the prefix Variables, or
using no prefix, when you create the
variable.

Form No On the action page of a form and in
custom tags called by the action page;
cannot be used on a form page that is
not also the action page.

A form or cfform tag. Contains the
values of form field tags (such as
input) in the form body when the form
is submitted. The variable name is the
name of the form field.

URL No On the target page of the URL. The system. Contains the parameters
passed in the URL query string used
to access the page.

Attributes Yes On the custom tag page. The calling page passing the values
to a custom tag page in the custom
tag’s attributes.

Caller On the custom
tag page, Yes.

On the calling
page, No
(Variables prefix
is optional).

On the custom tag page, by using the
Caller scope prefix.

On the page that calls the custom tag,
as local variables (Variables scope).

On the custom tag page, by
specifying the prefix Caller when you
create the variable.

On the calling page, by specifying the
prefix Variables, or using no prefix,
when you create the variable.
About scopes 57

ThisTag Yes On the custom tag page. Specifying the prefix ThisTag when
you create the variable in the tag or
using the cfassociate tag in a nested
custom tag.

Request Yes On the creating page and in any pages
invoked during the current HTTP
request after the variable is created,
including in custom tags and nested
custom tags.

Specifying the prefix Request when
you create the variable.

CGI No On any page. Values are specific to the
latest browser request.

The web server. Contains the server
environment variables that result
from the browser request.

Cookie No For one client in one or more
applications and pages, over multiple
browser sessions.

A cfcookie tag. You can also set
memory-only cookies by specifying
the prefix Cookie when you create
the variable.

Client No For one client in one application, over
multiple browser sessions.

Specifying the prefix Client when you
create the variable.

Session Yes For one client in one application and
one browser session. Surround all
code that uses application variables in
cflock blocks.

Specifying the prefix Session when
you create the variable.

Application Yes For multiple clients in one application
over multiple browser sessions.
Surround all code that uses application
variables in cflock blocks.

Specifying the prefix Application
when you create the variable.

Server Yes To any page on the ColdFusion Server.
Surround all code that uses server
variables in cflock blocks.

Specifying the prefix Server when
you create the variable.

Flash Yes A ColdFusion page or ColdFusion
component called by a flash client

The ColdFusion Client access. You
assign a value to Flash.You can
assign values to the Flash.result and
Flash.pagesize variables.

Arguments No Within the body of a user-defined
function or ColdFusion component
method.

The calling page passing an
argument in the function call.

This Yes Within the body of a user-defined
function or ColdFusion component
method that was created using the
cffunction tag, only while the function
executes.

Specifying the prefix This when you
create the variable.

(function
local, no
prefix)

Prohibited Within the body of a user-defined
function that was created using
CFScript, only while the function
executes.

A var statement in the function body.

Scope
prefix
(type)

Prefix
required to
reference Where available Created by
58 Chapter 3 Using ColdFusion Variables

Using scopes
The following sections provide details on how you can create and use variables in
different scopes.

Evaluating unscoped variables

If you use a variable name without a scope prefix, ColdFusion checks the scopes in the
following order to find the variable:

1 Arguments

2 Variables (local scope)

3 CGI

4 URL

5 Form

6 Cookie

7 Client

Because ColdFusion must search for variables when you do not specify the scope, you can
improve performance by specifying the scope for all variables.

To access variables in all other scopes, you must prefix the variable name with the scope
identifier.

Scopes and CFX tags

ColdFusion scopes do not apply to CFX tags, custom tags that you write in a
programming language such as C++ or Java. The ColdFusion page that calls a CFX tag
must use tag attributes to pass data to the CFX tag. The CFX tag must use the Java
Request and Response interfaces or the C++ Request class to get and return data.

The Java setVariable Response interface method and C++ CCFX::SetVariable method to
return data to the Variables scope of the calling page. Therefore, they are equivalent to
setting a Caller scope variable in a custom ColdFusion tag.

Using scopes as structures

ColdFusion makes all named scopes available as structures. You cannot access the
function-local scope for UDFs that you define using CFScript as a structure. (In
ColdFusion 4.5 and 5, the following scopes are not available as structures: Variables,
Caller, Client, Server.)

You can reference the variables in these scopes as elements of a structure. To do so, specify
the scope name as the structure name and the variable name as the key. For example, if
you have a MyVar variable in the Request scope, you can refer to either of the following
ways:

Request.MyVar
Request["MyVar"]
About scopes 59

Similarly, you can use CFML structure functions to manipulate the contents of the
scope. For more information on using structures, see Chapter 5, “Using Arrays and
Structures” on page 87.

Caution: Do not call StructClear(Session) to clear session variables. This deletes the
SessionID, CFID, and CFtoken built-in variables, effectively ending the session. If you want to
use StructClear to delete your application variables, put those variables in a structure in the
Session scope, then clear that structure. For example, put all your application variables in
Session.MyVars and then call StructClear(Session.Myvars) to clear the variables.

Ensuring variable existence
ColdFusion generates an error if you try to use a variable value that does not exist.
Therefore, before you use any variable whose value is assigned dynamically, you must
ensure that a variable value exists. For example, if your application has a form, it must use
some combination of requiring users to submit data in fields, providing default values for
fields, and checking for the existence of field variable values before they are used.

There are several ways to ensure that a variable exists before you use it, including:
• You can use the IsDefined function to test for the variable’s existence.
• You can use the cfparam tag to test for a variable and set it to a default value if it does

not exist.

You can also use a cfform input tag with a hidden attribute to tell ColdFusion to display a
helpful message to any user who does not enter data in a required field. For more
information on this technique, see “Requiring users to enter values in form fields,” in
Chapter 26.

Testing for a variable’s existence
Before relying on a variable’s existence in an application page, you can test to see if it
exists by using the IsDefined function.

For example, if you submit a form with an unsettled check box, the action page does not
get a variable for the check box. The following example from a form action page makes
sure the Contractor check box Form variable exists before using it:

<cfif IsDefined("Form.Contractor")>
<cfoutput>Contractor: #Form.Contractor#</cfoutput>
</cfif>

You must always enclose the argument passed to the IsDefined function in double
quotes. For more information on the IsDefined function, see CFML Reference.

If you attempt to evaluate a variable that you did not define, ColdFusion cannot process
the page and displays an error message. To help diagnose such problems, use the
interactive debugger in ColdFusion Studio or turn on debugging in the ColdFusion
Administrator. The Administrator debugging information shows which variables are
being passed to your application pages.
60 Chapter 3 Using ColdFusion Variables

Variable existence notes

If a variable is part of a scope that is available as a structure, you might get a minor
performance increase by testing the variable’s existence using the StructKeyExists
function instead of the IsDefined function.

You can also determine which Form variables exist by inspecting the contents of the
Form.fieldnames built-in variable. This variable contains a list of all the filed submitted by
the form. Remember, however, that form Text fields are always submitted to the action
page, and may contain an empty string if the user did not enter data.

The IsDefined function always Returns False if you specify an array or structure element
using bracket notation. For example IsDefined("myArray[3]") always returns False, even
if the array element myArray[3] has a value. To check for the existence of an array
element, copy the element to a simple variable and use IsDefined to test whether the
simple variable exists.

Using the cfparam tag
You can ensure that a variable exists by using the cfparam tag, which tests for the variable’s
existence and optionally supplies a default value if the variable does not exist. The
cfparam tag has the following syntax:

<cfparam name="VariableName"
type="data_type"
default="DefaultValue">

Note: For information on using the type attribute to validate the parameter data type, see
CFML Reference.

There are two ways to use the cfparam tag to test for variable existence, depending on how
you want the validation test to proceed:
• With only the name attribute to test that a required variable exists. If it does not exist,

the ColdFusion Server stops processing the page and displays an error message.
• With the name and default attributes to test for the existence of an optional variable.

If the variable exists, processing continues and the value is not changed. If the variable
does not exist, it is created and set to the value of the default attribute, and
processing continues.

The following example shows how to use the cfparam tag to check for the existence of an
optional variable and to set a default value if the variable does not already exist:

<cfparam name="Form.Contract" default="Yes">

Example: testing for variables

Using the cfparam tag with the name attribute is one way to clearly define the variables
that a page or a custom tag expects to receive before processing can proceed. This can
make your code more readable, as well as easier to maintain and debug.

For example, the following cfparam tags indicate that this page expects two form variables
named StartRow and RowsToFetch:

<cfparam name="Form.StartRow">
<cfparam name="Form.RowsToFetch">
Ensuring variable existence 61

If the page with these tags is called without either one of the form variables, an error
occurs and the page stops processing. By default, ColdFusion displays an error message;
you can also handle the error as described in Chapter 14, “Handling Errors” on page 281.

Example: setting default values

The following example uses the cfparam tag to see if optional variables exist. If they do
exist, processing continues. If they do not exist, the ColdFusion Server creates them and
sets them to the default values.

<cfparam name="Cookie.SearchString" default="temple">
<cfparam name="Client.Color" default="Grey">
<cfparam name="ShowExtraInfo" default="No">

You can use cfparam to set default values for URL and Form variables, instead of using
conditional logic. For example, you could include the following code on the action page
to ensure that a SelectDepts variable exists:

<cfparam name="Form.SelectedDepts" default="Marketing,Sales">

Validating data types
It is often not sufficient that input data merely exists; it must also have the right
format. For example, a date field must have data in a date format. A salary field must
have data in a numeric or currency format. There are many ways to ensure the
validity of data, including the following methods:

• Use the cfparam tag with the type attribute to validate any variable.

• Use a form input tag with a hidden attribute to validate the contents of a form
input field. For information on this technique, see “Validating form field data
types,” in Chapter 26.

• Use cfform controls that have validation attributes. For information on using
cfform tags, see Chapter 27, “Building Dynamic Forms” on page 607.

• Use the cfqueryparam tag in a SQL WHERE clause to validate query parameters.
For information on this technique, see “Using cfqueryparam,” in Chapter 20.

Note: Data validation using the cfparam, cfqueryparam, and form tags is done by the server.
Validation using cfform tags is done using JavaScript in the user’s browser, before any data
is sent to the server.

Using cfparam to validate the data type
The cfparam type attribute lets you validate the type of a parameter. You can specify
that the parameter type must be any of the following values:

Type value Meaning
any any value
array any array value
binary any binary value
boolean true, false, yes, or no
62 Chapter 3 Using ColdFusion Variables

For example, you can use the following code to validate the variable BirthDate:

<cfparam name="BirthDate" type="date">

If the variable is not in a valid date format, an error occurs and the page stops
processing.

date any value in a valid date, time, or date-time format
numeric any number
query a query object
string a text string or single character
struct a structure
UUID a Universally Unique Identifier (UUID) formatted as

XXXXXXXX-XXXX-XXXX-XXXXXXXXXXXXXXX where X stands
for a hexadecimal digit (0-9 or A-F).

variableName a valid variable name

Type value Meaning
Validating data types 63

Passing variables to custom tags and UDFs
The following sections describe rules for how data gets passed to custom tags and
user-defined functions that are written in CFML, and to CFX custom tags that are
written in Java or C++.

Passing variables to CFML tags and UDFs
When you pass a variable to a CFML custom tag as an attribute, or to a user-defined
function as an argument, the following rules determine whether the custom tag or
function receives its own private copy of the variable or only gets a reference to the calling
page’s variable:
• Simple variables and arrays are passed as copies of the data. If your argument is an

expression that contains multiple simple variables, the result of the expression
evaluation is copied to the function or tag.

• Structures, queries, and cfobject objects are passed as references to the object.

If the tag or function gets a copy of the calling page’s data, changes to the variable in the
custom tag or function do not change the value of the variable on the calling page. If the
variable is passed by reference, changes to the variable in the custom tag or function also
change the value of the variable in the calling page.

To pass a variable to a custom tag, you must put the variable name in pound signs. To
pass a variable to a function, do not put the variable name in pound signs. For example,
the following code calls a user-defined function using three Form variables:

<cfoutput>
TOTAL INTEREST: #TotalInterest(Form.Principal, Form.AnnualPercent,

Form.Months)#

</cfoutput>

The following example calls a custom tag using two variables, MyString and MyArray:

<cf_testTag stringval=#MyString# arrayval=#MyArray#>

Passing variables to CFX tags
You cannot pass arrays, structures, or cfobject objects to CFX tags. You can pass a query
to a CFX tag by using the query attribute when calling the tag. ColdFusion normally
converts simple data types to strings when passing them to CFX tags; however, the Java
Request Interface getIntAttribute method allows you to get a passed integer value.
64 Chapter 3 Using ColdFusion Variables

CHAPTER 4

Using Expressions and Pound Signs
This chapter discusses how to use expressions in CFML. It discusses the elements of
ColdFusion Expressions and how to create expressions. It also describes the correct use of
pound signs to indicate expressions in ColdFusion tags such as cfoutput, in strings, and
in expressions. Finally, it describes how to use variables in variable names and strings to
create dynamic expressions, and dynamic variables.

Contents

• Expressions .. 66

• Using pound signs ... 71

• Dynamic expressions and dynamic variables .. 74
65

Expressions
ColdFusion expressions consist of operands and operators. Operands are comprised of
constants and variables. Operators, such as the multiplication symbol, are the verbs that
act on the operands; functions are a form of operator.

The simplest expression consists of a single operand with no operators. Complex
expressions have multiple operators and operands. The following are all ColdFusion
Expressions:

12
MyVariable
(1 + 1)/2
"father" & "Mother"
Form.divisor/Form.dividend
Round(3.14159)

Operators act on the operands. Some operators, such as functions with a single
argument, take a single operand. Many operators, including most arithmetic and logical
operators, take two operands. The following is the general form of a two-operand
expression:

Expression Operator Expression

Note that the operator is surrounded by expressions. Each expression can be a simple
operand (variable or constant) or a subexpression consisting of more operators and
expressions. Complex expressions are built up using subexpressions. For example, in the
expression (1 + 1)/2, 1 + 1 is a subexpression consisting of an operator and two operands.

Operator types
ColdFusion has four types of operators:
• Arithmetic
• Boolean
• Decision (or comparison)
• String

Functions also can be viewed as operators because they act on operands.

Arithmetic operators

The following table describes the arithmetic operators:

Operator Description

+ - * / Basic arithmetic: addition, subtraction, multiplication, and division. In division,
the right operand cannot be zero.

+ - Unary arithmetic: Set the sign of a number.

MOD Modulus: Return the remainder after a number is divided by a divisor. The result
has the same sign as the divisor. The right should be an integer; using an integer
causes an error, and if you specify a real number ColdFusion ignores the
fractional part; for example, 11 MOD 4 is 3.
66 Chapter 4 Using Expressions and Pound Signs

Boolean operators

Boolean, or logical, operators perform logical connective and negation operations. The
operands of Boolean operators are Boolean (True/False) values.The following table
describes the Boolean operators:

Decision operators

The ColdFusion decision, or comparison, operators produce a Boolean True/False result.
The following table describes the decision operators:

\ Integer division: Divide an integer by another integer. Use the backslash
character (\) to separate the integers. The right operand cannot be zero. For
example, 9\4 is 2.

^ Exponentiation: Return the result of a number raised to a power (exponent). Use
the caret character (^) to separate the number from the power; for example, 2^3
is 8. Real and negative numbers are allowed for both the base and the exponent.
However, any expression that equates to an imaginary number, such -1^.5
results in the string "-1.#IND. ColdFusion does not support imaginary or
complex numbers.

Operator Description

Operator Description

NOT Reverse the value of an argument. For example, NOT True is False and vice
versa.

AND Return True if both arguments are True; return False otherwise. For example,
True AND True is True, but True AND False is False.

OR Return True if any of the arguments is True; return False otherwise. For example,
True OR False is True, but False OR False is False.

XOR Exclusive or: Return True if one of the values is True and the other is False.
Return False if both arguments are True or both are False. For example, True
XOR True is False, but True XOR False is True.

EQV Equivalence: Return True if both operands are True or both are False. The EQV
operator is the opposite of the XOR operator. For example, True EQV True is
True, but True EQV False is False.

IMP Implication: The statement A IMP B is the equivalent of the logical statement “If
A Then B.” A IMP B is False only if A is True and B is False. It is True in all other
cases.

Operator Description

IS Perform a case-insensitive comparison of two values.
Return True if the values are identical.

IS NOT Opposite of IS. Perform a case-insensitive
comparison of two values. Return True if the values
are not identical.

CONTAINS Return True if the value on the left is contained in the
value on the right.
Expressions 67

Alternative notation for decision operators

You can replace some decision operators with alternative notations to make your CFML
more compact, as shown in the following table:.

Decision operator rules

The following rules apply to decision operators:
• When ColdFusion evaluates an expression that contains a decision operator other

than CONTAINS or DOES NOT CONTAIN, it first determines if the data can be
converted to numeric values. If they can be converted, it performs a numeric
comparison on the data. If they cannot be converted, it performs a string comparison.
This can sometimes result in unexpected results. For more information on this
behavior, see “Evaluation and type conversion issues,” in Chapter 3.

• When ColdFusion evaluates an expression with CONTAINS or DOES NOT
CONTAIN it does a string comparison. The expression A CONTAINS B evaluates
to True if B is a substring of A. Therefore an expression such as the following
evaluates as True:
123.45 CONTAINS 3.4

• When a ColdFusion decision operator compares strings, it ignores the case. As a
result, the following expression is True:
"a" IS "A"

DOES NOT CONTAIN Opposite of CONTAINS. Return True if the value on
the left is not contained in the value on the right.

GREATER THAN Return True if the value on the left is greater than the
value on the right.

LESS THAN Opposite of GREATER THAN. Return True if the
value on the left is smaller than the value on the right.

GREATER THAN OR EQUAL TO Return True if the value on the left is greater than or
equal to the value on the right.

LESS THAN OR EQUAL TO Return True if the value on the left is less than or equal
to the value on the right.

Operator Alternative name(s)

IS EQUAL, EQ

IS NOT NOT EQUAL, NEQ

GREATER THAN GT

LESS THAN LT

GREATER THAN OR EQUAL TO GTE, GE

LESS THAN OR EQUAL TO LTE, LE

Operator Description
68 Chapter 4 Using Expressions and Pound Signs

• When a ColdFusion decision operator compares strings, it evaluates the strings from
left to right, comparing the characters in each position according to their sorting
order. The first position where the characters differ determines the relative values of
the strings. As a result, the following expressions are True:
"ab" LT "aba"
"abde" LT "ac"

String operators

There is one string operator, which is the concatenation operator.

Operator precedence and evaluation ordering
The order of precedence controls the order in which operators in an expression are
evaluated. The order of precedence is as follows:

Unary +, Unary -
^
*, /
\
MOD
+, -
&
EQ, NEQ, LT, LTE, GT, GTE, CONTAINS, DOES NOT CONTAIN
NOT
AND
OR
XOR
EQV
IMP

To enforce a non-standard order of evaluation, you must parenthesize expressions. For
example:
• 6 - 3 * 2 is equal to 0
• (6 - 3) * 2 is equal to 6

You can nest parenthesized expressions. When in doubt about the order in which
operators in an expression will be evaluated, use parentheses to force the order of
evaluation.

Using functions as operators
Functions are a form of operator. Because ColdFusion functions return values, you can
use function results as operands. Function arguments are expressions. For example, the
following are valid expressions:
• Rand()
• UCase("This is a text: ") & ToString(123 + 456)

Operator Description

& Concatenates strings.
Expressions 69

Function syntax

The following table shows function syntax and usage guidelines:

All functions return values. In the following example, the cfset tag sets a variable to the
value returned by the Now function:

<cfset myDate = DateFormat(Now(), "mmmm d, yyyy")>

You can use the values returned by functions directly to create more complex expressions,
as in the following example:

Abs(Myvar)/Round(3.14159)

For more information on how to insert functions in expressions, see “Using pound signs”
on page 71.

Optional function arguments

Some functions take optional arguments after their required arguments. If omitted, all
optional arguments default to a predefined value. For example:
• Replace("Eat and Eat", "Eat", "Drink") returns "Drink and Eat"
• Replace("Eat and Eat", "Eat", "Drink", "All") returns "Drink and Drink"

The difference in the results is because the Replace function takes an optional fourth
argument that specifies the scope of replacement. The default value is "One," which
explains why only the first occurrence of "Eat" was replaced with "Drink" in the first
example. In the second example, a fourth argument causes the function to replace all
occurrences of "Eat" with "Drink".

Expression evaluation and functions

It is important to remember that ColdFusion evaluates function attributes as expressions
before it executes the function. As a result, you can use any ColdFusion expression as a
function attribute. For example, consider the following lines:

<cfset firstVariable = "we all need">
<cfset myStringVar = UCase(firstVariable & " more sleep!")>

When ColdFusion Server executes the second line, it does the following:

1 Determines that there is an expression with a string concatenation.

2 Evaluates the firstVariable variable as the string "we all need".

Usage Example

No arguments Function()

Basic format Function(Data)

Nested functions Function1(Function2(Data))

Multiple arguments Function(Data1, Data2, Data3)

String arguments Function('This is a demo')
Function("This is a demo")

Arguments that are expressions Function1(X*Y, Function2("Text"))
70 Chapter 4 Using Expressions and Pound Signs

3 Concatenates "we all need" with the string " more sleep!" to get "we all need more
sleep!".

4 Passes the string "we all need more sleep!" to the UCase function.

5 Executes the UCase function on the string argument "we all need more sleep!" to get
"WE ALL NEED MORE SLEEP!".

6 Assigns the string value "WE ALL NEED MORE SLEEP!" to the variable
myStringVar.

ColdFusion completes steps 1-3 before invoking the function.

Using pound signs
Pound signs (#) have a special meaning in CFML. When the ColdFusion Server
encounters pound signs in CFML text, such as the text in a cfoutput tag body, it checks
to see if the text between the pound signs is either a variable or a function.

Is so, it replaces the text and surrounding pound signs with the variable value or the result
of the function. Otherwise, ColdFusion generates an error.

For example, to output the current value of a variable named Form.MyFormVariable, you
delimit (surround) the variable name with pound signs:

<cfoutput>Value is #Form.MyFormVariable#</cfoutput>

In this example, the variable Form.MyFormVariable is replaced with the value assigned to it.

Follow these guidelines when using pound signs:
• Use pound signs to distinguish variables or functions from plain text.
• Surround only a single variable or function in pound signs; for example,

#Variables.myVar# or #Left(myString, position)#. (However, a function in pound
signs can contain nested functions, such as #Left(trim(myString), position)#.

• Do not put complex expressions, such as 1 + 2 in pound signs.
• Use pound signs only where necessary, because unneeded pound signs slow

processing.

The following sections provide more details on how to use pound signs in CFML. For a
description of using pound signs to create variable names, see “Using pound signs to
construct a variable name in assignments” on page 76

Using pound signs in ColdFusion tag attribute values
You can put variables, functions, or expressions inside tag attributes by enclosing the
variable or expression with pound signs. For example, if the variable CookieValue has the
value "MyCookie", the following line sets the cfcookie value attribute to "The value is
MyCookie":

<cfcookie name="TestCookie" value="The value is #CookieValue#">

You can optionally omit quotation marks around variables used as attribute values as
shown in the following example:

<cfcookie name = TestCookie value = #CookieValue#>
Using pound signs 71

However, surrounding all attribute values in quotation marks is more consistent with
HTML coding style.

If you use string expressions to construct an attribute value, as shown in the following
example, the strings inside the expression use single quotation marks (’) to differentiate
the quotation marks from the quotation marks that surround the attribute value.

<cfcookie name="TestCookie2" value="The #CookieValue & 'ate the cookie!'#">

Note: You do not need to use pound signs when you use the cfset tag to assign one
variable’s value to another value. For example, the following tag assigns the value of the
oldVar variable to the new variable, newVar: <cfset newVar = oldVar>.

Using pound signs in tag bodies
You can put variables or functions freely inside the bodies of the following tags by
enclosing each variable or expression with pound signs:
• cfoutput
• cfquery
• cfmail

For example:

<cfoutput>
Value is #Form.MyTextField#

</cfoutput>

<cfoutput>
The name is #FirstName# #LastName#.

</cfoutput>

<cfoutput>
The value of Cos(0) is #Cos(0)#

</cfoutput>

If you omit the pound signs, the text, rather than the value, appears in the output
generated by the cfoutput statement.

Two expressions inside pound signs can be adjacent to one another, as in the following
example:

<cfoutput>
"Mo" and "nk" is #Left("Moon", 2)##Mid("Monkey", 3, 2)#

</cfoutput>

This code displays the following text:

"Mo" and "nk" is Monk

ColdFusion does not interpret the double pound sign as an escaped # character.

Using pound signs in strings
You can put variables or functions freely inside strings by enclosing each variable or
expression with pound signs; for example:

<cfset TheString = "Value is #Form.MyTextField#">
<cfset TheString = "The name is #FirstName# #LastName#.">
<cfset TheString = "Cos(0) is #Cos(0)#">
72 Chapter 4 Using Expressions and Pound Signs

ColdFusion automatically replaces the text with the value of the variable or the value
returned by the function. For example, the following pairs of cfset statements produce
the same result:

<cfset TheString = "Hello, #FirstName#!">
<cfset TheString = "Hello, " & FirstName & "!">

If pound signs are omitted inside the string, the text, rather than the value, appears in the
string. For example, the following pairs of cfset statements produce the same result:

<cfset TheString = "Hello, FirstName!">
<cfset TheString = "Hello, " & "First" & "Name!">

As with the cfoutput statement, two expressions can be adjacent to each other in strings,
as in the following example:

<cfset TheString = "Monk is #Left("Moon", 2)##Mid("Monkey", 3, 2)#">

The double quotes around "Moon" and "Monkey" do not need to be escaped (as in
""Moon"" and ""Monkey""). This is because the text between the pound signs is treated
as an expression; it is evaluated before its value is inserted inside the string.

Nested pound signs
In a few cases, you can nest pound signs in an expression. The following example uses
nested pound signs:

<cfset Sentence = "The length of the full name is
#Len("#FirstName# #LastName#")#">

In this example, pound signs are nested so that the values of the variables FirstName and
LastName are inserted in the string whose length the Len function calculates.

Nested pound signs imply a complex expression that can typically be written more clearly
and efficiently without the nesting. For example, you can rewrite the preceding code
example without the nested pound signs, as follows:

<cfset Sentence2 = "The length of the full name is #Len(FirstName & " "
& LastName)#">

The following achieves the same results and can further improve readability:

<cfset FullName = "#FirstName# #LastName#">
<cfset Sentence = "The length of the full name

is #Len(FullName)#">

A common mistake is to put pound signs around the arguments of functions, as in:

<cfset ResultText = "#Len(#TheText#)#">
<cfset ResultText = "#Min(#ThisVariable#, 5 + #ThatVariable#)#">
<cfset ResultText = "#Len(#Left("Some text", 4)#)#">

These statements result in errors. As a general rule, never put pound signs around
function arguments.
Using pound signs 73

Using pound signs in expressions
Use pound signs in expressions only when necessary, because unneeded pound signs
reduce clarity and can increase processing time. The following example shows the
preferred method for referencing variables:

<cfset SomeVar = Var1 + Max(Var2, 10 * Var3) + Var4>

In contrast, the following example uses pound signs unnecessarily and is less efficient
than the previous statement:

<cfset #SomeVar# = #Var1# + #Max(Var2, 10 * Var3)# + #Var4#>

Dynamic expressions and dynamic variables
This section discusses the advanced topics of dynamic expressions, dynamic evaluation,
and dynamic variable naming. Many ColdFusion programmers never encounter or need
to use dynamic expressions. However, dynamic variable naming is important in
situations where the variable names are not known in advance, such as in shopping cart
applications.

This section also discusses the use of the IIF function which is most often used without
dynamic expressions. This function dynamically evaluates its arguments, and you must
often use the DE function to prevent the evaluation. For more information on using the
IIF function, see “Using the IIF function” on page 80.

Note: This section uses several tools and techniques that are documented in later chapters.
If you are unfamiliar with using ColdFusion forms, structures, and arrays, you should learn
about these tools before reading this section.

About dynamic variables
Dynamic variables are variables that are named dynamically, typically by creating a
variable name from a static part and a variable part. For example, the following example
dynamically constructs the variable name from a variable prefix and a static suffix:

<cfset "#flavor#_availability" = "out of stock">

Using dynamic variables in this manner does not require dynamic evaluation.

About dynamic expressions and dynamic evaluation
In a dynamic expression, the actual expression, not just its variable values, is determined
at execution time. In other words, in a dynamic expression the structure of the
expression, such as the names of the variables, not just the values of the variables, gets
built at runtime.

You create dynamic expressions using string expressions, which are expressions contained
in strings, (that is, surrounded with quotation marks). Dynamic evaluation is the process
of evaluating a string expression. The Evaluate and IIF functions, and only these
functions, perform dynamic evaluation.
74 Chapter 4 Using Expressions and Pound Signs

When ColdFusion performs dynamic evaluation it does the following:

1 Takes a string expression and treats it as a standard expression, as if the expression was
not a string.

2 Parses the expression to determine the elements of the expression and validate the
expression syntax.

3 Evaluates the expression, looking up any variables and replacing them with their
values, calling any functions, and performing any required operations.

This process enables ColdFusion to interpret dynamic expressions with variable parts.
However, it incurs a substantial processing overhead.

Dynamic expressions were important in early versions of ColdFusion, before it supported
arrays and structures, and they still can be useful in limited circumstances. However, the
ability to use structures and the ability to use associative array notation to access structure
elements provide more efficient and easier methods for dynamically managing data. For
information on using arrays and structures, see Chapter 5, “Using Arrays and Structures”
on page 87.

Selecting how to create variable names

The following two examples describes cases when you need dynamic variable names:
• Form applications where the number and names of fields on the form vary

dynamically. In this case, the form posts only the names and values of its fields to the
action page. The action page does not know all the names of the fields, although it
does know how the field names (that is, the variable names) are constructed.

• If the following are true:

− ColdFusion calls a custom tag multiple times

− the custom tag result must be returned to different variables each time

− the calling code can specify the variable in which to return the custom tag result.

In this case, the custom tag does not know the return variable name in advance, and
gets it as an attribute value.

In both cases, it might appear that dynamic expressions using the Evaluate function are
needed to construct the variable names. However, you can achieve the same ends more
efficiently by using dynamic variable naming, as shown in “Example: a dynamic
shopping cart” on page 82.

This does not mean that you must always avoid dynamic evaluation. However, given the
substantial performance costs of dynamic evaluation, you should first ensure that one of
the following techniques cannot serve your purpose:
• An array (using index variables)
• Associative array references containing expressions to access structure elements
• Dynamically generated variable names

Dynamic variable naming without dynamic evaluation
While ColdFusion does not always allow you to construct a variable name in-line from
variable pieces, it does let you to do so in the most common uses, as described in the
following sections.
Dynamic expressions and dynamic variables 75

Using pound signs to construct a variable name in assignments

You can combine text and variable names to construct a variable name on the left side of
a cfset assignment. For example, the following code sets the value of the variable
Product12 to the string "Widget":

<cfset ProdNo = 12>
<cfset "Product#ProdNo#" = "Widget">

To construct a variable name this way, all the text on the left side of the equal sign must
be in quotation marks.

This usage is less efficient than using arrays. The following example has the same purpose
as the previous one, but requires less processing:

<cfset MyArray=ArrayNew(1)>
<cfset prodNo = 12>
<cfset myArray[prodNo] = "Widget">

Dynamic variable limitation

When you use a dynamic variable name in quotes on the left side of an assignment, the
name must be either a simple variable name or a complex name that uses object.property
notation (such as MyStruct.#KeyName#). You cannot use an array as part of a dynamic
variable name. For example, the following code generates an error:

<cfset MyArray=ArrayNew(1)>
<cfset productClassNo = 1>
<cfset productItemNo = 9>
<cfset "myArray[#productClassNo##productItemNo#]" = "Widget">

However, you can construct an array index value dynamically from variables without
using quotes on the left side of an assignment. For example, the preceding sample code
works if you replace the final line with the following line:

<cfset myArray[#productClassNo# & #productItemNo#] = "Widget">

Dynamically constructing structure references

The ability to use associative array notation to reference structures provides a way for you
to use variables to dynamically create structure references. (For a description of
associative array notation, see “Structure notation,” in Chapter 5.) Associative array
structure notation allows you to use a ColdFusion expression inside the index brackets.
For example, if you have a productName structure with keys of the form product_1,
product_2 and so on, you can use the following code to display the value of
productName.product_3:

<cfset prodNo = 3>
<cfoutput>

Product_3 Name: #ProductName["product_" & prodNo]#
<cfoutput>

For an example of using this format to manage a shopping cart, see “Example: a dynamic
shopping cart” on page 82.
76 Chapter 4 Using Expressions and Pound Signs

Using dynamic evaluation
The following sections describe how to use dynamic evaluation and create dynamic
expressions.

ColdFusion dynamic evaluation functions

The following table describes the functions that perform dynamic evaluation and are
useful in evaluating dynamic expressions:

Function argument evaluation considerations

It is important to remember that ColdFusion always evaluates function arguments before
the argument values are passed to a function:

For example, consider the following DE function:

<cfoutput>#DE("1" & "2")#</cfoutput>

You might expect this line to display """1"" & ""2""". Instead, it displays “12”, because
ColdFusion processes the line as follows:

1 Evaluates the expression "1" & "2" as the string “12”.

2 Passes the string "12" (without the quotes) to the DE function.

3 Calls the DE function, which adds literal quotation marks around the 12.

Similarly, if you use the expression DE(1 + 2), ColdFusion evaluates 1 + 2 as the integer 3
and passes it to the function. The function converts it to a string and surrounds the string
in literal quotation marks: “3”.

Function Purpose

DE Escapes any double quotes in the argument and wraps the result in
double quotes. The DE function is particularly useful with the IIF
function, to prevent the function from evaluating a string to be output.

For an example of using the DE function with the IIF function, see
“Using the IIF function” on page 80.

Evaluate Takes one or more string expressions and dynamically evaluates their
contents as expressions from left to right. (The results of an evaluation
to the left can have meaning in an expression to the right.) Returns the
result of evaluating the rightmost argument.

For more information on this function see “About the Evaluate function”
on page 78.

IIF Evaluates a boolean condition expression. Depending on whether this
expression is True or False, dynamically evaluates one of two string
expressions and returns the result of the evaluation. The IIF function is
convenient for incorporating a cfif tag in-line in HTML.

For an example of using this function, see “Using the IIF function” on
page 80.

SetVariable Sets a variable identified by the first argument to the value specified by
the second argument. This function is no longer required in well-formed
ColdFusion pages; see “SetVariable function considerations” on page
80.
Dynamic expressions and dynamic variables 77

About the Evaluate function

The following example can help you understand the Evaluate function and how it works
with ColdFusion variable processing:

<cfset myVar2="myVar">
<cfset myVar="27/9">
<cfoutput>

#myVar2#

#myVar#

#Evaluate("myVar2")#

#Evaluate("myVar")#

#Evaluate(myVar2)#

#Evaluate(myVar)#

</cfoutput>

Reviewing the code

The following table describes how ColdFusion processes this code:

Code Description

<cfset myVar2="myVar">
<cfset myVar="27/9">

Sets the two variables to the following strings:

myVar

27/9

<cfoutput>
#myVar2#

#myVar#

Displays the values assigned to the variables, myVar
and 27/9 respectively.

#Evaluate("myVar2")#
 Passes the string "myvar2" (without the quotes) to the
Evaluate function, which does the following:

1 Evaluates it as the variable myVar2.

2 Returns the value of the myVar2 variable, the string
"myvar" (without the quotes).

#Evaluate("myVar")#
 Passes the string "myvar" (without the quotes) to the
Evaluate function, which does the following:

1 Evaluates it as the variable myVar.

2 Returns the value of the myVar variable, the string
"27/9" (without the quotes).

#Evaluate(myVar2)#
 Evaluates the variable myVar2 as the string "myVar" and
passes the string (without the quotes) to the Evaluate
function. The rest of the processing is the same as in the
previous line.

#Evaluate(myVar)#

</cfoutput>

Evaluates the variable myVar as the string "27/9"
(without the quotes), and passes it to the Evaluate
function, which does the following:

1 Evaluates the string as the expression 27/9

2 Performs the division.

3 Returns the resulting value, 3.
78 Chapter 4 Using Expressions and Pound Signs

As you can see, using dynamic expressions can result in substantial expression evaluation
overhead, and the code can be confusing. Therefore, you should avoid using dynamic
expressions wherever a simpler technique, such as using indexed arrays or structures can
serve your purposes.

Avoiding the Evaluate function

Using the Evaluate function increases processing overhead, and in most cases it is not
necessary. The following sections provide examples of cases where you might consider
using the Evaluate function.

Example 1

You might be inclined to use the Evaluate function in code such as the following:

<cfoutput>1 + 1 is #Evaluate(1 + 1)#</cfoutput>

Although this code works, it is not as efficient as the following code:

<cfset Result = 1 + 1>
<cfoutput>1 + 1 is #Result#</cfoutput>

Example 2

This example shows how you can use an associative array reference in place of an
Evaluate function. This technique is powerful because:
• Most ColdFusion scopes are accessible as structures.
• You can use ColdFusion expressions in the indexes of associative array structure

references. (For more information on using associative array references for structures,
see “Structure notation,” in Chapter 5.)

The following example uses the Evaluate function to construct a variable name:

<cfoutput>
Product Name: #Evaluate("Form.product_#i#")#
</cfoutput>

This code comes from an example where a form has entries for an indeterminate number
of items in a shopping cart. For each item in the shopping cart there is a product name
field. The field name is of the form product_1, product_2, and so on, where the number
corresponds to the product’s entry in the shopping cart. In this example, ColdFusion
does the following:

1 Replaces the variable i with its value, for example 1.

2 concatenates the variable value with "Form.product_", and passes the result (for
Form.product_1) to the Evaluate function, which does the remaining steps.

3 Parses the variable product_1 and generates an executable representation of the
variable. Because ColdFusion must invoke its parser, this step requires substantial
processing, even for a simple variable.

4 Evaluates the representation of the variable, for example as "Air popper".

5 Returns the value of the variable.
Dynamic expressions and dynamic variables 79

The following example has the same result as the preceding example and is more
efficient:

<cfoutput>
ProductName: #Form["product_" & i]#
</cfoutput>

In this code, ColdFusion does the following:

1 Evaluates the expression in the associative array index brackets as the string
"product_" concatenated with the value of the variable i.

2 Determines the value of the variable i; 1.

3 Concatenates the string and the variable value to get product_1.

4 Uses the result as the key value in the Form structure to get Form[product_1]. This
associative array reference accesses the same value as the object.attribute format
reference Form.product_1; in this case, Air popper.

This code format does not use any dynamic evaluation, but it achieves the same effect, of
dynamically creating a structure reference by using a string and a variable.

SetVariable function considerations

You can avoid using the SetVariable function by using a format such as the following to
set a dynamically named variable. For example, the following lines are equivalent:

<cfset SetVariable("myVar" & i, myVal)>

<cfset "myVar#i#" = myVal>

In the second line, enclosing the myVar#i# variable name in quotation marks tells
ColdFusion to evaluate the name and process any text in pound signs as a variable or
function. ColdFusion replaces the #i# with the value of the variable i, so that if the value
of i is 12, this code is equivalent to the line

<cfset myVar12 = myVal>

For more information on this usage, see “Using pound signs to construct a variable name
in assignments” on page 76.

Using the IIF function
The IIF function is a shorthand for the following code:

<cfif argument1>
<cfset result = Evaluate(argument1)>

<cfelse>
<cfset result = Evaluate(argument2)>

</cfif>

The function returns the value of the result variable. It is comparable to the use of the
JavaScript and Java ? : operator, and can result in more compact code. As a result, the IIF
function can be convenient even if you are not using dynamic expressions.
80 Chapter 4 Using Expressions and Pound Signs

The IIF function requires the DE function to prevent ColdFusion from evaluating literal
strings, as the following example shows:

<cfoutput>
#IIf(IsDefined("LocalVar"), "LocalVar", DE("The variable is not

defined."))#
</cfoutput>

If you do not enclose the string "The variable is not defined." in a DE function, the IIF
function tries to evaluate the contents of the string as an expression and generates an
error (in this case, an invalid parser construct error).

The IIF function is useful for incorporating ColdFusion logic in-line in HTML code,
but it entails a processing time penalty in cases where you do not otherwise need dynamic
expression evaluation.

The following example shows using IIF to alternate table row background color between
white and gray. It also shows the use of the DE function to prevent ColdFusion from
evaluating the color strings.

<cfoutput>
<table border="1" cellpadding="3">
<cfloop index="i" from="1" to="10">

<tr bgcolor="#IIF(i mod 2 eq 0, DE("white"), DE("gray"))#">
<td>

hello #i#
</td>

</tr>
</cfloop>
</table>
</cfoutput>

This code is more compact than the following example which does not use IIF or DE.

<cfoutput>
<table border="1" cellpadding="3">
<cfloop index="i" from="1" to="10">

<cfif i mod 2 EQ 0>
<cfset Color = "white">

<cfelse>
<cfset Color = "gray">

</cfif>
<tr bgcolor="#color#">

<td>
hello #i#

</td>
</tr>

</cfloop>
</table>
</cfoutput>
Dynamic expressions and dynamic variables 81

Example: a dynamic shopping cart
The following example dynamically creates and manipulates variable names without
using dynamic expression evaluation by using associative array notation.

You need to dynamically generate variable names in applications such as shopping carts,
where the required output is dynamically generated and variable. In a shopping cart, you
do not know in advance the number of cart entries or their contents. Also, because you
are using a form, the action page only receives Form variables with the names and values
of the form fields.

The following example shows the shopping cart contents and lets you edit your order and
submit it. To simplify things, the example automatically generates the shopping cart
contents using CFScript instead of having the user fill the cart. A more complete example
would populate a shopping cart as the user selected items. Similarly, the example omits all
business logic for committing and making the order.

To create the form:

1 Create a file in your editor.
<html>
<head>

<title>Shopping Cart</title>
</head>
<cfscript>
CartItems=4;
Cart = ArrayNew(1);
for (i=1; i LE cartItems; i=i+1)
{

Cart[i]=StructNew();
Cart[i].ID=i;
Cart[i].Name="Product " & i;
Cart[i].SKU=i*100+(2*i*10)+(3*i);
Cart[i].Qty=3*i-2;

}
</cfscript>

<body>
Your shopping cart has the following items.

You can change your order quantities.

If you don't want any item, clear the item's check box.

When you are ready to order, click submit.

<cfform name="ShoppingCart" action="ShoppingCartAction.cfm" method="post">
 <table>

<tr>
 <td>Order?</td>
 <td>Product</td>
 <td>Code</td>
 <td>Quantity</td>
</tr>
<cfloop index="i" from="1" to="#cartItems#">

<tr>
 <cfset productName= "product_" & Cart[i].ID>
 <cfset skuName= "sku_" & Cart[i].ID>
82 Chapter 4 Using Expressions and Pound Signs

 <cfset qtyname= "qty_" & Cart[i].ID>
 <td><cfinput type="checkbox" name="itemID" value="#Cart[i].ID#" checked>

 </td>
 <td><cfinput type="text" name="#productName#" value="#Cart[i].Name#"

 passThrough = "readonly = 'True'"></td>
 <td><cfinput type="text" name="#skuName#" value="#Cart[i].SKU#"

 passThrough = "readonly = 'True'"></td>
 <td><cfinput type="text" name="#qtyName#" value="#Cart[i].Qty#">

 </td>
</tr>

</cfloop>
 </table>
 <input type="submit" name="submit" value="submit">
</cfform>

</body>
</html>

2 Save the page as ShoppingCartForm.cfm.

Reviewing the code

The following table describes the code:

Code Description

<cfscript>
CartItems=4;
Cart = ArrayNew(1);
for (i=1; i LE #cartItems#; i=i+1)
{

Cart[i]=StructNew();
Cart[i].ID=i;
Cart[i].Name="Product " & i;
Cart[i].SKU=i*100+(2*i*10)+(3*i);
Cart[i].Qty=3*i-2;

}
</cfscript>

Create a shopping cart as an array of
structures, with each structure containing
the cart item ID, product name, SKU
number, and quantity ordered for one item
in the cart. Populate the shopping cart by
looping CartItems times and setting the
structure variables to arbitrary values
based on the loop counter. A real
application would set the Name, SKU, and
Quantity values on other pages.

<cfform name="ShoppingCart"
action="ShoppingCartAction.cfm"
method="post">

 <table>
<tr>

<td>Order?</td>
<td>Product</td>
<td>Code</td>
<td>Quantity</td>

</tr>

Start the form and its embedded table.
When the user clicks the submit button,
post the form data to the
ShoppingCartAction.cfm page.

The table formats the form neatly. The first
table row contains the column headers.
Each following row has the data for one
cart item.
Dynamic expressions and dynamic variables 83

To create the Action page:

1 Create a file in your editor.

2 Enter the following text:
<html>
<head>

<title>Your Order</title>
</head>
<body>
<cfif isDefined("Form.submit")>

<cfparam name="Form.itemID" default="">
<cfoutput>

You have ordered the following items:

<cfloop index="i" list="#Form.itemID#">

ProductName: #Form["product_" & i]#

Product Code: #Form["sku_" & i]#

Quantitiy: #Form["qty_" & i]#

</cfloop>
</cfoutput>

</cfif>
</body>
</html>

<cfloop index="i" from="1" to="#cartItems#">
<tr>

<cfset productName= "product_" &
Cart[i].ID>

<cfset skuName= "sku_" & Cart[i].ID>
<cfset qtyname= "qty_" & Cart[i].ID>
<td><cfinput type="checkbox"

name="itemID" value="#Cart[i].ID#"
checked>

</td>
<td><cfinput type="text"

name="#productName#"
value="#Cart[i].Name#"
passThrough = "readonly = 'True'">

</td>
<td><cfinput type="text"

name="#skuName#"
value="#Cart[i].SKU#"
passThrough = "readonly = 'True'">

</td>
 <td><cfinput type="text"

name="#qtyName#"
value="#Cart[i].Qty#">

</td>
</tr>

</cfloop>
 </table>

Loop through the shopping cart entries to
generate the cart form dynamically. For
each loop, generate variables used for the
form field name attributes by appending
the cart item ID (Cart[i].ID) to a field type
identifier, such as "sku_".

Use a single name, "itemID", for all check
boxes. This way, the itemID value posted
to the action page is a list of all the check
box field values. The check box field value
for each item is the cart item ID.

Each column in a row contains a field for a
cart item structure entry. The passthrough
attribute sets the product name and SKU
fields to read-only; note the use of single
quotes. (For more information on the
cfinput tag passthrough attribute, see
CFML Reference.) The check boxes are
selected by default.

<input type="submit" name="submit"
value="Submit">

</form>

Create the Submit button and end the
form.

Code Description
84 Chapter 4 Using Expressions and Pound Signs

3 Save the file as ShoppingCartAction.cfm

4 Open ShoppingCartform.cfm in your browser, change the check box and quantity
values, and click Submit.

Reviewing the code

The following table describes the code:

Code Description

<cfif isDefined("Form.submit")> Run the CFML on this page only if it is called by
submitting a form. This is not needed if there are
separate form and action pages, but is required if the
form and action page were one ColdFusion page.

<cfparam name="Form.itemID"
default="">

Set the default Form.itemID to the empty string. This
prevents ColdFusion from displaying an error if the user
clears all check boxes before submitting the form (so no
product IDs are submitted).

<cfoutput>
You haver ordered the following

items:

<cfloop index="i" list=

"#Form.itemID#">
ProductName:

#Form["product_" & i]#

Product Code:

#Form["sku_" & i]#

Quantitiy:

#Form["qty_" & i]#

</cfloop>
</cfoutput>
</cfif>

Display the name, SKU number, and quantity for each
ordered item.

The form page posts Form.itemID as a list containing
the value attributes of all the check boxes. These
attributes contain the shopping cart item IDs for the
selected cart items. Use the list values to index a loop
that outputs each ordered item.

Use associative array notation to access the Form
scope as a structure and use expressions in the array
indexes to construct the form variable names. The
expressions consist of a string containing the field
name’s field type prefix (for example, "sku_"),
concatenated with the variable i, which contains the
shopping cart ItemID number (which is also the loop
index variable).
Dynamic expressions and dynamic variables 85

86 Chapter 4 Using Expressions and Pound Signs

CHAPTER 5

Using Arrays and Structures
ColdFusion supports dynamic multidimensional arrays. This chapter explains the basics
of creating and handling arrays. It also provides several examples showing how arrays can
enhance your ColdFusion application code.

ColdFusion also supports structures for managing lists of key-value pairs. Because
structures can contain other structures or complex data types as it values, they provide a
flexible and powerful tool for managing complex data. This chapter explains the basics of
creating and working with structures.

Contents

• About arrays .. 88

• Basic array techniques.. 90

• Populating arrays with data.. 95

• Array functions .. 98

• About structures .. 99

• Creating and using structures... 102

• Structure example .. 109

• Structure functions .. 113
87

About arrays
Traditionally, an array is a tabular structure used to hold data, much like a spreadsheet
table with clearly defined limits and dimensions.

In ColdFusion, you typically use arrays to temporarily store data. For example, if your
site lets users order goods online, you can store their shopping cart contents in an array.
This lets you make changes easily without committing the information, which the user
can change before completing the transaction, to a database.

Basic array concepts
The following terms will help you understand subsequent discussions of ColdFusion
arrays:
• Array dimension The relative complexity of the array structure.
• Index The position of an element in a dimension, ordinarily surrounded by square

brackets: my1Darray[1], my2Darray[1][1], my3Darray[1][1][1].
• Array element Data stored at an array index.

The simplest array is a one-dimensional array, similar row in a table. A one-dimensional
array has a name (the variable name) and a numerical index. The index number
references a single entry, or cell, in the array, as the following figure shows:

Thus, the following statement sets the value of the fifth entry in the one-dimensional
array MyArray to “Robert”:

<cfset MyArray[5] = "Robert">

A basic two-dimensional (2D) array is like a simple table. A three-dimensional (3D) array
is like a cube of data, and so on. ColdFusion lets you directly create arrays with up to
three dimensions. You can use multiple statements to create arrays with more than three
dimensions.

The syntax my2darray[1][3]="Paul" is the same as saying 'My2dArray is a
two-dimensional array and the value of the array element index [1][3] is "Paul"'.

About ColdFusion arrays
ColdFusion arrays differ from traditional arrays, because they are dynamic. For example,
in a conventional array, array size is constant and symmetrical, whereas in a ColdFusion
array, you can have rows of differing lengths based on the data that has been added or
removed.

The following figures show the differences between traditional arrays and ColdFusion
arrays using 2D arrays. The differences between traditional and ColdFusion 3D arrays
are similar, but much harder to show on a page.
88 Chapter 5 Using Arrays and Structures

A conventional 2D array is like a fixed-size table made up of individual cells, as the
following figure shows:

The following figure represents a ColdFusion 2D array:

A ColdFusion 2D array is actually a one-dimensional array that contains a series of
additional 1D arrays. Each of the arrays that make up a row can expand and contract
independently of any other column. Similarly, a ColdFusion 3D array is essentially three
nested sets of 1D arrays.

Dynamic arrays expand to accept data you add to them and contract as you remove data
from them.
About arrays 89

Basic array techniques
The following sections describe how to reference array elements, create arrays, add and
remove array elements, and copy arrays.

Referencing array elements
You reference array elements by enclosing the index with brackets: arrayName[x] where x
is the index that you want to reference. In ColdFusion, array indexes are counted starting
with position 1, which means that position 1 in the firstname array is referenced as
firstname[1]. For 2D arrays, you reference an index by specifying two coordinates:
myarray[1][1].

You can use ColdFusion variables and expressions inside the square brackets to reference
an index, as the following example shows:

<cfset myArray=ArrayNew(1)>
<cfset myArray[1]="First Array Element">
<cfset myArray[1 + 1]="Second Array" & "Element">
<cfset arrayIndex=3>
<cfset arrayElement="Third Array Element">
<cfset myArray[arrayIndex]=arrayElement>
<cfset myArray[arrayIndex + 1]="Fourth Array Element">
<cfdump var=#myArray#>

Note: The IsDefined function does not test the existence of array elements. To test whether
data exists at an array index, copy the array element to a simple variable and use the
IsDefined function to test the existence of the copy.

Creating arrays
In ColdFusion, you declare an array by assigning a variable name to the new array and
specifying its dimensions, as follows:

<cfset mynewarray=ArrayNew(x)>

where x is the number of dimensions (from 1 to 256) in the array that you want to create.

Once you declare an array, you can add array elements, which you can then reference
using the elements’ indexes.

For example, suppose you declare a 1D array called "firstname":

<cfset firstname=ArrayNew(1)>

The array firstname holds no data and is of an unspecified length. Next you add data to
the array:

<cfset firstname[1]="Coleman">
<cfset firstname[2]="Charlie">
<cfset firstname[3]="Dexter">

After you add these names to the array, it has a length of 3.
90 Chapter 5 Using Arrays and Structures

Creating complex multidimensional arrays

ColdFusion supports dynamic multidimensional arrays. When you declare an array with
the ArrayNew function, you specify the number of dimensions. You can create an
asymmetrical array or increase an existing array’s dimensions by nesting arrays as array
elements.

It is important to know that when you assign one array (array1) to an element of another
array (array2), array1 is copied into array2. The original copy of array1 still exists,
independent of array2. You can then change the contents of the two arrays
independently.

The best way to understand an asymmetrical array is by looking at it. The following
example creates an asymmetric, multidimensional array and the cfdump tag displays the
resulting array structure. Several array elements do not yet contain data.

<cfset myarray=ArrayNew(1)>
<cfset myotherarray=ArrayNew(2)>
<cfset biggerarray=ArrayNew(3)>

<cfset biggerarray[1][1][1]=myarray>
<cfset biggerarray[1][1][1][10]=3>
<cfset biggerarray[2][1][1]=myotherarray>
<cfset biggerarray[2][1][1][4][2]="five deep">

<cfset biggestarray=ArrayNew(3)>
<cfset biggestarray[3][1][1]=biggerarray>
<cfset biggestarray[3][1][1][2][3][1]="This is complex">
<cfset myarray[3]="Can you see me">

<cfdump var=#biggestarray#>

<cfdump var=#myarray#>

Note: The cfdump tag displays the entire contents of an array. It is an excellent tool for
debugging arrays and array-handling code.

Reviewing the code

The following table describes the code:

Code Description

<cfset myarray=ArrayNew(1)>
<cfset myotherarray=ArrayNew(2)>
<cfset biggerarray=ArrayNew(3)>

Create three empty arrays, a 1D array, a 2D array,
and a 3D array.

<cfset biggerarray[1][1][1]=myarray>
<cfset biggerarray[1][1][1][10]=3>

Make element [1][1][1] of the 3D bigerarray array
be a copy of the 1D array. Assign 3 to the
[1][1][1][10] element of the resulting array.

The biggerarray array is now asymmetric. For
example, it does not have a [1][1][2][1] element.

<cfset biggerarray[2][1][1]=
myotherarray>

<cfset biggerarray[2][1][1][4][2]=
"reality">

Make element [2][1][1] of the 3D array be the 2D
array and assign the [2][1][1][4][2] element the
value "reality".

The biggerarray array is now even more
asymmetric.
Basic array techniques 91

Adding elements to an array
You can add an element to an array by assigning the element a value or by using a
ColdFusion function.

Adding an array element by assignment

You can add elements to an array by defining the value of an array element, as shown in
the following cfset tag:

<cfset myarray[5]="Test Message">

If an element does not exist at the specified index, ColdFusion creates it. If an element
already exists at the specified index, ColdFusion replaces it with the new value. To
prevent existing data from being overwritten, use the ArrayInsertAt function, as
described in the next section.

If elements with lower-number indexes do not exist, they remain undefined. You must
assign values to undefined array elements before you can use them. For example, the
following code creates an array and an element at index 4. It outputs the contents of
element 4, but generates an error when it tries to output the (nonexistent) element 3.

<cfset myarray=ArrayNew(1)>
<cfset myarray[4]=4>
<cfoutput>

myarray4: #myarray[4]#

myarray3: #myarray[3]#

</cfoutput>

Adding an array element with a function

You can use the following array functions to add data to an array:

<cfset biggestarray=ArrayNew(3)>
<cfset biggestarray[3][1][1]

=biggerarray>
<cfset biggestarray[3][1][1][2][3][1]

="This is complex">

Create a second 3D array. Make the [3][1][1]
element of this array be a copy of the bigerarray
array, and assign element [3][1][1][2][3][1].

The resulting array is very complex and
asymmetric.

<cfset myarray[3]="Can you see me"> Assign a value to element [3] of myarray.

<fdump var=#biggestarray#>

<cfdump var=#myarray#>

Use cfdump to view the structure of biggestarray
and myarray.

Notice that the "Can you see me" entry appears in
myarray, but not in biggestarray, because
biggestarray has a copy of the original myarray
values and is not affected by the change to
myarray.

Code Description

Function Description

ArrayAppend Creates a new array element at the end of the array.
92 Chapter 5 Using Arrays and Structures

Because ColdFusion arrays are dynamic, if you add or delete an element from the array,
any higher-numbered index values all change. For example, the following code creates a
two element array and displays the array contents. It then uses ArrayPrepend to insert a
new element at the beginning of the array and displays the result. The data that was
originally in indexes 1 and 2 is now in indexes 2 and 3.

<!--- Create an array with three elelemts --->
<cfset myarray=ArrayNew(1)>
<cfset myarray[1]="Original First Element">
<cfset myarray[2]="Original Second Element">
<!--- Use cfdump to display the array structure --->
<cfdump var=#myarray#>

<!--- Add a new element at the beginning of the array --->
<cfscript>

ArrayPrepend(myarray, "New First Element");
</cfscript>
<!--- Use cfdump to display the new array structure --->
<cfdump var=#myarray#>

For more information about these array functions, see CFML Reference.

Deleting elements from an array
Use the ArrayDeleteAt function to delete data from the array at a particular index, instead
of setting the data value to zero or an empty string. If you remove data from an array, the
array resizes dynamically, as the following example shows:

<!--- Create an array with three elements --->
<cfset firstname=ArrayNew(1)>
<cfset firstname[1]="Robert">

<cfset firstname[2]="Wanda">
<cfset firstname[3]="Jane">

<!--- Delete the second element from the array --->
<cfset temp=ArrayDeleteAt(firstname, 2)>

<!--- Display the array length (2) and its two entries,
which are now "Robert" and "Jane" --->

<cfoutput>
The array now has #ArrayLen(firstname)# indexes

The first entry is #firstname[1]#

The second entry is #firstname[2]#

</cfoutput>

The ArrayDeleteAt function removed the original second element and resized the array so
that it has two entries, with the second element now being the original third element.

ArrayPrepend Creates a new array element at the beginning of the array.

ArrayInsertAt Inserts an array element at the specified index position.

Function Description
Basic array techniques 93

Copying arrays
You can copy arrays of simple variables (numbers, strings, Boolean values, and date-time
values) by assigning the original array to a new variable name. You do not have to use
ArrayNew to create the new array first. When you assign the existing array to a new
variable, ColdFusion creates a new array and copies the old array’s contents to the new
array. The following example creates and populates a two-element array. It then copies
the original array, changes one element of the copied array and dumps both arrays. As
you can see, the original array is unchanged and the copy has a new second element.

<cfset myArray=ArrayNew(1)>
<cfset myArray[1]="First Array Element">
<cfset myArray[2]="Second Array Element">
<cfset newArray=myArray>
<cfset newArray[2]="New Array Element 2">
<cfdump var=#myArray#>

<cfdump var=#newArray#>

If your array contains complex variables (structures, query objects, or external objects
such as COM objects) assigning the original array to a new variable does not make a
complete copy of the original array. The array structure is copied; however, the new array
does not get its own copy of the complex data, only references to it. To demonstrate this
behavior, run the following code:

Create an array that contains a structure.

<cfset myStruct=StructNew()>
<cfset myStruct.key1="Structure key 1">
<cfset myStruct.key2="Structure key 2">
<cfset myArray=ArrayNew(1)>
<cfset myArray[1]=myStruct>
<cfset myArray[2]="Second array element">
<cfdump var=#myArray#>

Copy the array and dump it.

<cfset myNewArray=myArray>
<cfdump var=#myNewArray#>

Change the values in the new array.

<cfset myNewArray[1].key1="New first array element">
<cfset myNewArray[2]="New second array element">

Contents of the original array after the changes:

<cfdump var=#myArray#>

Contents of the new array after the changes:

<cfdump var=#myNewArray#>

The change to the new array also changes the contents of the structure in the original
array.

To make a complete copy of an array that contains complex variables, use the duplicate
function.
94 Chapter 5 Using Arrays and Structures

Populating arrays with data
Array elements can store any values, including queries, structures, and other arrays. You
can use a number of functions to populate an array with data, including ArraySet,
ArrayAppend, ArrayInsertAt, and ArrayPrepend. These functions are useful for adding data
to an existing array.

In particular, you should master the following basic techniques:
• Populating an array with the ArraySet function
• Populating an array with the cfloop tag
• Populating an array from a query

The following sections describe these techniques.

Populating an array with the ArraySet function
You can use the ArraySet function to populate a 1D array, or one dimension of a
multidimensional array, with some initial value, such as an empty string or zero. This can
be useful if you need to create an array of a certain size, but do not need to add data to it
right away. One reason to do this is so that you can refer to all the array indexes. If you
refer to an array index that does not contain some value, such as an empty string, you get
an error.

The ArraySet function has the following form:

ArraySet (arrayname, startrow, endrow, value)

The following example initializes the array myarray, indexes 1 to 100, with an empty
string:

ArraySet (myarray, 1, 100, "")

Populating an array with the cfloop tag
The cfloop tag provides a common and very efficient method for populating an array.
The following example uses a cfloop tag and the MonthAsString function to populate a
simple 1D array with the names of the months. A second cfloop outputs data in the array
to the browser.

<cfset months=arraynew(1)>

<cfloop index="loopcount" from=1 to=12>
<cfset months[loopcount]=MonthAsString(loopcount)>

</cfloop>

<cfloop index="loopcount" from=1 to=12>
<cfoutput>

#months[loopcount]#

</cfoutput>

</cfloop>
Populating arrays with data 95

Using nested loops for 2D and 3D arrays

To output values from 2D and 3D arrays, you must employ nested loops to return array
data. With a one-dimensional (1D) array, a single cfloop is sufficient to output data, as in
the previous example. With arrays of dimension greater than one, you need to maintain
separate loop counters for each array level.

Nesting cfloop tags for a 2D array

The following example shows how to handle nested cfloop tags to output data from a 2D
array. It also uses nested cfloop tags to populate the array:

<cfset my2darray=arraynew(2)>
<cfloop index="loopcount" from=1 to=12>

<cfloop index="loopcount2" from=1 to=2>
<cfset my2darray[loopcount][loopcount2]=(loopcount * loopcount2)>

</cfloop>
</cfloop>

<p>The values in my2darray are currently:</p>

<cfloop index="OuterCounter" from="1" to="#ArrayLen(my2darray)#">
<cfloop index="InnerCounter" from="1"

to="#ArrayLen(my2darray[OuterCounter])#">
<cfoutput>

[#OuterCounter#][#InnerCounter#]:
#my2darray[OuterCounter][InnerCounter]#

</cfoutput>
</cfloop>

</cfloop>

Nesting cfloop tags for a 3D array

For 3D arrays, you simply nest an additional cfloop tag. (This example does not set the
array values first to keep the code short.)

<cfloop index="Dim1" from="1" to="#ArrayLen(my3darray)#">
<cfloop index="Dim2" from="1" to="#ArrayLen(my3darray[Dim1])#">

<cfloop index="Dim3" from="1"
to="#ArrayLen(my3darray[Dim1][Dim2])#">

<cfoutput>
[#Dim1#][#Dim2#][#Dim3#]:
#my3darray[Dim1][Dim2][Dim3]#

</cfoutput>
</cfloop>

</cfloop>
</cfloop>
96 Chapter 5 Using Arrays and Structures

Populating an array from a query
When populating an array from a query, keep the following things in mind:
• You cannot add query data to an array all at once. A looping structure is generally

required to populate an array from a query.
• You can reference query column data using array-like syntax. For example,

myquery.col_name[1] references data in the first row in the col_name column of the
myquery query.

• Inside a cfloop query= loop, you do not have to specify the query name to reference
the query’s variables.

You can use a cfset tag with the following syntax to define values for array indexes:

<cfset arrayName[index]=queryColumn[row]>

In the following example, a cfloop tag places four columns of data from a sample data
source into an array, myarray.

<!--- Do the query --->
<cfquery name="test" datasource="cfsnippets">

SELECT Emp_ID, LastName, FirstName, Email
FROM Employees

</cfquery>

<!--- Declare the array --->
<cfset myarray=arraynew(2)>

<!--- Populate the array row by row --->
<cfloop query="test">

<cfset myarray[CurrentRow][1]=Emp_ID>
<cfset myarray[CurrentRow][2]=LastName>
<cfset myarray[CurrentRow][3]=FirstName>
<cfset myarray[CurrentRow][4]=Email>

</cfloop>

<!--- Now, create a loop to output the array contents --->
<cfset total_records=test.recordcount>
<cfloop index="Counter" from=1 to="#Total_Records#">

<cfoutput>
ID: #MyArray[Counter][1]#,
LASTNAME: #MyArray[Counter][2]#,
FIRSTNAME: #MyArray[Counter][3]#,
EMAIL: #MyArray[Counter][4]#

</cfoutput>
</cfloop>

This example uses the query object built-in variable CurrentRow to index the first
dimension of the array.
Populating arrays with data 97

Array functions
The following functions are available for creating, editing, and handling arrays:

For more information about each of these functions, see CFML Reference.

Function Description

ArrayAppend Appends an array element to the end of a specified array.

ArrayAvg Returns the average of the values in the specified array.

ArrayClear Deletes all data in a specified array.

ArrayDeleteAt Deletes an element from a specified array at the specified index and
resizes the array.

ArrayInsertAt Inserts an element (with data) in a specified array at the specified index
and resizes the array.

ArrayIsEmpty Returns True if the specified array is empty of data.

ArrayLen Returns the length of the specified array.

ArrayMax Returns the largest numeric value in the specified array.

ArrayMin Returns the smallest numeric value in the specified array.

ArrayNew Creates a new array of specified dimension.

ArrayPrepend Adds an array element to the beginning of the specified array.

ArrayResize Resets an array to a specified minimum number of elements.

ArraySet Sets the elements in a 1D array in a specified range to a specified value.

ArraySort Returns the specified array with elements sorted numerically or
alphanumerically.

ArraySum Returns the sum of values in the specified array.

ArraySwap Swaps array values in the specified indexes.

ArrayToList Converts the specified 1D array to a list, delimited with the character
you specify.

IsArray Returns True if the value is an array.

ListToArray Converts the specified list, delimited with the character you specify, to
an array.
98 Chapter 5 Using Arrays and Structures

About structures
ColdFusion structures consist of key-value pairs. Structures let you build a collection of
related variables that are grouped under a single name. You can define ColdFusion
structures dynamically.

You can use structures to refer to related values as a unit, rather than individually. To
maintain employee lists, for example, you can create a structure that holds personnel
information such as name, address, phone number, ID numbers, and so on. Then you
can refer to this collection of information as a structure called employee rather than as a
collection of individual variables.

A structure’s key must be a string. The values associated with the key can be any valid
ColdFusion value or object. It can be a string or integer, or a complex object such as an
array or another structure. Because structures can contain any kind of data they provide a
very powerful and flexible mechanism for representing complex data.

Structure notation
ColdFusion supports two types of notation for referencing structure contents. Which
notation you use depends on your requirements:

Notation Description

Object.property You can refer to a property, prop, of an object, obj, as obj.prop.
This notation is useful for simple assignments, as in this example:

depts.John="Sales"

Use this notation only when you know the property names (keys)
in advance and they are strings, with no special characters,
numbers, or spaces. You cannot use the dot notation when the
property, or key, is dynamic.

Associative arrays If you do not know the key name is in advance, or it contains
spaces, numbers or special characters, you can use associative
array notation. This notation uses structures as arrays with string
indexes, for example,

depts["John"]="Sales"

depts[employeeName]="Sales"

You can use a variable (such as employeeName) as an
associative array index. Therefore, you must enclose any literal
key names in quotes.

For information on using associative array references containing
variables, see “Dynamically constructing structure references,” in
Chapter 4.
About structures 99

Referencing complex structures
When a structure contains another structure, you reference the data in the nested
structure by extending either object.property or associative array notation. You can even
use a mixture of both notations.

For example, if structure1 has a key key1 whose value is a structure that has keys
struct2key1, struct2key2, and so on, you can use any of the following references to access
the data in the first key of the embedded structure:

Structure1.key1.Struct2key1
Structure1["key1"].Struct2key1
Structure1.key1["Struct2key1"]
Structure1["key1"]["Struct2key1"]

The following example shows various ways you can reference the contents of a complex
structure:

<cfset myArray=ArrayNew(1)>
<cfset myArray[1]="2">
<cfset myArray[2]="3">
<cfset myStruct2=StructNew()>
<cfset myStruct2.struct2key1="4">
<cfset myStruct2.struct2key2="5">
<cfset myStruct=StructNew()>
<cfset myStruct.key1="1">
<cfset myStruct.key2=myArray>
<cfset myStruct.key3=myStruct2>
<cfdump var=#myStruct#>

<cfset key1Var="key1">
<cfset key2Var="key2">
<cfset key3Var="key3">
<cfset var2="2">

<cfoutput>
Value of the first key

#mystruct.key1#

#mystruct["key1"]#

#mystruct[key1Var]#

Value of the second entry in the key2 array

#myStruct.key2[2]#

#myStruct["key2"][2]#

#myStruct[key2Var][2]#

#myStruct[key2Var][var2]#

Value of the struct2key2 entry in the key3 structure

#myStruct.key3.struct2key2#

#myStruct["key3"]["struct2key2"]#

#myStruct[key3Var]["struct2key2"]#

#myStruct.key3["struct2key2"]#

#myStruct["key3"].struct2key2#

</cfoutput>
100 Chapter 5 Using Arrays and Structures

Reviewing the code

The following table describes the code:

Code Description

<cfset myArray=ArrayNew(1)>
<cfset myArray[1]="2">
<cfset myArray[2]="3">
<cfset myStruct2=StructNew()>
<cfset myStruct2.struct2key1="4">
<cfset myStruct2.struct2key2="5">
<cfset myStruct=StructNew()>
<cfset myStruct.key1="1">
<cfset myStruct.key2=myArray>
<cfset myStruct.key3=myStruct2>

Create a structure with three entries: a
string, an array, and an embedded structure.

<cfdump var=#myStruct#>
 Display the complete structure.

<cfset key1Var="key1">
<cfset key2Var="key2">
<cfset key3Var="key3">
<cfset var2="2">

Create variables containing the names of
the myStruct keys and the number 2.

<cfoutput>
Value of the first key

#mystruct.key1#

#mystruct["key1"]#

#mystruct[key1Var]#

Output the value of the structure’s key1
(string) entry using the following notation:

• object.property notation

• associative array notation with a
constant

• associative array notation with a variable

Value of the second entry in the
key2 array

#myStruct.key2[2]#

#myStruct["key2"][2]#

#myStruct[key2Var][2]#

#myStruct[key2Var][var2]#

Output the value of the second entry in the
structure’s key2 array using the following
notation:

• object.property notation

• associative array notation with a
constant

• associative array notation with a variable

• associative array notation with variables
for both the array and the array index

Value of the struct2key2 entry in
the key3 structure

#myStruct.key3.struct2key2#

#myStruct["key3"]["struct2key2"]#

#myStruct[key3Var]["struct2key2"]#

#myStruct.key3["struct2key2"]#

#myStruct["key3"].struct2key2#

</cfoutput>

Output the value of second entry in the
structure’s key3 embedded structure using
the following notation:

• object.property notation

• associative array notation with two
constants

• associative array notation with a variable
and a constant

• object.property notation followed by
associative array notation

• associative array notation followed by
object.property notation
About structures 101

Creating and using structures
This section explains how to create and use structures in ColdFusion. The sample code in
this section uses a structure called employee, which is used to add new employees to a
corporate information system.

Creating structures
You can create a structure by creating a first key-pair or by using the ColdFusion
StructNew function.

Creating structures by assigning values

You can create a structure by assigning a key-value pair. For example, the following line
creates a structure named myStruct with one element, name, that has the value
Macromedia.

<cfset myStruct.name="Macromedia">

Creating structures using a function

You can create structures by assigning a variable name to the structure with the
StructNew function as follows:

<cfset mystructure=StructNew()>

For example, to create a structure named departments, use the following syntax:

<cfset departments=StructNew()>

This creates an empty structure to which you can add data.

Use this technique to create structures if your application must run on ColdFusion Server
versions 5 and earlier.

Adding data elements to structures
You add an element to a structure by assigning the element a value or by using a
ColdFusion function. It is cleaner and more efficient to use direct assignment, so only
this technique is described.

You add structure key-value pairs by defining the value of the structure key, as shown in
the following example:

<cfset myNewStructure.key1="A new structure with a new key">
<cfdump var=#myNewStructure#>
<cfset myNewStructure.key2="Now I’ve added a second key">
<cfdump var=#myNewStructure#>

Updating values in structures
You can update structure element values by assignment or by using the StructUpdate
function. Direct assignment results in simpler code than using a function, so only the
assignment technique is described.
102 Chapter 5 Using Arrays and Structures

To update a structure value, assign the key a new value. For example, the following code
uses cfset and object.property notation to create a new structure element called
departments.John, and changes John’s department from Sales to Marketing. It then uses
associative array notation to change his department to Facilities. Each time the
department changes, it displays the results:

<cfset departments=structnew()>
<cfset departments.John = "Sales">
<cfoutput>

Before the first change, John was in the #departments.John# Department

</cfoutput>
<cfset Departments.John = "Marketing">
<cfoutput>

After the first change, John is in the #departments.John# Department

</cfoutput>
<cfset Departments["John"] = "Facilities">
<cfoutput>

After the second change, John is in the #departments.John# Department

</cfoutput>

Getting information about structures and keys
The following sections describe how to use ColdFusion functions to find information
about structures and their keys.

Getting information about structures

To find out if a given value represents a structure, use the IsStruct function, as follows:

IsStruct(variable)

This function returns True if variable is a ColdFusion structure. (It also returns True if
variable is a Java object that implements the java.util.Map interface.)

Structures are not indexed numerically, so to find out how many name-value pairs exist
in a structure, use the StructCount function, as in the following example:

StructCount(employee)

To discover whether a specific Structure contains data, use the StructIsEmpty function, as
follows:

StructIsEmpty(structure_name)

This function returns True if the structure is empty, and False if it contains data.
Creating and using structures 103

Finding a specific key and its value

To determine whether a specific key exists in a structure, use the StructKeyExists
function, as follows:

StructKeyExists(structure_name, "key_name")

Do not put the name of the structure in quotation marks, but you do put the key name in
quotation marks. For example, the following code displays the value of the
MyStruct.MyKey only if it exists:

<cfif StructKeyExists(myStruct, "myKey")>
<cfoutput> #mystruct.myKey#</cfoutput>

</cfif>

You can use the StructKeyExists function to dynamically test for keys by using a variable
to represent the key name. In this case, you do not put the variable in quotes. For
example, the following code loops through the records of the GetEmployees query and
tests the myStruct structure for a key that matches the query’s LastName field. If
ColdFusion finds a matching key, it displays the Last Name from the query and the
corresponding entry in the structure.

<cfloop query="GetEmployees">
<cfif StructKeyExists(myStruct, LastName)>
<cfoutput>#LastName#: #mystruct[LastName]#</cfoutput>

</cfif>
</cfloop>

If the name of the key is known in advance, you can also use the ColdFusion IsDefined
function, as follows:

IsDefined("structure_name.key")>

However, if the key is dynamic, or contains special characters, you must use the
StructKeyExists function.

Note: Using StructKeyExists to test for the existence of a structure entry is more efficient
than using IsDefined. ColdFusion scopes are available as structures and you can improve
efficiency by using StructKeyExists to test for the existence of variables.

Getting a list of keys in a structure

To get a list of the keys in a CFML structure, you use the StructKeyList function, as
follows:

<cfset temp=StructKeyList(structure_name, [delimiter])>

You can specify any character as the delimiter; the default is a comma.

Use the StructKeyArray function to returns an array of keys in a structure, as follows:

<cfset temp=StructKeyArray(structure_name)>

Note: The StructKeyList and StructKeyArray functions do not return keys in any particular
order. Use the ListSort or ArraySort functions to sort the results.
104 Chapter 5 Using Arrays and Structures

Copying structures
ColdFusion provides several ways to copy structures and create structure references. The
following table lists these methods and describes their uses:

The following example shows the different effects of copying, duplicating, and assigning
structure variables:

Create a new structure

<cfset myNewStructure=StructNew()>
<cfset myNewStructure.key1="1">
<cfset myNewStructure.key2="2">
<cfset myArray=ArrayNew(1)>
<cfset myArray[1]="3">
<cfset myArray[2]="4">
<cfset myNewStructure.key3=myArray>
<cfset myNewStructure2=StructNew()>
<cfset myNewStructure2.Struct2key1="5">
<cfset myNewStructure2.Struct2key2="6">
<cfset myNewStructure.key4=myNewStructure2>
<cfdump var=#myNewStructure#>

A StructCopy copied structure

<cfset CopiedStruct=StructCopy(myNewStructure)>
<cfdump var=#CopiedStruct#>

A Duplicated structure

Technique Use

Duplicate
function

Makes a complete copy of the structure. All data is copied from the
original structure to the new structure, including the contents of
structures, queries, and other objects. As a result changes to one copy
of the structure have no effect on the other structure.

This function is useful when you want to move a structure completely
into a new scope. In particular, if a structure is created in a scope that
requires locking (for example, Application), you can duplicate it into a
scope that does not require locking (for example, Request), and then
delete it in the scope that requires locking

StructCopy
function

Makes a shallow copy of a structure. It creates a new structure and
copies all simple variable and array values at the top level of the original
structure to the new structure. However, it does not make copies of any
structures, queries, or other objects that the original structure contains,
or of any data inside these objects. Instead, it creates a reference in the
new structure to the objects in the original structure. As a result, any
change to these objects in one structure also changes the
corresponding objects in the copied structure.

The Duplicate replaces this function for most, if not all, purposes.

Variable
assignment

Creates an additional reference, or alias, to the structure. Any change to
the data using one variable name changes the structure that you access
using the other variable name.

This technique is useful when you want to add a local variable to another
scope or otherwise change a variable’s scope without deleting the
variable from the original scope.
Creating and using structures 105

<cfset dupStruct=Duplicate(myNewStructure)>
<cfdump var=#dupStruct#>

A new reference to a structure

<cfset structRef=myNewStructure>
<cfdump var=#structRef#>

Change a string, array element, and structure value in the StructCopy copy.

<cfset CopiedStruct.key1="1A">
<cfset CopiedStruct.key3[2]="4A">
<cfset CopiedStruct.key4.Struct2key2="6A">
Original structure

<cfdump var=#myNewStructure#>

Copied structure

<cfdump var=#CopiedStruct#>

Duplicated structure

<cfdump var=#DupStruct#>

Structure reference
<cfdump var=#structRef#>

Change a string, array element, and structure value in the Duplicate

<cfset DupStruct.key1="1B">
<cfset DupStruct.key3[2]="4B">
<cfset DupStruct.key4.Struct2key2="6B">
Original structure

<cfdump var=#myNewStructure#>

Copied structure

<cfdump var=#CopiedStruct#>

Duplicated structure

<cfdump var=#DupStruct#>

Structure reference
<cfdump var=#structRef#>

Change a string, array element, and structure value in the reference

<cfset structRef.key1="1C">
<cfset structRef.key3[2]="4C">
<cfset structRef.key4.Struct2key2="6C">
Original structure

<cfdump var=#myNewStructure#>

Copied structure

<cfdump var=#CopiedStruct#>

Duplicated structure

<cfdump var=#DupStruct#>

Structure reference
<cfdump var=#structRef#>

Clear the original structure

<cfset foo=structclear(myNewStructure)>
Original structure:

<cfdump var=#myNewStructure#>

Copied structure

<cfdump var=#CopiedStruct#>

106 Chapter 5 Using Arrays and Structures

Duplicated structure

<cfdump var=#DupStruct#>

Structure reference:

<cfdump var=#structRef#>

Deleting structure elements and structures
To delete a key and its value from a structure, use the StructDelete function, as follows:

StructDelete(structure_name, key [, indicateNotExisting])

The indicateNotExisting argument tells the function what to do if the specified key does
not exist. By default, the function always returns True. However, if you specify True for
the indicateNotExisting argument, the function returns True if the key exists and False if it
does not.

You can also use the StructClear function to delete all the data in a structure but keep the
structure instance itself, as follows:

StructClear(structure_name)

If you use StructClear to delete a structure that you have copied using the StructCopy
function, the specified structure is deleted, but the copy is unaffected.

If you use StructClear to delete a structure that has a multiple references, the function
deletes the contents of the structure and all references point to the empty structure, as
shown in the following example:

<cfset myStruct.Key1="Macromedia">
Structure before StructClear

<cfdump var="#myStruct#">
<cfset myCopy=myStruct>
<cfset StructClear(myCopy)>
After Clear:

myStruct: <cfdump var="#myStruct#">

myCopy: <cfdump var="#myCopy#">

Looping through structures
You can loop through a structure to output its contents, as shown in the following
example:

<!--- Create a structure and set its contents --->
<cfset departments=structnew()>

<cfset val=StructInsert(departments, "John", "Sales")>
<cfset val=StructInsert(departments, "Tom", "Finance")>
<cfset val=StructInsert(departments, "Mike", "Education")>

<!--- Build a table to display the contents --->
<cfoutput>
<table cellpadding="2" cellspacing="2">

<tr>
<td>Employee</td>
<td>Department</td>

</tr>
<!--- Use cfloop to loop through the departments structure.
The item attribute specifies a name for the structure key. --->
Creating and using structures 107

<cfloop collection=#departments# item="person">
<tr>

<td>#person#</td>
<td>#Departments[person]#</td>

</tr>
</cfloop>

</table>
</cfoutput>
108 Chapter 5 Using Arrays and Structures

Structure example
Structures are particularly useful for grouping together a set of variables under a single
name. The example in this section uses structures collect information from a form, and
to submit that information to a custom tag, named cf_addemployee. For information on
creating and using custom tags, see Chapter 10, “Creating and Using Custom CFML
Tags” on page 197.

Example file newemployee.cfm

The following ColdFusion page shows how to create structures and use them to add data
to a database. It calls the cf_addemployee custom tag, which is defined in the
addemployee.cfm file.

<html>
<head>
<title>Add New Employees</title>
</head>

<body>
<h1>Add New Employees</h1>
<!--- Action page code for the form at the bottom of this page --->

<!--- Establish parameters for first time through --->
<cfparam name="Form.firstname" default="">
<cfparam name="Form.lastname" default="">
<cfparam name="Form.email" default="">
<cfparam name="Form.phone" default="">
<cfparam name="Form.department" default="">

<!--- If at least the firstaname form field is passed, create
 a structure named employee and add values --->

<cfif #Form.firstname# eq "">
<p>Please fill out the form.</p>

<cfelse>
 <cfoutput>

<cfscript>
employee=StructNew();
employee.firstname = Form.firstname;
employee.lastname = Form.lastname;
employee.email = Form.email;
employee.phone = Form.phone;
employee.department = Form.department;

</cfscript>

<!--- Display results of creating the structure --->
First name is #StructFind(employee, "firstname")#

Last name is #StructFind(employee, "lastname")#

EMail is #StructFind(employee, "email")#

Phone is #StructFind(employee, "phone")#

Department is #StructFind(employee, "department")#

</cfoutput>
Structure example 109

 <!--- Call the custom tag that adds employees --->
<cf_addemployee empinfo="#employee#">

</cfif>

<!--- The form for adding the new employee information --->
<hr>
<form action="newemployee.cfm" method="Post">
First Name:
<input name="firstname" type="text" hspace="30" maxlength="30">

Last Name:
<input name="lastname" type="text" hspace="30" maxlength="30">

EMail:
<input name="email" type="text" hspace="30" maxlength="30">

Phone:
<input name="phone" type="text" hspace="20" maxlength="20">

Department:
<input name="department" type="text" hspace="30" maxlength="30">

<input type="Submit" value="OK">
</form>

</body>
</html>

Reviewing the code

The following table describes the code:

Code Description

<cfparam name="Form.firstname" default="">
<cfparam name="Form.lastname" default="">
<cfparam name="Form.email" default="">
<cfparam name="Form.phone" default="">
<cfparam name="Form.department" default="">

Set default values of all form fields so that they exist the
first time this page is displayed and can be tested.

<cfif #form.firstname# eq "">
Please fill out the form.

Test the value of the form’s firstname field. This field is
required. The test is False the first time the page displays.

If there is no data in the Form.firstname variable, display a
message requesting the user to fill the form.

<cfelse>
<cfoutput>
<cfscript>
employee=StructNew();
employee.firstname = Form.firstname;
employee.lastname = Form.lastname;
employee.email = Form.email;
employee.phone = Form.phone;
employee.department = Form.department;
</cfscript>

First name is #employee.firstname#

Last name is #employee.lastname#

EMail is #employee.email#

Phone is #employee.phone#

Department is #employee.department#

</cfoutput>

If Form.firstname contains text, the user submitted the
form.

Use CFScript to create a new structure named employee
and fill it with the form field data.

Then display the contents of the structure
110 Chapter 5 Using Arrays and Structures

Example file addemployee.cfm

The following file is an example of a custom tag used to add employees. Employee
information is passed through the employee structure (the empinfo attribute). For
databases that do not support automatic key generation, you must also add the Emp_ID.

<cfif StructIsEmpty(attributes.empinfo)>
<cfoutput>

Error. No employee data was passed.

</cfoutput>
<cfexit method="ExitTag">

<cfelse>
<!--- Add the employee --->
<cfquery name="AddEmployee" datasource="cfsnippets">

INSERT INTO Employees
(FirstName, LastName, Email, Phone, Department)

VALUES (
'#attributes.empinfo.firstname#' ,
'#attributes.empinfo.lastname#' ,
'#attributes.empinfo.email#' ,
'#attributes.empinfo.phone#' ,
'#attributes.empinfo.department#')

</cfquery>
</cfif>

cf_addemployee empinfo="#duplicate(employee)#">
</cfif>

Call the cf_addemployee custom tag and pass it a copy of
the employee structure in the empinfo attribute.

The duplicate function ensures that the custom tag gets a
copy of the employee structure, not the original. While
this is not necessary in this example, it is good practice
because it prevents the custom tag from modifying the
calling page’s structure contents.

<form action="newemployee.cfm" method="Post">
First Name:
<input name="firstname" type="text" hspace="30"

maxlength="30">

Last Name:
<input name="lastname" type="text" hspace="30"

maxlength="30">

EMail:
<input name="email" type="text" hspace="30"

maxlength="30">

Phone:
<input name="phone" type="text" hspace="20"

maxlength="20">

<p>Department:
<input name="department" type="text" hspace="30"

maxlength="30">

<input type="Submit" value="OK">
</form>

The data form. When the user clicks Submit, the form
posts the data to this ColdFusion page.

Code Description
Structure example 111

<cfoutput>
<hr>Employee Add Complete

</cfoutput>

Reviewing the code

The following table describes the code:

Code Description

<cfif StructIsEmpty(Attributes.empinfo)>
<cfoutput>
Error. No employee data was passed.
</cfoutput>
<cfexit method="ExitTag">

If the custom tag was called without an
empinfo attribute, display an error message
and exit the tag.

<cfelse>
<cfquery name="AddEmployee" datasource=

"cfsnippets">
INSERT INTO Employees
(FirstName, LastName, Email, Phone,
Department)

VALUES (
'#attributes.empinfo.firstname#' ,
'#attributes.empinfo.lastname#' ,
'#attributes.empinfo.email#' ,
'#attributes.empinfo.phone#' ,
'#attributes.empinfo.department#')

</cfquery>
</cfif>

Add the employee data passed in the
empinfo structure to the Employees table of
the cfsnippets database.

Use direct references to the structure entries,
not structfind functions.

If the database does not support automatic
generation of the Emp_ID key, you must add
an Emp_ID entry to the form and add it to the
query.

<cfoutput>
<hr>Employee Add Complete

</cfoutput>

Display a completion message. This code
does not have to be inside the cfelse block
because the cfexit tag prevents it from being
run if the empinfo structure is empty.
112 Chapter 5 Using Arrays and Structures

Structure functions
You can use the following functions to create and manage structures in ColdFusion
applications. The table describes each function’s purpose and provides specific, but
limited, information that can assist you in determining whether to use the function
instead of other techniques:

Function Description

Duplicate Returns a complete copy of the structure.

IsStruct Returns True if the specified variable is a ColdFusion structure or a
Java object that implements the java.util.Map interface.

StructAppend Appends one structure to another.

StructClear Removes all data from the specified structure.

StructCopy Returns a "shallow" copy of the structure. All embedded objects are
references to the objects in the original structure. The Duplicate
function has replaced this function for most purposes.

StructCount Returns the number of keys in the specified structure.

StructDelete Removes the specified item from the specified structure.

StructFind Returns the value associated with the specified key in the specified
structure. This function is redundant with accessing structure
elements using associative array notation.

StructFindKey Searches through a structure for the specified key name and
returns an array containing data on the found key or keys.

StructFindValue Searches through a structure for the specified simple data value
(for example, a string or number) and returns an array containing
information on the value location in the structure.

StructGet Returns a reference to a substructure contained in a structure at the
specified path. This function is redundant with using direct
reference to a structure. If you accidentally use this function on a
variable that is not a structure, it replaces the value with an empty
structure.

StructInsert Inserts the specified key-value pair into the specified structure.
Unlike a direct assignment statement, this function generates an
error by default if the specified key exists in the structure.

StructIsEmpty Indicates whether the specified structure contains data. Returns
True if the structure contains no data, and False if it does contain
data.

StructKeyArray Returns an array of keys in the specified structure.

StructKeyExists Returns True if the specified key is in the specified structure. You
can use this function in place of the IsDefined function to check for
the existence of variables in scopes that are available as structures.

StructKeyList Returns a list of keys in the specified structure.

StructNew Returns a new structure.
Structure functions 113

All functions except StructDelete throw an exception if a referenced key or structure does
not exist.

For more information on these functions, see CFML Reference.

StructSort Returns an array containing the key names of a structure in the
order determined by the sort criteria.

StructUpdate Updates the specified key with the specified value. Unlike a direct
assignment statement, this function generates an error if the
structure or key does not exist.

Function Description
114 Chapter 5 Using Arrays and Structures

CHAPTER 6

Extending ColdFusion Pages with

CFML Scripting
ColdFusion MX offers a server-side scripting language, CFScript, that provides
ColdFusion functionality in script syntax. This JavaScript-like language gives developers
the same control flow as ColdFusion, but without tags. You can also use CFScript to
write user-defined functions that you can use anywhere that a ColdFusion expression is
allowed.

This chapter describes the CFScript language’s functionality and syntax, and provides
information on using CFScript effectively in ColdFusion pages.

Contents

• About CFScript ... 116

• The CFScript language .. 118

• Using CFScript statements .. 122

• Handling exceptions .. 129

• CFScript example .. 130
115

About CFScript
CFScript is a language within a language. It is a scripting language that is similar to
JavaScript but is simpler to use. Also, unlike JavaScript, CFScript only runs on the
ColdFusion Server; it does not run on the client system. CFScript code can use all the
ColdFusion functions and expressions, and has access to all ColdFusion variables that are
available in the script’s scope.

CFScript provides a compact and efficient way to write ColdFusion logic. Typical uses of
CFScript include the following:
• Simplifying and speeding variable setting
• Building compact JavaScript-like flow control structures
• Creating user-defined functions

Because you use functions and expressions directly in CFScript, you do not have to
surround each assignment or function in a cfset tag. Also, CFScript assignments are
often faster than cfset tags.

CFScript provides a set of decision and flow-control structures that are more familiar
than ColdFusion tags to most programmers.

In addition to variable setting, other operations tend to be slightly faster in CFScript than
in tags.

ColdFusion 5 and later releases let you use CFScript to create user-defined functions, or
UDFs (also known as custom functions). You call UDFs in the same manner that you
call standard ColdFusion functions. UDFs are to ColdFusion built-in functions what
custom tags are to ColdFusion built-in tags. Typical uses of UDFs include data
manipulation and mathematical calculation routines.

You cannot include ColdFusion tags in CFScript. However, a number of functions and
CFScript statements are equivalent to commonly used tags. For more information, see
“CFScript functional equivalents to ColdFusion tags” on page 120.

Comparing tags and CFScript
The following examples show how you can use CFML tags and CFScript to do the same
thing. Each example takes data submitted from a form and puts it in a structure; if the
form does not have a last name and department field, it displays a message.

Using CFML tags

<cfif IsDefined("Form.submit")>
 <cfif (Form.lastname NEQ "") AND (Form.department NEQ "")>

<cfset employee=structnew()>
<cfset employee.firstname=Form.firstname>
<cfset employee.lastname=Form.lastname>
<cfset employee.email=Form.email>
<cfset employee.phone=Form.phone>
<cfset employee.department=Form.department>
<cfoutput>

Adding #Form.firstname# #Form.lastname#

</cfoutput>

<cfelse>
<cfoutput>
116 Chapter 6 Extending ColdFusion Pages with CFML Scripting

You must enter a Last Name and Department.

</cfoutput>

 </cfif>
</cfif>

Using CFScript

<cfscript>
if (IsDefined("Form.submit"))

{
if ((Form.lastname NEQ "") AND (Form.department NEQ ""))

{
employee=StructNew();
employee.firstname=Form.firstname;
employee.lastname=Form.lastname;
employee.email=Form.email;
employee.phone=Form.phone;
employee.department=Form.department;
WriteOutput("Adding #Form.firstname# #Form.lastname#
");
}

else
WriteOutput("You must enter a Last Name and Department.
");

}
</cfscript>
About CFScript 117

The CFScript language
This section explains the syntax of the CFScript language.

Identifying CFScript
You enclose CFScript regions inside <cfscript> and </cfscript> tags. No other CFML
tags are allowed inside a cfscript region. The following lines show a minimal script:

<cfscript>
a = 2;
</cfscript>

Variables
CFScript variables can be of any ColdFusion type, such as numbers, strings, arrays,
queries, and objects. The CFScript code can read and write any variables that are
available in the page that contains the script. This includes all common scope variables,
such as session, application, and server variables.

Expressions
CFScript supports all CFML expressions. CFML expressions include operators (such as
+, -, EQ, and so on), as well as all CFML functions. As in all ColdFusion expressions,
you must use CFML operators, such as LT, GT, and EQ. You cannot use JavaScript
operators, such as <, >, ==, or ++.

For information about CFML expressions, operators, and functions, see Chapter 4,
“Using Expressions and Pound Signs” on page 65.

Statements
CFScript supports the following statements:

The following rules apply to statements:
• You must put a semicolon at the end of a statement.
• Line breaks are ignored. A single statement can cross multiple lines.
• White space is ignored. For example, it does not matter whether you precede a

semicolon with a space character.
• Use curly braces to group multiple statements together into one logical statement

unit.
• Unless otherwise indicated, you can use any ColdFusion expression in the body of a

statement.

assignment for-in try-catch

function call while function (function definition)

if-else do-while var (in custom functions only)

switch-case break return (in custom functions only)

for continue
118 Chapter 6 Extending ColdFusion Pages with CFML Scripting

Note: This chapter documents all statements except var and return. For information on
these statements, see “Defining functions in CFScript,” in Chapter 9.

Statement blocks
Curly brace characters ({ and }) group multiple CFScript statements together so that they
are treated as a single unit or statement. This enables you to create code blocks in
conditional statements, such as the following:

if(score GT 0)
{

result = "positive";
Positives = Positives + 1;

}

In this example, both assignment statements are executed if the score is greater than 0. If
they were not in the code block, only the first line would execute.

You do not have to put brace characters on their own lines in the code. For example, you
could put the open brace in the preceding example on the same line as the if statement,
and some programmers use this style. However, putting at least the ending brace on its
own line makes it easier to read the code and separate out code blocks.

Comments
CFScript has two forms of comments: single line and multiline.

A single line comment begins with two forward slashes (//) and ends at the line end; for
example:

//This is a single line comment.
//This is a second single line comment.

A multiline comment starts with a /* marker and continues until it reaches a */ marker;
for example:

/*This is a multiline comment.
You do not need to start each line with a comment indicator.
This is the last line in the comment. */

The following rules apply to comments:
• Comments do not have to start at the beginning of a line. They can follow active

code on a line. For example, the following line is valid:
MyVariable = 12; // Set MyVariable to the default value.

• The end of a multiline comment can be followed on the same line by active code. For
example, the following line is valid, although it is poor coding practice:
End of my long comment */ foo = "bar";

• You can use multiline format for a comment on a single line, for example:
/*This is a single line comment using multiline format. */

• You cannot nest /* and */ markers inside other comment lines.
The CFScript language 119

Reserved words
In addition to the names of ColdFusion functions and words reserved by ColdFusion
expressions (such as NOT, AND, IS, and so on), the following words are reserved in
CFScript. Do not use these words as variables or identifiers in your scripting code:

Differences from JavaScript
Although CFScript and JavaScript are similar, they have several key differences. The
following list identifies CFScript features that differ from JavaScript:
• CFScript uses ColdFusion expressions, which are neither a subset nor a superset of

JavaScript expressions. For example, there is no < operator in CFScript; you use the
LT operator instead.

• Variable declarations are only used in user-defined functions.
• CFScript is case-insensitive.
• All statements end with a semicolon and line breaks in the code are ignored.
• Assignments are statements, not expressions.
• JavaScript objects, such as Window and Document, are not available.
• Only the ColdFusion Server processes CFScript. There is no client-side CFScript.

CFScript limitation
You cannot include ColdFusion tags in CFScript. However, you can include cfscript
blocks inside other ColdFusion tags, such as cfoutput.

CFScript functional equivalents to ColdFusion tags
Although you cannot use ColdFusion tags in CFSCript, CFSCript and ColdFusion
functions provide equivalents to several commonly-used CFML tags. The following table
lists ColdFusion tags with equivalent functions or CFScript statements:

break default function switch

case do if try

catch else in var

continue for return while

Tag CFScript equivalent

cfset Direct assignment, such as Myvar=1;

cfoutput WriteOutput function

cfif, cfelseif, cfelse if and else statements

cfswitch, cfcase,
cfdefaultcase

switch, case, and default statements

Indexed cfloop for loops

Conditional cfloop while loops and do while loops
120 Chapter 6 Extending ColdFusion Pages with CFML Scripting

Structure cfloop for in loop.)There is no equivalent for queries, lists, or
objects.)

cfbreak break statement. CFScript also has a continue statement that
has no equivalent CFML tag.

cftry, cfcatch try and catch statements

cfcookie Direct assignment of Cookie scope memory-only variables.
You cannot use direct assignment to set persistent cookies
that are stored on the user’s system.

cfobject CreateObject function

Tag CFScript equivalent
The CFScript language 121

Using CFScript statements
The following sections describe how to use these CFScript statements:
• Assignment statements and functions
• Conditional processing statements
• Looping statements

Using assignment statements and functions
CFScript assignment statements are the equivalent of the cfset tag. These statements
have the following form:

lval = expression;

lval is any ColdFusion variable reference; for example:

x = "positive";
y = x;
a[3]=5;
structure.member=10;
ArrayCopy=myArray;

You can use ColdFusion function calls, including UDFs, directly in CFScript. For
example, the following line is a valid CFScript statement:

StructInsert(employee,"lastname",FORM.lastname);

Using conditional processing statements
CFScript includes the following conditional processing statements:
• if and else statements, which serve the same purpose as the cfif, cfelseif, and

cfelse tags
• switch, case, and default statements, which are the equivalents of the cfswitch,

cfcase, and cfdefaultcase tags

Using if and else statements

The if and else statements have the following syntax:

if(expr) statement [else statement]

In its simplest form, an if statement looks like this:

if(value EQ 2700)
message = "You’ve reached the maximum";

A simple if-else statement looks like the following:

if(score GT 1)
result = "positive";

else
result = "negative";

CFScript does not include an elseif statement. However, you can use an if statement
immediately after an else statement to create the equivalent of a cfelseif tag, as the
following example shows:

if(score GT 1)
result = "positive";
122 Chapter 6 Extending ColdFusion Pages with CFML Scripting

else if(score EQ 0)
result = "zero";

else
result = "negative";

As with all conditional processing statements, you can have multiple statements for each
condition, as follows:

if(score GT 1)
{
result = "positive";
message = "The result was positive.";

else
{
result = "negative";
message = "The result was negative.";
}

Note: Often, you can make your code clearer by using braces even where they are not
required.

Using switch and case statements

The switch statement and its dependent case and default statements have the following
syntax:

switch (expression) {
case constant: [case constant:]... statement(s) break;
[case constant: [case constant:]... statement(s) break;]...
[default: statement(s)] }

Use the following rules and recommendations for switch statements:
• You cannot mix Boolean and numeric constant values in a switch statement.
• Each constant value must be a constant (that is, not a variable, a function, or other

expression).
• Multiple case constant: statements can precede the statement or statements to

execute if any of the cases are true. This lets you specify several matches for one code
block.

• No two constant values can be the same.
• The statements following the colon in a case statement block do not have to be in

braces. If a constant value equals the switch expression, ColdFusion executes all
statements through the break statement.

• The break statement at the end of the case statement tells ColdFusion to exit the
switch statement. ColdFusion does not generate an error message if you omit a break
statement. However, if you omit it, ColdFusion executes all the statements in the
following case statement, even if that case is false. In nearly all circumstances, this is
not what you want to do.

• You can have only one default statement in a switch statement block. ColdFusion
executes the statements in the default block if none of the case statement constants
equals the expression value.

• The default statement does not have to follow all switch statements, but it is good
programming practice to do so. If any switch statements follow the default statement
you must end the default block code with a break statement.
Using CFScript statements 123

• The default statement is not required. However, you should use one if the case
constants do not include all possible values of the expression.

• The default statement does not have to follow all the case statements; however, it is
good programming practice to put it there.

The following switch statement takes the value of a name variable:

1 If the name is John or Robert, it sets both the male variable and the found variable to
True.

2 If the name is Mary, it sets the male variable to False and the found variable to True.

3 Otherwise, it sets the found variable to False.

switch(name)
{

case "John": case "Robert":
male=True;
found=True;
break;

case "Mary":
male=False;
found=True;
break;

default:
found=False;

} //end switch

Using looping statements
CFScript provides a richer selection of looping constructs than those supplied by CFML
tags. It enables you to create efficient looping constructs similar to those in most
programming and scripting languages. CFScript provides the following looping
constructs:
• For
• While
• Do-while
• For-in

CFScript also includes the continue and break statements that control loop processing.

The following sections describe these types of loops and their uses.

Using for loops

The for loop has the following format:

for (inital-expression; test-expression; final-expression) statement

The initial-expression and final-expression can be one of the following:
• A single assignment expression; for example, x=5 or loop=loop+1
• Any ColdFusion expression; for example, SetVariable("a",a+1)
• Empty
124 Chapter 6 Extending ColdFusion Pages with CFML Scripting

The test-expression can be one of the following:
• Any ColdFusion expression; for example:

A LT 5
index LE x
status EQ "not found" AND index LT end

• Empty

Note: The test expression is re-evaluated before each repeat of the loop. If code inside the
loop changes any part of the test expression, it can affect the number of iterations in the
loop.

The statement can be a single semicolon terminated statement or a statement block in
curly braces.

When ColdFusion executes a for loop, it does the following:

1 Evaluates the initial expression.

2 Evaluates the test-expression.

3 If the test-expression is False, exits the loop and processing continues following the
statement.
If the test-expression is True:
a Executes the statement (or statement block).

b Evaluates the final-expression.

c Returns to step 2.

For loops are most commonly used for processing in which an index variable is
incremented each time through the loop, but it is not limited to this use.

The following simple for loop sets each element in a 10-element array with its index
number.

for(index=1;
index LT 10;
index = index + 1)
a[index]=index;

The following, more complex, example demonstrates two features:
• The use of curly braces to group multiple statements into a single block.
• An empty condition statement. All loop control logic is in the statement block.

<cfscript>
strings=ArrayNew(1);
ArraySet(strings, 1, 10, "lock");
strings[5]="key";
indx=0;
for(; ;)
{

indx=indx+1;
if(Find("key",strings[indx],1)) {

WriteOutput("Found key at " & indx & ".
");
break;
}

else if (indx IS ArrayLen(strings))
Using CFScript statements 125

{
WriteOutput("Exited at " & indx & ".
");
break;
}

}
</cfscript>

This example shows one important issue that you must remember when creating loops:
you must always ensure that the loop ends. If this example lacked the else if statement,
and there was no “key” in the array, ColdFusion would loop forever or until a system
error occurred; you would have to stop the server to end the loop.

The example also shows two issues with index arithmetic: in this form of loop you must
make sure to initialize the index, and you must keep track of where the index is
incremented. In this case, because the index is incremented at the top of the loop, you
must initialize it to 0 so it becomes 1 in the first loop.

Using while loops

The while loop has the following format:

while (expression) statement

The while statement does the following:

1 Evaluates the expression.

2 If the expression is True, it does the following:

a Executes the statement, which can be a single semicolon-terminated statement or
a statement block in curly braces.

b Returns to step 1.

If the expression is False, processing continues with the next statement.
The following example uses a while loop to populate a 10-element array with multiples
of five.

a = ArrayNew(1);
loop = 1;
while (loop LE 10)
{
 a[loop] = loop * 5;
 loop = loop + 1;
}

As with other loops, you must make sure that at some point the while expression is False
and you must be careful to check your index arithmetic.

Using do-while loops

The do-while loop is like a while loop, except that it tests the loop condition after
executing the loop statement block. The do-while loop has the following format:

do statement while (expression);

The do while statement does the following:

1 Executes the statement, which can be a single semicolon-terminated statement or a
statement block in curly braces.
126 Chapter 6 Extending ColdFusion Pages with CFML Scripting

2 Evaluates the expression.

3 If the expression is true, it returns to step 1.

If the expression is False, processing continues with the next statement.
The following example, like the while loop example, populates a 10-element array with
multiples of 5:

a = ArrayNew(1);
loop = 1;
do
{
 a[loop] = loop * 5;
 loop = loop + 1;
}
while (loop LE 10);

Because the loop index increment follows the array value assignment, the example
initializes the loop variable to 1 and tests to make sure that it is less than or equal to 10.

The following example generates the same results as the previous two examples, but it
increments the index before assigning the array value. As a result, it initializes the index to
0, and the end condition tests that the index is less than 10.

a = ArrayNew(1);
loop = 0;
do {loop = loop + 1; a[loop] = loop * 5;} while (loop LT 10);

using for-in loops

The for-in loop loops over the elements in a ColdFusion structure. It has the following
format:

for (variable in structure) statement

The variable can be any ColdFusion identifier; it holds each structure key name as
ColdFusion loops through the structure. The structure must be the name of an existing
ColdFusion structure. The statement can be a single semicolon terminated statement or a
statement block in curly braces.

The following example creates a structure with three elements. It then loops through the
structure and displays the name and value of each key. Although the curly braces are not
required here, they make it easier to determine the contents of the relatively long
WriteOutput function. In general, you can make structured control flow, especially loops,
clearer by using curly braces.

myStruct=StructNew();
myStruct.productName="kumquat";
mystruct.quality="fine";
myStruct.quantity=25;
for (keyName in myStruct)
{

WriteOutput("myStruct." & Keyname & " has the value: " &
myStruct[keyName] &"
");

}

Note: Unlike the cfloop tag, you cannot use the CFSCript for-in loops to loop over a query,
list, or object.
Using CFScript statements 127

Using continue and break statements

The continue and break statements enable you to control the processing inside loops:
• The continue statement tells ColdFusion to skip to the beginning of the next loop

iteration.
• The break statement exits the current loop or case statement.

Using continue

The continue statement ends the current loop iteration, skips any code following it in the
loop, and jumps to the beginning of the next loop iteration. For example, the following
code loops through an array and display’s each value that is not an empty string:

for (loop=1; loop LE 10; loop = loop+1)
{

if(a[loop] EQ "") continue;
WriteOutput(loop);

}

(To test this code snippet, you must first create an array, a, with 10 or more elements,
some of which are not empty strings.)

In general, the continue statement is particularly useful if you loop over arrays or
structures and you want to skip processing for array elements or structure members with
specific values, such as the empty string.

Using break

The break statement exits the current loop or case statement. Processing continues at the
next CFScript statement. You end case statement processing blocks with a break
statement. You can also use a test case with a break statement to prevent infinite loops, as
shown in the following example. This script loops through an array and prints out the
array indexes that contain the value key. It uses a conditional test and a break statement
to make sure that the loop ends when at the end of the array.

strings=ArrayNew(1);
ArraySet(strings, 1, 10, "lock");
strings[5]="key";
strings[9]="key";
indx=0;
for(; ;)
{

indx=indx+1;
if(Find("key",strings[indx],1))
{

WriteOutput("Found a key at " & indx & ".
");
}

else if (indx IS ArrayLen(strings))
{

WriteOutput("Array ends at index " & indx & ".
");
break;

}
}

128 Chapter 6 Extending ColdFusion Pages with CFML Scripting

Handling exceptions
ColdFusion provides two statements for exception handling in CFScript: try and catch.
These statements are equivalent to the CFML cftry and cfcatch tags.

Note: This section does not explain exception handling concepts. For a discussion of
exception handling in ColdFusion, see Chapter 14, “Handling Errors” on page 281.

Exception handling syntax and rules

Exception-handling code in CFScript has the following format:

try
{

Code where exceptions will be caught
}
catch(exceptionType exceptionVariable)
{

Code to handle exceptions of type exceptionType
that occur in the try block

}
...
catch(exceptionTypeN exceptionVariableN)
{

Code to handle exceptions of type
exceptionTypeN that occur in the try block

}

Note: In CFScript, catch statements follow the try block; you do not put them inside the
try block. This structure differs from that of the cftry tag, which must include the cfcatch
tags in its body.

When you have a try statement, you must have a catch statement. In the catch block, the
exceptionVariable variable contains the exception type. This variable is the equivalent of
the cfcatch tag cfcatch.Type built-in variable.

Exception handling example

The following code shows exception handling in CFScript. It uses a CreateObject
function to create a Java object. The catch statement executes only if the CreateObject
function generates an exception. The displayed information includes the exception
message; the except.Message variable is the equivalent of calling the Java getMessage
method on the returned Java exception object.

<cfscript>
try
{

emp = CreateObject("Java", "Employees");
}
catch(Any excpt)
{

WriteOutput("The application was unable to perform a required operation.

Please try again later.
If this problem persists, contact
Customer Service and include the following information:

#excpt.Message#
");

}
</cfscript>
Handling exceptions 129

CFScript example
The example in this section uses the following CFScript features:
• Variable assignment
• Function calls
• For loops
• If-else statements
• WriteOutput functions
• Switch statements

The example uses CFScript without any other ColdFusion tags. It creates a structure of
course applicants. This structure contains two arrays; the first has accepted students, the
second has rejected students. The script also creates a structure with rejection reasons for
some (but not all) rejected students. It then displays the accepted applicants followed by
the rejected students and their rejection reasons.

<html>
<head>

<title>CFScript Example</title>
</head>
<body>
<cfscript>

//Set the variables

acceptedApplicants[1] = "Cora Cardozo";
acceptedApplicants[2] = "Betty Bethone";
acceptedApplicants[3] = "Albert Albertson";
rejectedApplicants[1] = "Erma Erp";
rejectedApplicants[2] = "David Dalhousie";
rejectedApplicants[3] = "Franny Farkle";
applicants.accepted=acceptedApplicants;
applicants.rejected=rejectedApplicants;

rejectCode=StructNew();
rejectCode["David Dalhousie"] = "score";
rejectCode["Franny Farkle"] = "too late";

//Sort and display accepted applicants

ArraySort(applicants.accepted,"text","asc");
WriteOutput("The following applicants were accepted:<hr>");
for (j=1;j lte ArrayLen(applicants.accepted);j=j+1)
{

WriteOutput(applicants.accepted[j] & "
");
}
WriteOutput("
");

//sort and display rejected applicants with reaons information

ArraySort(applicants.rejected,"text","asc");
WriteOutput("The following applicants were rejected:<hr>");
for (j=1;j lte ArrayLen(applicants.rejected);j=j+1)
130 Chapter 6 Extending ColdFusion Pages with CFML Scripting

{
applicant=applicants.rejected[j];
WriteOutput(applicant & "
");
if (StructKeyExists(rejectCode,applicant))
{

switch(rejectCode[applicant])
{

case "score":
WriteOutput("Reject reason: Score was too low.
");
break;

case "late":
WriteOutput("Reject reason: Application was late.
");
break;

default:
WriteOutput("Rejected with invalid reason code.
");

} //end switch
} //end if
else
{

WriteOutput("Reject reason was not defined.
");
} //end else
WriteOutput("
");

} //end for
</cfscript>

Reviewing the code

The following table describes the code:

Code Description

<cfscript>
acceptedApplicants[1] = "Cora Cardozo";
acceptedApplicants[2] = "Betty Bethone";
acceptedApplicants[3] = "Albert Albertson";
rejectedApplicants[1] = "Erma Erp";
rejectedApplicants[2] = "David Dalhousie";
rejectedApplicants[3] = "Franny Farkle";
applicants.accepted=acceptedApplicants;
applicants.rejected=rejectedApplicants;

rejectCode=StructNew();
rejectCode["David Dalhousie"] = "score";
rejectCode["Franny Farkle"] = "too late";

Creates two one-dimensional arrays, one with the
accepted applicants and another with the rejected
applicants. The entries in each array are in random
order.

Creates a structure and assign each array to an
element of the structure.

Creates a structure with rejection codes for
rejected applicants. The rejectedCode structure
does not have entries for all rejected applicants,
and one of its values does not match a valid code.
The structure element references use associative
array notation in order to use key names that
contain spaces.

ArraySort(applicants.accepted,"text","asc");
WriteOutput("The following applicants were accepted:<hr>");
for (j=1;j lte ArrayLen(applicants.accepted);j=j+1)
{
WriteOutput(applicants.accepted[j] & "
");

}
WriteOutput("
");

Sorts the accepted applicants alphabetically.

Displays a heading.

Loops through the accepted applicants and writes
their names. Braces enhance clarity, although they
are not needed for a single statement loop.

Writes an additional line break at the end of the list
of accepted applicants.
CFScript example 131

ArraySort(applicants.rejected,"text","asc");
WriteOutput("The following applicants were rejected:<hr>");

Sorts rejectedApplicants array alphabetically and
writes a heading.

for (j=1;j lte ArrayLen(applicants.rejected);j=j+1)
{
 applicant=applicants.rejected[j];
 WriteOutput(applicant & "
");

Loops through the rejected applicants.

Sets the applicant variable to the applicant name.
This makes the code clearer and enables you to
easily reference the rejectCode array later in the
block.

Writes the applicant name.

if (StructKeyExists(rejectCode,applicant))
{
 switch(rejectcode[applicant])
 {
 case "score":
 WriteOutput("Reject reason: Score was too low.
");
 break;
 case "late":
 WriteOutput("Reject reason: Application was

late.
");
 break;
 default:
 WriteOutput("Rejected with invalid reason code.
");
 } //end switch
} //end if

Checks the rejectCode structure for a rejection
code for the applicant.

If a code exists, enters a switch statement that
examines the rejection code value.

If the rejection code value matches one of the
known codes, displays an expanded explanation of
the meaning. Otherwise (the default case), displays
an indication that the rejection code is not valid.

Comments at the end of blocks help clarify the
control flow.

else
{
WriteOutput("Reject reason was not defined.
");

{

If there is no entry for the applicant in the
rejectCode structure, displays a message indicating
that the reason was not defined.

WriteOutput("
");
} //end for
</cfscript>

Displays a blank line after each rejected applicant.

Ends the for loop that handles each rejected
applicant.

Ends the CFScript.

Code Description
132 Chapter 6 Extending ColdFusion Pages with CFML Scripting

CHAPTER 7

Using Regular Expressions in

Functions
Regular expressions let you perform string matching operations using ColdFusion
functions. This chapter describes how regular expressions work with the following
functions:
• REFind
• REFindNoCase
• REReplace
• REReplaceNoCase

This chapter does not apply to regular expressions used in the cfinput and cftextinput
tags. These tags use JavaScript regular expressions, which have a slightly different syntax
than ColdFusion regular expressions. For information on JavaScript regular expressions,
see Chapter 27, “Building Dynamic Forms” on page 607.

Contents

• About regular expressions .. 134

• Regular expression syntax .. 136

• Using backreferences.. 144

• Returning matched subexpressions .. 147

• Regular expression examples .. 152

• Types of regular expression technologies .. 154
133

About regular expressions
In traditional string matching, as used by the ColdFusion Find and Replace functions,
you provide the string pattern to search for and the string to search. The following
example searches a string for the pattern " BIG " and returns a string index if found. The
string index is the location in the search string where the string pattern begins.

<cfset IndexOfOccurrence=Find(" BIG ", "Some BIG string")>
<!--- The value of IndexOfOccurrence is 5 --->

You must provide the exact string pattern to match. If the exact pattern is not found, Find
returns an index of 0. Because you must specify the exact string pattern to match,
matches for dynamic data can be very difficult, if not impossible, to construct.

The next example uses a regular expression to perform the same search. This example
searches for the first occurrence in the search string of any string pattern that consists
entirely of uppercase letters enclosed by spaces:

<cfset IndexOfOccurrence=REFind(" [A-Z]+ ", "Some BIG string")>
<!--- The value of IndexOfOccurrence is 5 --->

The regular expression " [A-Z]+ " matches any string pattern consisting of a leading
space, followed by any number of uppercase letters, followed by a trailing space.
Therefore, this regular expression matches the string " BIG " and any string of uppercase
letters enclosed in spaces.

By default, the matching of regular expressions is case sensitive. You can use the
case-insensitive functions, REFindNoCase and REReplaceNoCase, for case-insensitive
matching.

Because you often process large amounts of dynamic textual data, regular expressions are
invaluable in writing complex ColdFusion applications.

Using ColdFusion regular expression functions
ColdFusion supplies four functions that work with regular expressions:
• REFind
• REFindNoCase
• REReplace
• REReplaceNoCase

REFind and REFindNoCase use a regular expression to search a string for a pattern and
return the string index where it finds the pattern. For example, the following function
returns the index of the first instance of the string " BIG ":

<cfset IndexOfOccurrence=REFind(" BIG ", "Some BIG BIG string")>
<!--- The value of IndexOfOccurrence is 5 --->

To find the next occurrence of the string " BIG ", you must call the REFind function a
second time. For an example of iterating over a search string to find all occurrences of the
regular expression, see “Returning matched subexpressions” on page 147.

REReplace and REReplaceNoCase use regular expressions to search through a string and
replace the string pattern that matches the regular expression with another string. You
can use these functions to replace the first match, or to replace all matches.
134 Chapter 7 Using Regular Expressions in Functions

For detailed descriptions of the ColdFusion functions that use regular expressions, see
CFML Reference.

Basic regular expression syntax
The simplest regular expression contains only a literal characters. The literal characters
must match exactly the text being searched. For example, you can use the regular
expression function REFind to find the string pattern " BIG ", just as you can with the
Find function:

<cfset IndexOfOccurrence=REFind(" BIG ", "Some BIG string")>
<!--- The value of IndexOfOccurrence is 5 --->

In this example, REFind must match the exact string pattern " BIG ".

To use the full power of regular expressions, combine literal characters with character sets
and special characters, as in the following example:

<cfset IndexOfOccurrence=REFind(" [A-Z]+ ", "Some BIG string")>
<!--- The value of IndexOfOccurrence is 5 --->

The literal characters of the regular expression consists of the space characters at the
beginning and end of the regular expression. The character set consists of that part of the
regular expression in square brackets. This character set specifies to find a single
uppercase letter from A to Z, inclusive. The plus sign (+) after the square brackets is a
special character specifying to find one or more occurrences of the character set.

If you removed the + from the regular expression in the previous example, " [A-Z] "
matches a literal space, followed by any single uppercase letter, followed by a single space.
This regular expression matches " B " but not " BIG ". The REFind function returns 0 for
the regular expression, meaning that it did not find a match.

You can construct very complicated regular expressions containing literal characters,
character sets, and special characters. Like any programming language, the more you
work with regular expressions, the more you can accomplish with them. The examples in
this section are fairly basic. For more examples, see “Regular expression examples” on
page 152.
About regular expressions 135

Regular expression syntax
This section describes the basic rules for creating regular expressions.

Using character sets
The pattern within the square brackets of a regular expression defines a character set that
is used to match a single character. For example, the regular expression " [A-Za-z] "
specifies to match any single uppercase or lowercase letter enclosed by spaces. In the
character set, a hyphen indicates a range of characters.

The regular expression " B[IAU]G " matches the strings “ BIG “, “ BAG “, and “ BUG “,
but does not match the string " BOG ".

If you specified the regular expression as " B[IA][GN] ", the concatenation of character
sets creates a regular expression that matches the corresponding concatenation of
characters in the search string. This regular expression matches a space, followed by “B”,
followed by an “I” or “A”, followed by a “G” or “N”, followed by a trailing space. The
regular expression matches “ BIG ”, “ BAG ”, “BIN ”, and “BAN ”.

The regular expression [A-Z][a-z]* matches any word that starts with an uppercase letter
and is followed by zero or more lowercase letters. The special character * after the closing
square bracket specifies to match zero or more occurrences of the character set.

Note: The * only applies to the character set that immediately precedes it, not to the entire
regular expression.

A + after the closing square bracket specifies to find one or more occurrences of the
character set. You interpret the regular expression " [A-Z]+ " as matching one or more
uppercase letters enclosed by spaces. Therefore, this regular expression matches " BIG "
and also matches “ LARGE ”, “ HUGE ”, “ ENORMOUS ”, and any other string of
uppercase letters surrounded by spaces.

Considerations when using special characters

Since a regular expression followed by an * can match zero instances of the regular
expression, it can also match the empty string. For example,

<cfoutput>REReplace("Hello","[T]*","7","ALL") -
#REReplace("Hello","[T]*","7","ALL")#

</cfoutput>

results in the following output:

REReplace("Hello","[T]*","7","ALL") - 7H7e7l7l7o

The regular expression [T]* can match empty strings. It first matches the empty string
before “H” in “Hello”. The “ALL” argument tells REReplace to replace all instances of an
expression. The empty string before “e” is matched and so on until the empty string
before “o” is matched.

This result might be unexpected. The workarounds for these types of problems are
specific to each case. In some cases you can use [T]+, which requires at least one “T”,
instead of [T]*. Alternatively, you can specify an additional pattern after [T]*.
136 Chapter 7 Using Regular Expressions in Functions

In the following examples the regular expression has a “W” at the end:

<cfoutput>REReplace("Hello World","[T]*W","7","ALL") –
#REReplace("Hello World","[T]*W","7","ALL")#
</cfoutput>

This expression results in the following more predictable output:

REReplace("Hello World","[T]*W","7","ALL") - Hello 7orld

You must be aware of two other consideration when using special characters:
• If you want to include a hyphen, -, in the square brackets of a character set as a literal

character, you cannot escape it as you can other special characters because
ColdFusion always interprets a hyphen as a range indicator. Therefore, if you use a
literal hyphen in a character set, make it the last character in the set.

• If you want to include] (closing square bracket) in the square brackets of a character
set it must be the first character. Otherwise, it does not work even if you use \]. The
following example shows this:
<!--- Want to replace closing square bracket and all a's with * --->
<cfset strSearch = "[Test message]">
<!--- Next line does not work since] is not the FIRST character

within [] --->
<cfset re = "[a\]]">
<cfoutput>REReplace(#strSearch#,#re#,"*","ALL") -

#REReplace(strSearch,re,"*","ALL")#

Neither ']' nor 'a' was replaced because we searched for 'a'
followed by ']'

</cfoutput>
<!--- Next line works since] is the FIRST character within [] --->
<cfset re = "[]a]">
<cfoutput>REReplace(#strSearch#,#re#,"*","ALL") -

#REReplace(strSearch,re,"*","ALL")#

Both 'a' and ']' were Replaced with *
</cfoutput>

Finding repeating characters
In some cases, you might want to find a repeating pattern of characters in a search string.
For example, the regular expression "a{2,4}" specifies to match two to four occurrences of
“a”. Therefore, it would match: "aa", "aaa", "aaaa", but not "a" or "aaaaa". In the
following example, the REFind function returns an index of 6:

<cfset IndexOfOccurrence=REFind("a{2,4}", "hahahaaahaaaahaaaaahhh")>
<!--- The value of IndexOfOccurrence is 6--->

The regular expression "[0-9]{3,}" specifies to match any integer number containing
three or more digits: “123”, “45678”, etc. However, this regular expression does not
match a one-digit or two-digit number.

You use the following syntax to find repeating characters:
• {m,n}

Where m is 0 or greater and n is greater than or equal to m. Match m through n
(inclusive) occurrences.

The expression {0,1} is equivalent to the special character ?.
Regular expression syntax 137

• {m,}
Where m is 0 or greater. Match at least m occurrences. The syntax {,n} is not
allowed.

The expression {1,} is equivalent to the special character +, and {0,} is equivalent to *.

• {m}
Where m is 0 or greater. Match exactly m occurrences.

Case sensitivity in regular expressions
ColdFusion supplies case-sensitive and case-insensitive functions for working with
regular expressions. REFind and REReplace perform case-sensitive matching and
REFindNoCase and REReplaceNoCase perform case-insensitive matching.

You can build a regular expression that models case-insensitive behavior, even when used
with a case-sensitive function. To make a regular expression case insensitive, substitute
individual characters with character sets. For example, the regular expression
[Jj][Aa][Vv][Aa], when used with the case-sensitive functions REFind or REReplace,
matches all of the following string patterns:
• JAVA
• java
• Java
• jAva
• All other combinations of case

Using subexpressions
Parentheses group parts of regular expressions together into grouped subexpressions that
you can treat as a single unit. For example, the regular expression "ha" specifies to match
a single occurrence of the string. The regular expression "(ha)+" matches one or more
instances of “ha”.

In the following example, you use the regular expression "B(ha)+" to match the letter "B"
followed by one or more occurrences of the string "ha":

<cfset IndexOfOccurrence=REFind("B(ha)+", "hahaBhahahaha")>
<!--- The value of IndexOfOccurrence is 5 --->

You can use the special character | in a subexpression to create a logical "OR". You can
use the following regular expression to search for the word "jelly" or "jellies":

<cfset IndexOfOccurrence=REFind("jell(y|ies)", "I like peanut butter and jelly">
<!--- The value of IndexOfOccurrence is 26--->

Using special characters
Regular expressions define the following list of special characters:

+ * ? . [^ $ () { | \

In some cases, you use a special character as a literal character. For example, if you want
to search for the plus sign in a string, you have to escape the plus sign by preceding it
with a backslash:

"\+"
138 Chapter 7 Using Regular Expressions in Functions

The following table describes the special characters for regular expressions:

Special
Character Description

\ A backslash followed by any special character matches the literal character
itself, that is, the backslash escapes the special character.

For example, "\+" matches the plus sign, and "\\" matches a backslash.

. A period matches any character, including newline.

To match any character except a newline, use [^#chr(13)##chr(10)#], which
excludes the ASCII carriage return and line feed codes. The corresponding
escape codes are \r and \n.

[] A one-character character set that matches any of the characters in that set.

For example, "[akm]" matches an “a”, “k”, or “m”. A hyphen in a character set
indicates a range of characters; for example, [a-z] matches any single
lowercase letter.

If the first character of a character set is the caret (^), the regular expression
matches any character except those in the set. It does not match the empty
string.

For example, [^akm] matches any character except “a”, “k”, or “m”. The caret
loses its special meaning if it is not the first character of the set.

^ If the caret is at the beginning of a regular expression, the matched string must
be at the beginning of the string being searched.

For example, the regular expression "^ColdFusion" matches the string
"ColdFusion lets you use regular expressions" but not the string "In
ColdFusion, you can use regular expressions."

$ If the dollar sign is at the end of a regular expression, the matched string must
be at the end of the string being searched.

For example, the regular expression "ColdFusion$" matches the string "I like
ColdFusion" but not the string "ColdFusion is fun."

? A character set or subexpression followed by a question mark matches zero or
one occurrences of the character set or subexpression.

For example, xy?z matches either “xyz” or “xz”.

| The OR character allows a choice between two regular expressions.

For example, jell(y|ies) matches either “jelly” or “jellies”.

+ A character set or subexpression followed by a plus sign matches one or more
occurrences of the character set or subexpression.

For example, [a-z]+ matches one or more lowercase characters.

* A character set or subexpression followed by an asterisk matches zero or more
occurrences of the character set or subexpression.

For example, [a-z]* matches zero or more lowercase characters.

() Parentheses group parts of a regular expression into subexpressions that you
can treat as a single unit.

For example, (ha)+ matches one or more instances of “ha”.
Regular expression syntax 139

(?x) If at the beginning of a regular expression, it specifies to ignore whitespace in
the regular expression and lets you use ## for end-of-line comments. You can
match a space by escaping it with a backslash.

For example, the following regular expression includes comments, preceded
by ##, that are ignored by ColdFusion:

reFind("(?x)
one ##first option
|two ##second option
|three\ point\ five ## note escaped spaces
", "three point five")

(?m) If at the beginning of a regular expression, it specifies the multiline mode for the
special characters ^ and $.

When used with ^, the matched string can be at the start of the of entire search
string or at the start of new lines, denoted by a linefeed character or chr(10),
within the search string. For $, the matched string can be at the end the search
string or at the end of new lines.

Multiline mode does not recognize a carriage return, or chr(13), as a new line
character.

The following example searches for the string “two” across multiple lines:

#reFind("(?m)^two", "one#chr(10)#two")#
This example returns 4 to indicate that it matched “two” after the chr(10)
linefeed. Without (?m), the regular expression would not match anything,
because ^ only matches the start of the string.

The character (?m) does not affect \A or \Z, which always match the start or
end of the string, respectively. For information on \A and \Z, see “Using escape
sequences” on page 141.

(?i) If at the beginning of a regular expression for REFind(), it specifies to perform a
case-insensitive compare.

For example, the following line would return an index of 1:

#reFind("(?i)hi", "HI")#
If you omit the (?i), the line would return an index of zero to signify that it did not
find the regular expression.

Special
Character Description
140 Chapter 7 Using Regular Expressions in Functions

Using escape sequences
Escape sequences are special characters in regular expressions preceded by a backslash (\).
You typically use escape sequences to represent special characters within a regular
expression. For example, the escape sequence \t represents a tab character within the
regular expression, and the \d escape sequence specifies any digit, similar to [0-9]. In
ColdFusion the escape sequences are case-sensitive.

(?=...) If at the beginning of a regular expression, it specifies to use positive lookahead
when searching for the regular expression.

Positive lookahead tests for the parenthesized subexpression like regular
parenthesis, but does not include the contents in the match - it merely tests to
see if it is there in proximity to the rest of the expression.

For example, consider the expression to extract the protocol from a URL:

<cfset regex = "http(?=://)">
<cfset string = "http://">
<cfset result = reFind(regex, string, 1, "yes")>
mid(string, result.pos[1], result.len[1])

This example results in the string "http". The lookahead parentheses ensure
that the "://" is there, but does not include it in the result. If you did not use
lookahead, the result would include the extraneous "://".

Lookahead parentheses do not capture text, so backreference numbering will
skip over these groups. For more information on backreferencing, see “Using
backreferences” on page 144.

(?!...) If at the beginning of a regular expression, it specifies to use negative
lookahead. Negative is just like positive lookahead, as specified by (?=...),
except that it tests for the absence of a match.

Lookahead parentheses do not capture text, so backreference numbering will
skip over these groups. For more information on backreferencing, see “Using
backreferences” on page 144.

(?:...) If you prefix a subexpression with "?:", ColdFusion performs all operations on
the subexpression except that it will not capture the corresponding text for use
with a back reference.

Special
Character Description
Regular expression syntax 141

The following table lists the escape sequences supported in ColdFusion:

Escape
Sequence Description

\b Specifies a boundary defined by a transition from an alphanumeric character to
a nonalphanumeric character, or from a nonalphanumeric character to an
alphanumeric character.

For example, the string " Big" contains boundary defined by the space
(nonalphanumeric character) and the "B" (alphanumeric character).

The following example uses the \b escape sequence in a regular expression to
locate the string "Big" at the end of the search string and not the fragment
"big" inside the word "ambiguous".

reFindNoCase("\bBig\b", "Don’t be ambiguous about Big.")
<!--- The value of IndexOfOccurrence is 26 --->
When used inside of a character set (e.g. [\b]), it specifies a backspace

\B Specifies a boundary defined by no transition of character type. For example,
two alphanumeric character in a row or two nonalphanumeric character in a
row; opposite of \b.

\A Specifies a beginning of string anchor, much like the ^ special character.

However, unlike ^, you cannot combine \A with (?m) to specify the start of
newlines in the search string.

\Z Specifies an end of string anchor, much like the $ special character.

However, unlike $, you cannot combine \Z with (?m) to specify the end of
newlines in the search string.

\n Newline character

\r Carriage return

\t Tab

\f Form feed

\d Any digit, similar to [0-9]

\D Any nondigit character, similar to [^0-9]

\w Any alphanumeric character, similar to [[:alnum:]]

\W Any nonalphanumeric character, similar to [^[:alnum:]]

\s Any whitespace character including tab, space, newline, carriage return, and
form feed. Similar to [\t\n\r\f].

\S Any nonwhitespace character, similar to [^ \t\n\r\f]

\xdd A hexadecimal representation of character, where d is a hexadecimal digit

\ddd An octal representation of a character, where d is an octal digit, in the form
\000 to \377
142 Chapter 7 Using Regular Expressions in Functions

Using character classes
In character sets within regular expressions, you can include a character class. You enclose
the character class inside square brackets, as the following example shows:

REReplace (“Macromedia Web Site”,”[[:space:]]”,”*”,”ALL”)

This code replaces all the spaces with *, producing this string:

Macromedia*Web*Site

You can combine character classes with other expressions within a character set. For
example, the regular expression [[:space:]123] searches for a space, 1, 2, or 3. The
following example also uses a character class in a regular expression:

<cfset IndexOfOccurrence=REFind("[[:space:]][A-Z]+[[:space:]]",
"Some BIG string")>

<!--- The value of IndexOfOccurrence is 5 --->

The following table shows the character classes that ColdFusion supports:

Character class Matches

:alpha: Matches any letter. Same as [A-Za-z].

:upper: Matches any uppercase letter, including accented uppercase
characters.

:lower: Matches any lowercase letter, including accented lowercase
characters.

:digit: Matches any digit. Same as [0-9] and \d.

:alnum: Matches any alphanumeric character. Same as [A-Za-z0-9] or \w.

:xdigit: Matches any hexadecimal digit. Same as [0-9A-Fa-f].

:blank: Matches space or a tab.

:space: Matches space, tab, new line, line feed, or carriage return. Same as \s.

:print: Matches any printable character.

:punct: Matches any punctuation character, that is, one of ! ‘ # S % & ` () * + , -
. / : ; < = > ? @ [/] ^ _ { | } ~

:graph: Matches any of the characters defined as a printable character except
those defined as part of the space character class.

:cntrl: Matches any character not part of the character classes [:upper:],
[:lower:], [:alpha:], [:digit:], [:punct:], [:graph:], [:print:], or [:xdigit:].
Regular expression syntax 143

Using backreferences
You use parenthesis to group components of a regular expression into subexpressions. For
example, the regular expression "(ha)+" matches one or more occurrences of the string
"ha".

ColdFusion performs an additional operation when using subexpressions; it
automatically saves the characters in the search string matched by a subexpression for
later use within the regular expression. Referencing the saved subexpression text is called
backreferencing.

You can use backreferencing when searching for repeated words in a string, such as “the
the” or “is is”. The following example uses backreferencing to find all repeated words in
the search string and replace them with an asterisk:

REReplace("There is is coffee in the the kitchen",
"[]+([A-Za-z]+)[]+\1"," * ","ALL")

Using this regular expression, ColdFusion detects the two occurrences of "is" as well as
the two occurrences of "the", replaces them with an asterisk enclosed in spaces, and
returns the following string:

There * coffee in * kitchen

You interpret the regular expression []+([A-Za-z]+)[]+\1 as follows:

Use the subexpression ([A-Za-z]+) to search for character strings consisting of one or
more letters, enclosed by by one or more spaces, []+, followed by the same character
string that matched the first subexpression, \1.

You reference the matched characters of a subexpression using a slash followed by a digit
n (\n) where the first subexpression in a regular expression is referenced as \1, the second
as \2, etc. The next section includes an example using multiple backreferences.

Using backreferences in replacement strings
You can use backreferences in the replacement string of both the REReplace and
REReplaceNoCase functions. For example, to replace the first repeated word in a text string
with a single word, use the following syntax:

REReplace("There is is a cat in in the kitchen",
"([A-Za-z]+)[]+\1","\1")

This results in the sentence:

“There is a cat in in the kitchen”

You can use the optional fourth parameter to REReplace, scope, to replace all repeated
words, as in the following code:

REReplace("There is is a cat in in the kitchen",
"([A-Za-z]+)[]+\1","\1","ALL")

This results in the following string:

“There is a cat in the kitchen”
144 Chapter 7 Using Regular Expressions in Functions

The next example uses two backreferences to reverse the order of the words "apples" and
"pairs" in a sentence:

<cfset astring = "apples and pears, apples and pears, apples and pears">
<cfset newString = REReplace("#astring#", "(apples) and (pears)",

"\2 and \1","ALL")>

In this example, you reference the subexpression (apples) as \1 and the subexpression
(pears) as \2. The REReplace function returns the string:

"pears and apples, pears and apples, pears and apples"

Note: To use backreferences in either the search string or the replace string, you must use
parentheses within the regular expression to create the corresponding subexpression.
Otherwise, ColdFusion throws an exception.

Using backreferences to perform case conversions in replacement strings

The REReplace and REReplaceNoCase functions support special characters in replacement
strings to convert replacement characters to uppercase or lowercase. The following table
describes these special characters:

To include a literal \u, or other code, in a replacement string, escape it with another
backslash; for example \\u .

For example, the following statement replaces the uppercase string "HELLO" with a
lowercase "hello". This example uses backreferences to perform the replacement. For
more information on using backreferences, see “Using backreferences in replacement
strings” on page 144.

reReplace("HELLO", "([[:upper:]]*)", "Don't shout\scream \L\1")

The result of this example is the string "Don't shout\scream hello".

Escaping special characters in replacement strings

You use the backslash character, \, to escape backreference and case-conversion characters
in replacement strings. For example, to include a literal "\u" in a replacement string,
escape it, as in "\\u".

Special
character Description

\u Converts the next character to uppercase.

\l Converts the next character to lowercase.

\U Converts all characters to uppercase until encountering \E.

\L Converts all characters to lowercase until encountering \E.

\E End \U or \L.
Using backreferences 145

Omitting subexpressions from backreferences
By default, a set of parentheses will both group the subexpression and capture its matched
text for later referral by backreferences. However, if you insert "?:" as the first characters
of the subexpression, ColdFusion performs all operations on the subexpression except
that it will not capture the corresponding text for use with a back reference.

This is useful when alternating over subexpressions containing differing numbers of
groups would complicate backreference numbering. For example, consider an expression
to insert a "Mr." in between Bonjour|Hi|Hello and Bond, using a nested group for
alternating between Hi & Hello:

<cfset regex = "(Bonjour|H(?:i|ello))(Bond)">
<cfset replaceString = "\1 Mr.\2">
<cfset string = "Hello Bond">
#reReplace(string, regex, replaceString)#

This example returns "Hello Mr. Bond". If you did not prohibit the capturing of the Hi/
Hello group, the \2 backreference would end up referring to that group instead of "
Bond", and the result would be "Hello Mr.ello".
146 Chapter 7 Using Regular Expressions in Functions

Returning matched subexpressions
The REFind and REFindNoCase functions return the location in the search string of the first
match of the regular expression. Even though the search string in the next example
contains two matches of the regular expression, the function only returns the index of the
first:

<cfset IndexOfOccurrence=REFind(" BIG ", "Some BIG BIG string")>
<!--- The value of IndexOfOccurrence is 5 --->

To find all instances of the regular expression, you must call the REFind and REFindNoCase
functions multiple times.

Both the REFind and REFindNoCase functions take an optional third parameter that
specifies the starting index in the search string for the search. By default, the starting
location is index 1, the beginning of the string.

To find the second instance of the regular expression in this example, you call REFind with
a starting index of 8:

<cfset IndexOfOccurrence=REFind(" BIG ", "Some BIG BIG string", 8)>
<!--- The value of IndexOfOccurrence is 9 --->

In this case, the function returns an index of 9, the starting index of the second string "
BIG ".

To find the second occurrence of the string, you must know that the first string occurred
at index 5 and that the string’s length was 5. However, REFind only returns starting index
of the string, not its length. So, you either must know the length of the matched string to
call REFind the second time, or you must use subexpressions in the regular expression.

The REFind and REFindNoCase functions let you get information about matched
subexpressions. If you set these functions’ fourth parameter, ReturnSubExpression, to
True, the functions return a CFML structure with two arrays, pos and len, containing the
positions and lengths of text strings that match the subexpressions of a regular expression,
as the following example shows:

<cfset sLenPos=REFind(" BIG ", "Some BIG BIG string", 1, "True")>
<cfoutput>

<cfdump var="#sLenPos#">
</cfoutput>

The following figure shows the output of the cfdump tag:

Element one of the pos array contains the starting index in the search string of the string
that matched the regular expression. Element one of the len array contains length of the
matched string. For this example, the index of the first " BIG " string is 5 and its length is
also 5. If there are no occurrences of the regular expression, the pos and len arrays each
contain one element with a value of 0.
Returning matched subexpressions 147

You can use the returned information with other string functions, such as mid. The
following example returns that part of the search string matching the regular expression:

<cfset myString="Some BIG BIG string">
<cfset sLenPos=REFind(" BIG ", myString, 1, "True")>
<cfoutput>

#mid(myString, sLenPos.pos[1], sLenPos.len[1])#
</cfoutput>

Each additional element in the pos array contains the position of the first match of each
subexpression in the search string. Each additional element in len contains the length of
the subexpression’s match.

In the previous example, the regular expression " BIG " contained no subexpressions.
Therefore, each array in the structure returned by REFind contains a single element.

After executing the previous example, you can call REFind a second time to find the
second occurrence of the regular expression. This time, you use the information returned
by the first call to make the second:

<cfset newstart = sLenPos.pos[1] + sLenPos.len[1] - 1>
<!--- subtract 1 because you need to start at the first space --->
<cfset sLenPos2=REFind(" BIG ", "Some BIG BIG string", newstart, "True")>
<cfoutput>

<cfdump var="#sLenPos2#">
</cfoutput>

The following figure shows the output of the cfdump tag:

If you include subexpressions in your regular expression, each element of pos and len
after element one contains the position and length of the first occurrence of each
subexpression in the search string.

In the following example, the expression [A-Za-z]+ is a subexpression of a regular
expression. The first match for the expression ([A-Za-z]+)[]+, is “is is”.

<cfset sLenPos=REFind("([A-Za-z]+)[]+\1",
"There is is a cat in in the kitchen", 1, "True")>

<cfoutput>
<cfdump var="#sLenPos#">

</cfoutput>

148 Chapter 7 Using Regular Expressions in Functions

The following figure shows the output of the cfdump tag:

The entries sLenPos.pos[1] and sLenPos.len[1] contain information about the match of
the entire regular expression. The array elements sLenPos.pos[2] and sLenPos.len[2]
contain information about the first subexpression (“is”). Because REFind returns
information on the first regular expression match only, the sLenPos structure does not
contain information about the second match to the regular expression, "in in".

The regular expression in the following example uses two subexpressions. Therefore, each
array in the output structure contains the position and length of the first match of the
entire regular expression, the first match of the first subexpression, and the first match of
the second subexpression.

<cfset sString = "apples and pears, apples and pears, apples and pears">
<cfset regex = "(apples) and (pears)">
<cfset sLenPos = REFind(regex, sString, 1, "True")>
<cfoutput>

<cfdump var="#sLenPos#">
</cfoutput>

The following figure shows the output of the cfdump tag:

For a full discussion of subexpression usage, see the sections on REFind and
REFindNoCase in the ColdFusion Functions chapter in CFML Reference.

Specifying minimal matching
The regular expression quantifiers ?, *, +, {min,} and {min,max} specify a minimum and/
or maximum number of instances of a given expression to match. By default, ColdFusion
locates the greatest number characters in the search string that match the regular
expression. This behavior is called maximal matching.
Returning matched subexpressions 149

For example, you use the regular expression "(.*)" to search the string "one</
b> two". The regular expression "(.*)", matches both of the following:
• one
• one two

By default, ColdFusion always tries to match the regular expression to the largest string
in the search string. The following code shows the results of this example:

<cfset sLenPos=REFind("(.*)", "one two", 1, "True")>
<cfoutput>

<cfdump var="#sLenPos#">
</cfoutput>

The following figure shows the output of the cfdump tag:

Thus, the starting position of the string is 1 and its length is 21, which corresponds to the
largest of the two possible matches.

However, sometimes you might want to override this default behavior to find the shortest
string that matches the regular expression. ColdFusion includes minimal-matching
quantifiers that let you specify to match on the smallest string. The following table
describes these expressions:

If you modify the previous example to use the minimal-matching syntax, the code is as
follows:

<cfset sLenPos=REFind("(.*?)", "one two", 1, "True")>
<cfoutput>

<cfdump var="#sLenPos#">
</cfoutput>

Expression Description

*? minimal-matching version of *

+? minimal-matching version of +

?? minimal-matching version of ?

{min,}? minimal-matching version of {min,}

{min,max}? minimal-matching version of {min,max}

{n}? (no different from {n}, supported for notational consistency)
150 Chapter 7 Using Regular Expressions in Functions

The following figure shows the output of the cfdump tag:

Thus, the length of the string found by the regular expression is 10, corresponding to the
string "one".
Returning matched subexpressions 151

Regular expression examples
The following examples show some regular expressions and describe what they match:

Regular expressions in CFML
The following examples of CFML show some common uses of regular expression
functions:

Expression Description

[\?&]value= A URL parameter value in a URL.

[A-Z]:(\\[A-Z0-9_]+)+ An uppercase DOS/Windows path in
which (a) is not the root of a drive, and
(b) has only letters, numbers, and
underscores in its text.

[A-Za-z][A-Za-z0-9_]* A ColdFusion variable with no
qualifier.

([A-Za-z][A-Za-z0-9_]*)(\.[A-Za-z][A-Za-z0-9_]*)? A ColdFusion variable with no more
than one qualifier; for example,
Form.VarName, but not
Form.Image.VarName.

(\+|-)?[1-9][0-9]* An integer that does not begin with a
zero and has an optional sign.

(\+|-)?[1-9][0-9]*(\.[0-9]*)? A real number.

(\+|-)?[1-9]\.[0-9]*E(\+|-)?[0-9]+ A real number in engineering notation.

a{2,4} Two to four occurrences of “a”: aa,
aaa, aaaa.

(ba){3,} At least three “ba” pairs: bababa,
babababa, and so on.

Expression Returns

REReplace (CGI.Query_String, "CFID=[0-9]+[&]*", "") The query string with parameter
CFID and its numeric value
stripped out.

REReplace(“I Love Jellies”, ”[[:lower:]]”,”x”,”ALL” I Lxxx Jxxxxxx

REReplaceNoCase(“cabaret”,”[A-Z]”, ”G”,”ALL”) GGGGGGG

REReplace (Report,"\$[0-9,]*\.[0-9]*","$***.**")", "") The string value of the variable
Report with all positive numbers
in the dollar format changed to
"$***.**".

REFind ("[Uu]\.?[Ss]\.?[Aa}\.?", Report) The position in the variable
Report of the first occurrence of
the abbreviation USA. The letters
can be in either case and the
abbreviation can have a period
after any letter.
152 Chapter 7 Using Regular Expressions in Functions

REFindNoCase("a+c","ABCAACCDD") 4

REReplace("There is is coffee in the the kitchen",
"([A-Za-z]+)[]+\1","*","ALL")

There * coffee in * kitchen

REReplace(report, "<[^>]*>", "", "All") Removes all HTML tags from a
string value of the report variable.

Expression Returns
Regular expression examples 153

Types of regular expression technologies
Many types of regular expression technologies are available to programmers. JavaScript,
Perl, and POSIX are all examples of different regular expression technologies. Each
technology has its own syntax specifications and is not necessarily compatible with other
technologies.

ColdFusion supports regular expressions that are Perl compliant with a few exceptions:
• A period, ., always matches newlines
• In replacement strings, use \n instead of $n for backreference variables. ColdFusion

escapes all $ in the replacement string.
• You do not have to escape backslashes in replacement strings. ColdFusion escapes

them, with the exception of case conversion sequences or escaped versions (e.g. \u or
\\u).

• Embedded modifiers ((?i), etc.) always affect the entire expression, even if they are
inside a group.

• \Q and the combinations \u\L and \l\U are not supported in replacement strings.

The following Perl statements are not supported:
• Lookbehind (?<=) (<?!)
• \x{hhhh}
• \N
• \p
• \C

An excellent reference on regular expressions is Mastering Regular Expressions, by Jeffrey E.
F. Friedl, O'Reilly & Associates, Inc., 1997, ISBN: 1-56592-257-3, available at http://
www.oreilly.com.
154 Chapter 7 Using Regular Expressions in Functions

PART II

Reusing CFML Code
This part describes techniques for reusing code in ColdFusion pages.
These techniques let you write your code once and use it, without copying
it, in many places. These techniques include the cfinclude tag, user-defined
functions, custom tags, ColdFusion components, and ColdFusion
Extension (CFX) tags.

The following chapters are included:

Reusing Code in ColdFusion Pages...157

Writing and Calling User-Defined Functions ... 167

Creating and Using Custom CFML Tags..197

Building and Using ColdFusion Components ...217

Building Custom CFXAPI Tags ..243

CHAPTER 8

Reusing Code in ColdFusion Pages
This chapter describes techniques for reusing code in ColdFusion pages. These
techniques let you write your code once and use it, without copying it, in many places.
This chapter describes the techniques and their features, and provides advice on selecting
among the techniques.

Contents

• About reusable CFML elements... 158

• Including pages with the cfinclude tag ... 158

• Calling user-defined functions ... 161

• Using custom CFML tags.. 162

• Using CFX tags ... 164

• Using ColdFusion components.. 165

• Selecting among ColdFusion code reuse methods .. 166
157

About reusable CFML elements
ColdFusion provides you with several types of reusable elements, sections of code that
you can create once and use multiple times in an application. Many of these elements
also let you extend the built-in capabilities of ColdFusion. ColdFusion provides the
following reusable CFML elements:
• ColdFusion pages you include using the cfinclude tag
• User-defined functions (UDFs)
• Custom CFML tags
• CFX (ColdFusion Extension) tags
• ColdFusion components

The following sections describe the features of each of these elements and provide
guidelines for determining which of these tools to use in your application. Other chapters
describe the tools in detail. The last section in this chapter includes a table that helps you
chose among these techniques for different purposes.

ColdFusion can also use elements developed using other technologies, including the
following:
• JSP tags from JSP tag libraries

For information on using JSP tags, see Chapter 32, “Integrating J2EE and Java
Elements in CFML Applications” on page 759.

• Java objects, including objects in the Java runtime environment and JavaBeans
For information on using Java objects, see Chapter 32, “Integrating J2EE and Java
Elements in CFML Applications” on page 759.

• Microsoft COM (Component Object Model) objects
For information on using COM objects, see Chapter 33, “Integrating COM and
CORBA Objects in CFML Applications” on page 785.

• CORBA (Common Object Request Broker Architecture) objects
For information on using CORBA objects, see Chapter 33, “Integrating COM and
CORBA Objects in CFML Applications” on page 785.

• Web services
For information on using web services, see Chapter 31, “Using Web Services” on
page 729

Including pages with the cfinclude tag
The cfinclude tag adds the contents of a ColdFusion page to another ColdFusion page,
as if the code on the included page were part of the page that uses the cfinclude tag. It
lets you pursue a “write once use multiple times” strategy for ColdFusion elements that
you incorporate in multiple pages. Instead of copying and maintaining the same code on
multiple pages, you can store the code in one page and then refer to it in many pages. For
example, the cfinclude tag is commonly used to put a header and footer on multiple
pages. This way, if you change the header or footer design, you only change the contents
of a single file.
158 Chapter 8 Reusing Code in ColdFusion Pages

The model of an included page is that it is part of your page; it just resides in a separate
file. The cfinclude tag cannot pass parameters to the included page, but the included
page has access to all the variables on the page that includes it. The following figure
shows this model:

Using the cfinclude tag
When you use the cfinclude tag to include one ColdFusion page in another ColdFusion
page, the page that includes another page is referred to as the calling page. When
ColdFusion encounters a cfinclude tag it replaces the tag on the calling page with the
output from processing the included page. The included page can also set variables in the
calling page.

The following line shows a sample cfinclude tag:

<cfinclude template = "header.cfm">

Note: You cannot break CFML code blocks across pages. For example, if you open a
cfoutput block in a ColdFusion page, you must close the block on the same page; you
cannot include the closing portion of the block in an included page.

ColdFusion searches for included files as follows:
• The template attribute specifies a path relative to the directory of the calling page.
• If the template value is prefixed with a forward slash (/), ColdFusion searches for the

included file in directories that you specify on the Mappings page of the ColdFusion
Administrator.

Caution: A page must not include itself. Doing so causes an infinite processing loop, and
you must stop the ColdFusion Server to resolve the problem.

To include code in a calling page:

1 Create a ColdFusion page named header.cfm that displays your company’s logo. Your
page can consist of just the following lines, or it can include many lines to define an
entire header:

(For this code to work, you must also put your company’s logo as a GIF file in the
same directory as the header.cfm file.)
Including pages with the cfinclude tag 159

2 Create a ColdFusion page with the following content:
<html>
<head>

<title>Test for Include</title>
</head>
<body>

<cfinclude template="header.cfm">
</body>
</html>

3 Save the file as includeheader.cfm and view it in a browser.

The header should appear along with the logo.

Recommended uses
Consider using the cfinclude tag in the following cases:
• For page headers and footers
• To divide a large page into multiple logical chunks that are easier to understand and

manage
• For large “snippets” of code that are used in many places but do not require

parameters or fit into the model of a function or tag
160 Chapter 8 Reusing Code in ColdFusion Pages

Calling user-defined functions
User-defined functions (UDFs) let you create application elements in a format in which
you pass in arguments and get a return a value. You can define UDFs using CFScript or
the cffunction tag. The two techniques have several differences, of which the following
are the most important:
• If you use the cffunction tag, your function can include CFML tags.
• If you write your function using CFScript, you cannot include CFML tags.

You use UDFs in your application pages as you use standard ColdFusion functions. You
can create a function for an algorithm or procedure that you use frequently, and then use
the function wherever you need the procedure.

As with custom tags, you can easily distribute UDFs to others. For example, the
Common Function Library Project at http://www.cflib.org is an open-source collection
of CFML user-defined functions.

Calling UDFs
To call a UDF, use it as you would a ColdFusion built-in function. For example, the
following line calls the function MyFunct and passes it two arguments:

<cfset returnValue=MyFunct(Arg1, Arg2)>

Recommended uses
Typical uses of UDFs include, but are not limited to, the following:
• Data manipulation routines, such as a function to reverse an array
• String and date and time routines, such as a function to determine whether a string is

a valid IP address
• Mathematical calculation routines, including standard trigonometric and statistical

operations or calculating loan amortization
• Routines that call functions externally, for example using COM or CORBA, such as

routines to determine the space available on a Windows file system drive

Consider using UDFs in the following circumstances:
• You must pass in a number of arguments, process the results, and return a value.

UDFs can return complex values, including structures that contain multiple simple
values.

• You want to provide logical units, such as data manipulation functions.
• Your code must be recursive.
• You distribute your code to others.

If you can create either a UDF or a custom CFML tag for a particular purpose, first
consider creating a UDF because invoking it requires less system overhead than using a
custom tag.

For more information
For more information on user-defined functions, see Chapter 9, “Writing and Calling
User-Defined Functions” on page 167.
Calling user-defined functions 161

Using custom CFML tags
Custom tags written in CFML behave like ColdFusion tags. They can do all of the
following:
• Take arguments.
• Have tag bodies with beginning and ending tags.
• Can do specific processing when ColdFusion encounters the beginning tag.
• Can do processing that is different from the begging tag processing when ColdFusion

encounters the ending tag.
• Have any valid ColdFusion page content in their bodies, including both ColdFusion

built-in tags and custom tags (referred to as nested tags), or even JSP tags or
JavaScript.

• Be called recursively; that is, a custom tag can, if designed properly, call itself in the
tag body.

• Return values to the calling page in a common scope or the calling page’s Variables
scope, but custom tags do not return values directly, the way functions do.

Although a custom tag and a ColdFusion page that you include using the cfinclude tag
are both ColdFusion pages, they differ in how they are processed. When a page calls a
custom tag, it hands processing off to the custom tag page and waits until the custom tag
page completes. When the custom tag finishes, it returns processing (and possibly data)
to the calling page; the calling page can then complete its processing. The following
figure shows how this works. The arrows indicate the flow of ColdFusion processing the
pages.

Calling custom CFML tags
Unlike built-in tags, you can invoke custom CFML tags in the following three ways:
• Call a tag directly.
• Call a tag using the cfmodule tag.
• Use the cfimport tag to import a custom tag library directory.
162 Chapter 8 Reusing Code in ColdFusion Pages

To call a CFML custom tag directly, precede the file name with cf_, omit the .cfm
extension, and put the name in angle brackets (<>). For example, use the following line
to call the custom tag defined by the file mytag.cfm:

<cf_myTag>

If your tag takes a body, end it with the same tag name preceded with a forward slash (/),
as follows:

</cf_myTag>

For information on using the cfmodule and cfimport tags to call custom CFML tags, see
Chapter 10, “Creating and Using Custom CFML Tags” on page 197.

Recommended uses
ColdFusion custom tags let you abstract complex code and programming logic into
simple units. These tags let you maintain a CFML-like design scheme for your code. You
can easily distribute your custom tags and share tags with others. For example, the
Macromedia ColdFusion Developer’s Exchange includes a library of custom tags that
perform a wide variety of often-complex jobs; see http://devex.macromedia.com/
developer/gallery/index.cfm.

Consider using CFML custom tags in the following circumstances:
• You need a tag-like structure, which has a body and an end tag, with the body

contents changing from invocation to invocation.
• You want to associate specific processing with the beginning tag, the ending tag, or

both tags.
• To use a logical structure in which the tag body uses “child” tags or subtags. This

structure is similar to the cfform tag, which uses subtags for the individual form
fields.

• You do not need a function format in which the calling code uses a direct return
value.

• Your code must be recursive.
• Your functionality is complex.
• To distribute your code in a convenient form to others.

If you can create either a UDF or a custom CFML tag for a purpose, first consider
creating a UDF because invoking it requires less system overhead than using a custom
tag.

For more information
For more information on custom CFML tags, see Chapter 10, “Creating and Using
Custom CFML Tags” on page 197.
Using custom CFML tags 163

Using CFX tags
ColdFusion Extension (CFX) tags are custom tags that you write in Java or C++.
Generally, you create a CFX tag to do something that is not possible in CFML. CFX tags
also let you use existing Java or C++ code in your ColdFusion application. Unlike CFML
custom tags, CFX tags cannot have bodies or ending tags.

CFX tags can return information to the calling page in a page variable or by writing text
to the calling page.

CFX tags can do the following:
• Have any number of custom attributes.
• Create and manipulate ColdFusion queries.
• Dynamically generate HTML to be returned to the client.
• Set variables within the ColdFusion page from which they are called.
• Throw exceptions that result in standard ColdFusion error messages.

Calling CFX tags
To use a CFX tag, precede the class name with cfx_ and put the name in angle brackets.
For example, use the following line to call the CFX tag defined by the MyCFXClass class
and pass it one attribute.

<cfx_MyCFXClass myArgument="arg1">

Recommended uses
CFX tags provide one way of using C++ or Java code. However, you can also create Java
classes and COM objects and access them using the cfobject tag. CFX tags, however,
provide some built-in features that the cfobject tag does not have:
• CFX tags are easier to call in CFML code. You use CFX tags directly in CFML code

as you would any other tag, and you can pass arguments using a standard tag format.
• ColdFusion provides predefined classes for use in your Java or C++ code that facilitate

CFX tag development. These classes include support for request handling, error
reporting, and query management.

You should consider using CFX tags in the following circumstances:
• You already have existing application functionality written in C++ or Java that you

want to incorporate into your ColdFusion application.
• You cannot build the functionality you need using ColdFusion elements.
• You want to provide the new functionality in a tag format, as opposed to using the

cfobject tag to import native Java or COM objects.
• You want use the Java and C++ classes provided by ColdFusion for developing your

CFX code.

For more information
For more information on CFX tags, see Chapter 12, “Building Custom CFXAPI Tags”
on page 243.
164 Chapter 8 Reusing Code in ColdFusion Pages

Using ColdFusion components
Unlike other Coldfusion reusable elements, ColdFusion components encapsulate
multiple, related, functions. A ColdFusion component is essentially a set of related
UDFs and variables, with additional functionality to provide and control access to the
component contents. ColdFusion components can make their data private, so that it is
available to all functions (also called methods) in the component, but not to any
application that uses the component.

ColdFusion components have the following features:
• They are designed to provide related services in a single unit.
• They can provide web services and make them available over the internet.
• They can provide ColdFusion services that Macromedia Flash clients can call directly.
• They have several features that are familiar to object-oriented programmers including

data hiding, inheritance, packages, and introspection.

Creating and using ColdFusion components
Creating and using a component is more complex than creating and using a user-defined
function (UDF). For example, you specify a component and one or more functions. You
can invoke ColdFusion components in many ways, including using the cfinvoke and
cfobject tags. You can also use forms, URLs, and the Flash client-side ActionScript.

To invoke a component method with a cfinvoke tag, use code such as the following:

<cfinvoke component="componentName" method="methodName"
returnVariable="variableName" argumentCollection="argumentStruct">

Recommended uses
Consider using ColdFusion components when doing the following:
• Creating web services. (To create web services in ColdFusion, you must use

components.)
• Creating services that are callable by Flash clients.
• Creating libraries of related functions, particularly if they must share data.
• Using integrated application security mechanisms based on roles and the requestor

location.
• Developing code in an object-oriented manner, in which you use methods on objects

and can create objects that extend the features of existing objects.

For more information
For more information on using ColdFusion components, see Chapter 11, “Building and
Using ColdFusion Components” on page 217.
Using ColdFusion components 165

Selecting among ColdFusion code reuse methods
The following table lists common reasons to employ code reuse methods and indicates
the techniques to consider for each purpose. The letter P indicates that the method is
preferred. (There can be more than one preferred method.) The letter A means that the
method provides an alternative that might be useful in some circumstances.

This table does not include CFX tags. You use CFX tags only when you should code your
functionality in C++ or Java. For more information about using CFX tags, see “Using
CFX tags” on page 164.

Purpose
cfinclude
tag

Custom
tag UDF Component

Provide code, including CFML, HTML, and
static text, that must be used in multiple
pages.

P

Deploy headers and footers. P

Include one page in another page. P

Divide pages into smaller units. P

Use variables from a calling page. A P P

Implement code that uses recursion. P P P

Distribute your code to others. P P P

Operate on a body of HTML or CFML text. P

Use subtags. P

Provide a computation, data manipulation,
or other procedure.

A P

Provide a single functional element that
takes any number of input values and
returns a (possibly complex) result.

A P

Use variables, whose variable names might
change from use to use.

A P P

Provide accessibility from Flash clients. A A P

Use built-in user security features. A P

Encapsulate multiple related functions and
properties.

P

Create web services. P

Implement object-oriented coding
methodologies.

P

166 Chapter 8 Reusing Code in ColdFusion Pages

CHAPTER 9

Writing and Calling User-Defined

Functions
This chapter describes how to create and call user-defined functions (UDFs).

Contents

• About user-defined functions... 168

• Calling user-defined functions ... 169

• Creating user-defined functions ... 169

• Calling functions and using variables ... 180

• A User-defined function example... 182

• Using UDFs effectively .. 184
167

About user-defined functions
You can create user-defined functions, or UDFs (also known as custom functions), and
use them in your application pages as you do standard ColdFusion functions. This lets
you create a function for an algorithm or procedure that you use frequently, and then use
the function wherever you need the procedure. If you must change the procedure, you
change only one piece of code. You can use your function anywhere that you can use a
ColdFusion expression: in tag attributes, between pound (#) signs in output, and in
CFScript code. Typical uses of UDFs include, but are not limited to the following:
• Data manipulation routines, such as a function to reverse an array
• String and date/time routines, such as a function to determine whether a string is a

valid IP address
• Mathematical calculation routines, including standard trigonometric and statistical

operations or calculating loan amortization
• Routines that call functions externally, for example using COM or CORBA,

including routines to determine the space available on a Windows file system drive

For information about selecting among User-defined functions, custom tags, and
ColdFusion components, see Chapter 8, “Reusing Code in ColdFusion Pages” on
page 157.

Note: The Common Function Library Project at http://www.cflib.org is an open source
collection of CFML user-defined functions.

To use a user-defined function, you define the function and then call it. Typically you
define the function on your ColdFusion page or a page that you include. You can also
define the function on one page and put it in a scope that is shared with the page that
calls it. (For more information on UDF scoping, see “Specifying the scope of a function”
on page 184.) You can also put commonly used functions on a single ColdFusion page
and include it in your Application.cfm page.
168 Chapter 9 Writing and Calling User-Defined Functions

Calling user-defined functions
You can call a UDF in two ways:
• With unnamed, positional arguments, as you would call a built-in function
• With named arguments, as you would use attributes in a tag

You can use either technique for any function. However, if you use named arguments,
you must use the same argument names to call the function as you use to define the
function. You cannot call a function with a mixture of named and unnamed arguments.
For more information on calling functions with and without argument names, see
“Calling functions and using variables” on page 180.

One example of a user-defined function is a TotalInterest function that calculates loan
payments based on a principal amount, annual percentage, and loan duration in months
(For this function’s definition, see “A User-defined function example” on page 182). You
might call the function without argument names on a form’s action page, as follows:

<cfoutput>
Interest: #TotalInterest(Form.Principal, Form.Percent, Form.Months)#
</cfoutput>

You might call the function with argument names, as follows:

<cfoutput>
Interest: #TotalInterest(principal=Form.Principal, annualPercent=Form.Percent,

months=Form.Months)#
</cfoutput>

Creating user-defined functions
You can use tags or CFScript to create a UDF. Each technique has advantages and
disadvantages.

Creating functions using CFScript
You use the function statement to define the function in CFScript. CFScript function
definitions have the following features and limitations:
• The function definition syntax is familiar to anyone who uses JavaScript or most

programming languages.
• CFScript is efficient for writing business logic, such as expressions and conditional

operations.
• CFScript function definitions cannot include CFML tags.

The following is a CFScript definition for a function that returns a power of 2:

<cfscript>
function twoPower(exponent)
{

return 2^exponent;
}
</cfscript>

For more information on how to use CFScript to define a function, see “Defining
functions in CFScript” on page 174.
Calling user-defined functions 169

Creating functions using tags
You use the cffunction tag to define a UDF in CFML. The cffunction tag syntax has the
following features and limitations:
• Developers who have a background in CFML or HTML, but no scripting or

programming experience will be more familiar with the syntax.
• You can include any ColdFusion tag in your function definition. Therefore, you can

create a function, for example, that accesses a database.
• You can embed CFScript code inside the function definition.
• The cffunction tag provides attributes that enable you to easily limit the execution of

the tag to authorized users or specify how the function can be accessed.

The following code uses the cffunction tag to define the exponentiation function:

<cffunction name="twoPower" output=True>
<cfargument name="exponent">
<cfreturn 2^exponent>

</cffunction>

For more information on how to use the cffunction tag to define a function, see
“Defining functions using the cffunction tag” on page 177.

Rules for function definitions
The following rules apply to functions that you define using CFScript or the cffunction
tag:
• The function name must be unique. It must be different from any existing variable,

UDF, or built-in function name.
• The function name must not start with the letters cf in any form. (For example,

CF_MyFunction cfmyFunction, and cfxMyFunction are not valid UDF names.)
• You cannot redefine or overload a function. If a function definition is active,

ColdFusion generates an error if you define a second function with the same name.
• You cannot nest function definitions; that is, you cannot define one function inside

another function definition.
• The function can be recursive, that is, the function definition body can call the

function.
• The function does not have to return a value.

You can define a function in the following places:
• On the page where it is called. You can even define it below the place on the page

where it is called, but this poor coding practice can result in confusing code.
• On a page that you include using a cfinclude tag. The cfinclude tag must be

executed before the function gets called. For example, you can define all your
application’s functions on a single page and place a cfinclude tag at the top of pages
that use the functions.

• On any page that puts the function name in a scope common with the page on which
you call the function.

• On the Application.cfm page.
170 Chapter 9 Writing and Calling User-Defined Functions

For recommendations on selecting where you define functions, see the sections “Using
Application.cfm and function include files” on page 184 and “Specifying the scope of a
function” on page 184.

About the Arguments scope

All function arguments exist in their own scope, the Arguments scope.

The Arguments scope exists for the life of a function call. When the function returns, the
scope and its variables are destroyed.

However, destroying the Argument scope does not destroy variables, such as structures or
query objects, that ColdFusion passes to the function by reference. The variables on the
calling page that you use as function arguments continue to exist; if the function changes
the argument value, the variable in the calling page reflects the changed value.

The Arguments scope is special, in that you can treat the scope as either an array or a
structure. This dual nature of the Arguments scope is useful because it makes it easy to
use arguments in any of the following circumstances:
• You define the function using CFScript.
• You define the function using the cffunction tag.
• You pass arguments using argument name=value format.
• You pass arguments as values only.
• The function takes optional, undeclared arguments.

The following sections describe the general rules for using the Arguments scope as an
array and a structure. For more information on using the Arguments scope in functions
defined using CFScript, see “Using the Arguments scope in CFScript” on page 176. For
more information on using the Arguments scope in functions defined using the
cffunction tag, see “Using the Arguments scope in cffunction definitions” on page 179.

The contents of the Arguments scope

The following rules apply to the Arguments scope and its contents:
• The scope contains all the arguments passed into a function.
• If you use cffunction to define the function, the scope always contains an entry "slot"

for each declared argument, even if you do not pass the argument to the function
when you call it. If you do not pass a declared (optional) argument, the scope entry
for that argument is empty.
When you call a function that you defined using CFScript, you must pass the
function a value for each argument declared in the function definition. Therefore, the
Arguments scope for a CFScript call does not have empty slots.

The following example shows these rules. Assume that you have a function declared, as
follows:

<cffunction name="TestFunction">
<cfargument name="Arg1" >
<cfargument name="Arg2">

</cffunction>

You can call this function with a single argument, as in the following line:

<cfset TestFunction(1)>
Creating user-defined functions 171

The resulting Arguments scope looks like the following:

In this example, the following functions return the value 2 because there are two defined
arguments:

ArrayLen(Arguments)
StructCount(Arguments)

However, the following tests return the value False, because the contents of the second
element in the Arguments scope is undefined.

Isdefined("Arguments.Arg2")

testArg2 = Arguments[2]>
Isdefined("testArg2")

Note: The IsDefined function does not test the existence of array elements. To test whether
an array index contains data, copy the array element to a simple variable and use the
IsDefined function to test the existence of the copy.

Using the Arguments scope as an array

The following rules apply to referencing Arguments scope as an array:
• If you call the function using unnamed arguments, the array index is the position of

the argument in the function call.
• If you use names to pass the arguments, the array indexes correspond to the order in

which the arguments are declared in the function definition.
• If you use names to pass arguments, and do not pass all the arguments defined in the

function, the Arguments array has an empty entry at the index corresponding to the
argument that was not passed. This rule applies only to functions created using the
cffunction tag.

• If you use a name to pass an optional argument that is not declared in the function
definition, the array index of the argument is the sum of the following:
a The number of arguments defined with names in the function.

b The position of the optional argument among the arguments passed in that do
not have names defined in the function.

However, using argument names in this manner is not good programming practice
because you cannot ensure that you always use the same optional argument names
when calling the function.

To demonstrate these rules, define a simple function that displays the contents of its
Arguments array and call the function with various argument combinations, as shown in
the following example:

<cffunction name="TestFunction" >
<cfargument name="Arg1">
<cfargument name="Arg2">

As an array As a structure

Entry Value Entry Value

1 1 Arg1 1

2 undefined Arg2 undefined
172 Chapter 9 Writing and Calling User-Defined Functions

<cfloop index="i" from="1" to="#ArrayLen(Arguments)#">
<cfoutput>Argument #i#: #Arguments[i]#
</cfoutput>

</cfloop>
</cffunction>

One Unnamed argument

<cfset TestFunction(1)>
Two Unnamed arguments

<cfset TestFunction(1, 2)>
Three Unnamed arguments

<cfset TestFunction(1, 2, 3)>
Arg1:

<cfset TestFunction(Arg1=8)>
Arg2:

<cfset TestFunction(Arg2=9)>
Arg1=8, Arg2=9:

<cfset TestFunction(Arg1=8, Arg2=9)>
Arg2=6, Arg1=7

<cfset TestFunction(Arg2=6, Arg1=7)>
Arg1=8, Arg2=9, Arg3=10:

<cfset TestFunction(Arg1=8, Arg2=9, Arg3=10)>
Arg2=6, Arg3=99, Arg1=7

<cfset TestFunction(Arg2=6, Arg3=99, Arg1=7)>

Note: Although you can use the Arguments scope as an array, the IsArray(Arguments)
function always returns false and the cfdump tag displays the scope as a structure.

Using the Arguments scope as a structure

The following rule applies when referencing Arguments scope as a structure:
• Use the argument names as structure keys. For example, if your function definition

includes a Principal argument, refer to the argument as Arguments.Principal.

The following rules are also true, but avoid writing code that uses them. To ensure program
clarity, only use the Arguments structure for arguments that you name in the function
definition. Use the Arguments scope as an array for optional arguments that you do not
declare in the function definition.
• If the function can take unnamed optional arguments, use an index number as the

key to reference the argument in the structure. For example, if the function
declaration includes two named arguments and you call the function with three
arguments, refer to the third argument as Arguments.3.

Note: The IsDefined function always returns false when you reference an unnamed
optional arguments using structure notation. For example, IsDefined(Arguments.3) for
the function described in the preceding paragraph always returns false.

• If you do not name an optional argument in the function definition, but do use a
name for it in the function call, use the name specified in the function call For
example, if you have an unnamed optional argument and call the function using the
name myOptArg for the argument, you can refer to the argument as
Arguments.myOptArg in the function body. This usage, however, is poor
programming practice, as it makes the function definition contents depend on
variable names in the code that calls the function.
Creating user-defined functions 173

Function-only variables

In addition to the Arguments scope, each function can have a number of variables that
exist only inside the function, and are not saved between times the function gets called.
As soon as the function exits, all the variables in this scope are removed.

In CFScript, you create function-only variables with the var statement. Unlike other
variables, you never prefix function-only variables with a scope name.

For more information on using function-only variables, see “Using function-only
variables” on page 181.

Good argument naming practice

An argument’s name should represent its use. For example, the following code is unlikely
to result in confusion:

<cfscript>
function SumN(Addend1,Addend2)
{ return Addend1 + Addend2; }

</cfscript>
<cfset x = 10>
<cfset y = 12>
<cfoutput>#SumN(x,y)#<cfoutput>

The following, similar code is more likely to result in programming errors:

<cfscript>
function SumN(x,y)
{ return x + y; }

</cfscript>
<cfset x = 10>
<cfset y = 12>
<cfoutput>#SumN(x,y)#<cfoutput>

Defining functions in CFScript
You define functions using CFScript in a manner similar to defining JavaScript
functions. You can define multiple functions in a single CFScript block.

Note: For more information on using CFScript, see Chapter 6, “Extending ColdFusion
Pages with CFML Scripting” on page 115.

CFScript function definition syntax

A CFScript function definition has the following syntax.

function functionName([argName1[, argName2...]])
{

CFScript Statements
}

174 Chapter 9 Writing and Calling User-Defined Functions

The following table describes the function variables:

The body of the function definition must consist of one or more valid CFScript
statements. The body must be in curly braces, even if it is a single statement.

The following two statements are allowed only in function definitions:

A simple CFScript example

The following example function adds the two arguments and returns the result:

<cfscript>
function Sum(a,b)
{

var sum = a + b;
return sum;

Function variable Description

functionName The name of the function. You cannot use the name of a standard
ColdFusion function or any name that starts with “cf”. You cannot
use the same name for two different function definitions. Function
names cannot include periods.

argName1... Names of the arguments required by the function. The number of
arguments passed into the function must equal or exceed the
number of arguments in the parentheses at the start of the function
definition. If the calling page omits any of the required arguments,
ColdFusion generates a mismatched argument count error.

Statement Description

var variableName = expression; Creates and initializes a variable that is local to the
function (function variable). This variable has meaning
only inside the function and is not saved between calls to
the function. It has precedence in the function body over
any variables with the same name that exist in any other
scopes. You never prefix a function variable with a scope
identifier, and the name cannot include periods. The initial
value of the variable is the result of evaluating the
expression. The expression can be any valid ColdFusion
expression, including a constant or even another UDF.

All var statements must be at the top of the function
declaration, before any other statements. You must
initialize all variables when you declare them. You cannot
use the same name for a function variable and an
argument.

Each var statement can initialize only one variable.

You should use the var statement to initialize all
function-only variables, including loop counters and
temporary variables.

return expression; Evaluates expression (which can be a variable), returns its
value to the page that called the function, and exits the
function. You can return any ColdFusion variable type.
Creating user-defined functions 175

}
</cfscript>

In this example, a single line declares the function variable and uses an expression to set it
to the value to be returned. This function can be simplified so that it does not use a
function variable, as follows:

function MySum(a,b) {Return a + b;}

You must always use curly braces around the function definition body, even if it is a
single statement.

Using the Arguments scope in CFScript

A function can have optional arguments that you do not have to specify when you call
the function. To determine the number of arguments passed to the function, use the
following function:

ArrayLen(Arguments)

When you define a function using CFScript, the function must use the Arguments scope
to retrieve the optional arguments. For example, the following SumN function adds two
or more numbers together. It requires two arguments and supports any number of
additional optional arguments. You can refer to the first two, required, arguments as Arg1
and Arg2 or as Arguments[1] and Arguments[2]. You must refer to the third, fourth, and
any additional optional arguments as Arguments[3], Arguments[4], and so on.

function SumN(Arg1,Arg2)
{

var arg_count = ArrayLen(Arguments);
var sum = 0;
var i = 0;
for(i = 1 ; i LTE arg_count; i = i + 1)
{

sum = sum + Arguments[i];
}
return sum;

}

With this function, any of the following function calls are valid:

SumN(Value1, Value2)
SumN(Value1, Value2, Value3)
SumN(Value1, Value2, Value3, Value4)

and so on.

The code never uses the Arg1 and Arg2 argument variables directly, because their values
are always the first two elements in the Arguments array and it is simpler to step through
the array. Specifying Arg1 and Arg2 in the function definition ensures that ColdFusion
generates an error if you pass the function one or no arguments.

Note: Avoid referring to a required argument in the body of a function by both the argument
name and its place in the Arguments scope array or structure, as this can be confusing and
makes it easier to introduce errors.

For more information on the Arguments scope, see “About the Arguments scope” on
page 171.
176 Chapter 9 Writing and Calling User-Defined Functions

Defining functions using the cffunction tag
The cffunction and cfargument tags let you define functions in CFML without using
CFScript.

Note: This chapter describes how to use the cffunction tag to define a function that is not
part of a ColdFusion component. For information on ColdFusion components, see Chapter
11, “Building and Using ColdFusion Components” on page 217. For more information on the
cffunction tag, see CFML Reference.

The cffunction tag function definition format

A cffunction tag function definition has the following format:

<cffunction name="functionName" [returnType="type" roles="roleList"
access="accessType" output="Boolean"]>

<cfargument name="argumentName" [Type="type" required="Boolean"
default="defaultValue">]

.

.
Function body code
.
.
<cfreturn expression>

</cffunction>

where square brackets ([]) indicate optional arguments. You can have any number of
cfargument tags.

The cffunction tag specifies the name you use when you call the function. You can
optionally specify other function characteristics, as described in the following table:

Attribute Description

name The function name.

returnType (Optional) The type of data that the function returns. The valid standard
type names are: any, array, binary, boolean, date, guid, numeric, query,
string, struct, uuid, variableName and void. If you specify any other name
ColdFusion requires the argument to be a ColdFusion component with that
name.

ColdFusion throws an error if you specify this attribute and the function tries
to return data with a type that ColdFusion cannot automatically convert to
the one you specified. For example, if the function returns the result of a
numeric calculation, a returnType attribute of string or numeric is valid, but
array is not.
Creating user-defined functions 177

You must use cfargument tags for required function arguments and named optional
arguments. All cfargument tags must precede any other CFML code in cffunction tag
body. Therefore, put the cfargument tags immediately following the cffunction opening
tag. The cfargument tag takes the following attributes:

roles (Optional) A comma-delimited list of security roles that can invoke this
method. If you omit this attribute, ColdFusion does not restrict user access
to the function.

If you use this attribute, the function executes only if the current user is
logged in using the cfloginuser tag and is a member of one or more of the
roles specified in the attribute. Otherwise, ColdFusion throws an
unauthorized access exception. For more information on user security, see
Chapter 16, “Securing Applications” on page 347.

output (Optional) Determines how ColdFusion processes displayable output in the
function body.

If you do not specify this option, ColdFusion treats the body of the function
as normal CFML. As a result, text and the result of any cfoutput tags in the
function definition body are displayed each time the function executes.

If you specify True or "yes", the body of the function is processed as if it
were in a cfoutput tag. ColdFusion displays variable values and expression
results if you surround the variables and expressions with pound signs.

If you specify False or "no" the function is processed as if it were in a
cfsilent tag. The function does not display any output. The code that calls
the function is responsible for displaying any function results.

Attribute Description

name The argument name.

type (Optional) The data type of the argument. The type of data that is passed to the
function. The valid standard type names are any, array, binary, boolean, date,
guid, numeric, query, string, struct, uuid, and variableName. If you specify any
other name, ColdFusion requires the argument to be a ColdFusion component
with that name.

ColdFusion throws an error if you specify this attribute and the function is called
with data of a type that ColdFusion cannot automatically convert to the one you
specified. For example, if the argument type attribute is numeric, you cannot
call the function with an array.

required (Optional) A Boolean value specifying whether the argument is required, If set
to True and the argument is omitted from the function call, ColdFusion throws
an error. The default if False.

Because you do not identify arguments when you call a function, all cfargument
tags that specify required arguments must precede any cfargument tags that
specify optional arguments in the cffunction definition.

default (Optional) The default value for an optional argument if no argument value is
passed.

If you specify this attribute, an error occurs if you specify this attribute and set
the required attribute to True.

Attribute Description
178 Chapter 9 Writing and Calling User-Defined Functions

Note: The cfargument tag is not required for optional arguments. This feature is useful if a
functions can take an indeterminate number of arguments. If you do not use the cfargument
tag for an optional argument, reference it using its position in the Arguments scope array. For
more information see “Using the Arguments scope as an array” on page 172.

Using a CFML tag in a user-defined function

The most important advantage of using the cffunction tag over defining a function in
CFScript is that you can include CFML tags in the function. Thus, UDFs can
encapsulate activities, such as database lookups, that require ColdFusion tags. Also, you
can use the cfoutput tag to display output on the calling page with minimal coding.

The following example function looks up and returns an employee’s department ID. It
takes one argument, the employee ID, and looks up the corresponding department ID in
the CompanyInfo Employee table:

<cffunction name="getDeptID" >
<cfargument name="empID" required="true" type="numeric">
<cfquery dataSource="CompanyInfo" name="deptID">

SELECT Dept_ID
FROM Employee
WHERE Emp_ID = #empID#

</cfquery>
<cfreturn deptID.Dept_ID>

</cffunction>

Note: The cfquery tag automatically puts the query result in the Variables scope, so you
cannot limit its result to the This scope.

Using the Arguments scope in cffunction definitions

When you define a function using the cffunction tag, you generally refer to the
arguments directly by name if all arguments are named in the cfargument tags. If you do
use the Arguments scope identifier, follow the rules listed in “About the Arguments
scope” on page 171.
Creating user-defined functions 179

Calling functions and using variables
You can call a function anywhere that you can use an expression, including in pound
signs (#) in a cfoutput tag, in a CFScript, or in a tag attribute value. One function can
call another function, and you can use a function as an argument to another function.

You call user-defined functions the same way you call any built-in ColdFusion functions.

Passing arguments
ColdFusion passes the following data types to the function by value:
• Integers
• Real numbers
• Strings (including lists)
• Date-time objects
• Arrays

As a result, any changes that you make in the function to these arguments do not affect
the variable that was used to call the function, even if the calling code is on the same
ColdFusion page as the function definition.

ColdFusion passes queries, structures, and external objects such as COM objects into the
function by reference. As a result, any changes to these arguments in the function also
change the value of the variable in the calling code.

For an example of the effects of passing arguments, see “Passing complex data” on page
189.

Referencing caller variables
A function can use and change any variable that is available in the calling page, including
variables in the caller’s Variables (local) scope, as if the function was part of the calling
page. For example, if you know that the calling page has a local variable called
Customer_name (and there is no function scope variable named Customer_name) the
function can read and change the variable by referring to it as Customer_name or (using
better coding practice) Variables.Customer_name. Similarly, you can create a local
variable inside a function and then refer to it anywhere in the calling page after the
function call. You cannot refer to the variable before you call the function.

However, you should generally avoid using the caller’s variables directly inside a function.
Using the caller’s variables creates a dependency on the caller. You must always ensure
that the code outside the function uses the same variable names as the function. This can
become difficult if you call the function from many pages.

You can avoid these problems by using only the function arguments and the return value
to pass data between the caller and the function. Do not reference calling page variables
directly in the function. As a result, you can use the function anywhere in an application
(or even in multiple applications), without concern for the calling code’s variables.
180 Chapter 9 Writing and Calling User-Defined Functions

As with many programming practice, there are valid exceptions to this recommendation.
For example you might do any of the following:
• Use a shared scope variable, such as an Application or Session scope counter variable.
• Use the Request scope to store variables used in the function, as shown in “Using the

Request scope for static variables and constants” on page 186.).
• Create context-specific functions that work directly with caller data if you always

synchronize variable names.

Note: If your function must directly change a simple variable in the caller (one that is not
passed to the function by reference), you can place the variable inside a structure argument.

Using function-only variables
Make sure to use the var statement in CFScript UDFs to declare all function-specific
variables, such as loop indexes and temporary variables that are required only for the
duration of the function call. Doing this ensures that these variables are available inside
the function only, and makes sure that the variable names do not conflict with the names
of variables in other scopes. If the calling page has variables of the same name, the two
variables are independent and do not affect each other.

For example, if a ColdFusion page has a cfloop tag with an index variable i, and the tag
body calls a CFScript UDF that also has a loop with a function-only index variable i, the
UDF does not change the value of the calling page loop index, and the calling page does
not change the UDF index. so you can safely call the function inside the cfloop tag body.

In general, use the var statement to declare all UDF variables, other than the function
arguments or shared-scope variables, that you use only inside CFScript functions. Use
another scope, however, if the value of the variable must persist between function calls;
for example, for a counter that the function increments each time it is called.

Using arguments
Function arguments can have the same names, but different values, as variables in the
caller. Avoid such uses for clarity, however.

The following rules apply to argument persistence:
• Because simple variable and array arguments are passed by value, their names and

values exist only while the function executes.
• Because structures, queries, and objects such as COM objects are passed by reference,

the argument name exists only while the function executes, but the underlying data
persists after the function returns and can be accessed by using the caller’s variable
name. The caller’s variable name and the argument name can, and should, be
different.

Note: If a function must use a variable from another scope that has the same name as a
function-only variable, prefix the external variable with its scope identifier, such as Variables
or Form. (However, remember that using variables from other scopes directly in your code is
often poor practice.)
Calling functions and using variables 181

A User-defined function example
The following simple function takes a principal amount, an annual percentage rate, and a
loan duration in months and returns the total amount of interest to be paid over the
period. You can optionally use the percent sign for the percentage rate, and include the
dollar sign and comma separators for the principal amount.

You could use the TotalInterest function in a cfoutput tag of a form’s action page as
follows:

<cfoutput>
Loan amount: #Form.Principal#

Annual percentage rate: #Form.AnnualPercent#

Loan duration: #Form.Months# months

TOTAL INTEREST: #TotalInterest(Form.Principal, Form.AnnualPercent,

Form.Months)#

</cfoutput>

Defining the function using CFScript
<cfscript>
function TotalInterest(principal, annualPercent, months)
{

Var years = 0;
Var interestRate = 0;
Var totalInterest = 0;
principal = trim(principal);
principal = REReplace(principal,"[\$,]","","ALL");
annualPercent = Replace(annualPercent,"%","","ALL");
interestRate = annualPercent / 100;
years = months / 12;
totalInterest = principal*(((1+ interestRate)^years)-1);
Return DollarFormat(totalInterest);

}
</cfscript>

Reviewing the code

The following table describes the code:

Code Description

function TotalInterest(principal, annualPercent,
months)

{

Starts the TotalInterest function definition. Requires
three variables: the principal amount, the annual
percentage rate, and the loan duration in months.

Var years = 0;
Var interestRate = 0;
Var totalInterest = 0;

Declares intermediate variables used in the function and
initializes them to 0. All var statements must precede the
rest of the function code.
182 Chapter 9 Writing and Calling User-Defined Functions

Defining the function using the cffunction tag
The following code replaces CFScript statements with their equivalent CFML tags.

<cffunction name="TotalInterest">
<cfargument name="principal" required="Yes">
<cfargument name="annualPercent" required="Yes">
<cfargument name="months" required="Yes">
<cfset years = 0>
<cfset interestRate = 0>
<cfset totalInterest = 0>
<cfset principal = trim(principal)>
<cfset principal = REReplace(principal,"[\$,]","","ALL")>
<cfset annualPercent = Replace(annualPercent,"%","","ALL")>
<cfset interestRate = annualPercent / 100>
<cfset years = months / 12>
<cfset totalInterest = principal*

(((1+ interestRate)^years)-1)>
<cfreturn DollarFormat(totalInterest)>

</cffunction>

principal = trim(principal);
principal = REReplace(principal,"[\$,]","","ALL");
annualPercent =

Replace(annualPercent,"%","","ALL");
interestRate = annualPercent / 100;
years = months / 12;

Removes any leading or trailing spaces from the principal
argument. Removes any dollar sign ($) and comma (,)
characters from the principal argument to get a numeric
value.

Removes any percent (%) character from the
annualPercent argument to get a numeric value, then
divides the percentage value by 100 to get the interest rate.

Converts the loan from months to years.

totalInterest = principal*(((1+
interestRate)^years)-1);

Return DollarFormat(totalInterest);
}

Calculates the total amount of interest due. It is possible to
calculate the value in the Return statement, but this
example uses an intermediate totalInterest variable to
make the code easier to read. Returns the result formatted
as a US currency string.

Ends the function definition.

Code Description
A User-defined function example 183

Using UDFs effectively
This section provides information that will help you use user-defined functions more
effectively.

Using Application.cfm and function include files
Consider the following techniques for making your functions available to your
ColdFusion pages:
• If you consistently call a small number of UDFs, consider putting their definitions on

the Application.cfm page.
• If you call UDFs in only a few of your application pages, do not include their

definitions in Application.cfm.
• If you use many UDFs, put their definitions on one or more ColdFusion pages that

contain only UDFs. You can include the UDF definition page in any page that calls
the UDFs.

The next section describes other techniques for making UDFs available to your
ColdFusion pages.

Specifying the scope of a function
User-defined function names are essentially ColdFusion variables. ColdFusion variables
are names for data. Function names are names (references) for segments of CFML code.
Therefore, like variables, functions belong to scopes.

About functions and scopes

Like ColdFusion variables, UDFs exist in a scope:
• When you define a UDF, ColdFusion puts it in the Variables scope.
• You can assign a UDF to a scope the same way you assign a variable to a scope, by

assigning the function to a name in the new scope. For example, the following line
assigns the MyFunc UDF to the Request scope:
<cfset Request.MyFunc = Variables.MyFunc>

You can now use the function from any page in the Request scope by calling
Request.MyFunc.
184 Chapter 9 Writing and Calling User-Defined Functions

Selecting a function scope

The following table describes the advantages and disadvantages of scopes that you might
considering using for your functions:

Using the Request scope

You can effectively manage functions that are used in application pages and custom tags
by doing the following:

1 Define the functions on a function definitions page.

2 On the functions page, assign the functions to the request scope.

3 Use a cfinclude tag to include the function definition page on the application page,
but do not include it on any custom tag pages.

4 Always call the functions using the request scope.

This way you only need to include the functions once per request and they are available
throughout the life of the request. For example, create a myFuncs.cfm page that defines
your functions and assigns them to the Request scope using syntax such as the following:

function MyFunc1(Argument1, Argument2)
{ Function definition goes here }
Request.MyFunc1 = MyFunc1

The application page includes the myFuncs.cfm page:

<cfinclude template="myfuncs.cfm">

Scope Considerations

Application Makes the function available across all invocations of the application.
Unlike with functions defined in Application.cfm or included from other
ColdFusion pages, all pages use the same in-memory copy of the
function. Using an Application scope function can save memory and
the processing required to define a function multiple times. However,
Application scope functions have the following limitations:

• You must lock the code that puts the function name in the
Application scope, but you do not have to lock code that calls the
function.

• Application scope functions can cause processing bottlenecks
because the server can only execute one copy of the function at a
time. All requests that require the function must wait their turn.

Request Makes the function available for the life of the current HTTP request,
including in all custom tags and nested custom tags. This scope is
useful if a function is used in a page and in the custom tags it calls, or in
nested custom tags.

Server Makes the function available to all pages on a single server. In most
cases, this scope is not a good choice because in clustered systems, it
only makes the function available on a single server, and all code that
uses the function must be inside a cflock block.

Session Makes the function available to all pages during the current user
session. This scope has no significant advantages over the Application
scope.
Using UDFs effectively 185

The application page and all custom tags (and nested custom tags) call the functions as
follows:

Request.MyFunc1(Value1, Value2)

Using the Request scope for static variables and constants
This section describes how to partially break the rule described in the section
“Referencing caller variables” on page 180. Here, the function defines variables in the
Request scope. However, it is a specific solution to a specific issue, where the following
circumstances exist:
• Your function initializes a large number of variables.
• The variables have either of the following characteristics:

− They must be static: they are used only in the function, the function can change
their values, and their values must persist from one invocation of the function to
the next.

− They are named constants; that is the variable value never changes.
• Your application page (and any custom tags) calls the function multiple times.
• You can assure that the variable names are used only by the function.

In these circumstances, you can improve efficiency and save processing time by defining
your function’s variables in the Request scope, rather than the Function scope. The
function tests for the Request scope variables and initializes them if they do not exist. In
subsequent calls, the variables exist and the function does not reset them.

The NumberAsString function, written by Ben Forta and available from www.cflib.org,
takes advantage of this technique.

Using function names as function arguments
Because function names are ColdFusion variables, you can pass a function’s name as an
argument to another function. This technique allows a function to use another function
as a component. For example, a calling page can call a calculation function, and pass it
the name of a function that does some subroutine of the overall function.

This way, the calling page could use a single function for different specific calculations,
such as calculating different forms of interest. The initial function provides the
framework, while the function whose name is passed to it can implement a specific
algorithm that is required by the calling page.

The following simple example shows this use. The binop function is a generalized
function that takes the name of a function that performs a specific binary operation and
two operands. The binop function simply calls the specified function and passes it the
operands. This code defines a single operation function, the sum function. A more
complete implementation would define multiple binary operations.

<cfscript>
function binop(operation, operand1, operand2)
{ return (operation(operand1, operand2); }
function sum(addend1, addend2)
{ return addend1 + addend2;}
x = binop(sum, 3, 5);
186 Chapter 9 Writing and Calling User-Defined Functions

writeoutput(x);
</cfscript>

Handling query results using UDFs
When you call a UDF in the body of a tag that has a query attribute, such as a cfloop
query=... tag, any function argument that is a query column name passes a single
element of the column, not the entire column. Therefore, the function must manipulate
a single query element.

For example, the following code defines a function to combine a single first name and
last name to make a full name. It queries the CompanyInfo database to get the first and
last names of all employees, then it uses a cfoutput tag to loop through the query and call
the function on each row in the query.

<cfscript>
function FullName(aFirstName, aLastName)
 { return aFirstName & " " & aLastName; }
</cfscript>

<cfquery name="GetEmployees" datasource="CompanyInfo">
SELECT FirstName, LastName
FROM Employee

</cfquery>

<cfoutput query="GetEmployees">
#FullName(FirstName, LastName)#

</cfoutput>

You generally use functions that manipulate many rows of a query outside tags that loop
over queries. Pass the query to the function and loop over it inside the function. For
example, the following function changes text in a query column to uppercase. It takes a
query name as an argument.

function UCaseColumn(myquery, colName)
{

var currentRow = 1;
for (; currentRow lte myquery.RecordCount;

currentRow = currentRow + 1)
{

myquery[colName][currentRow] =
UCase(myquery[colName][currentRow]);

}
Return "";

}

The following code uses a script that calls the UCaseColumn function to convert all the
last names in the GetEmployees query to uppercase. It then uses cfoutput to loop over
the query and display the contents of the column.

<cfscript>
UCaseColumn(GetEmployees, "LastName");

</cfscript>
<cfoutput query="GetEmployees">

#LastName#

</cfoutput>
Using UDFs effectively 187

Identifying and checking for UDFs
You can use the IsCustomFunction function to determine whether a name represents a
UDF. The IsCustomFunction function generates an error if its argument does not exist. As
a result, you must ensure that the name exists before calling the function, for example, by
calling the IsDefined function. The following code shows this use:

<cfscript>
if(IsDefined("MyFunc"))

if(IsCustomFunction(MyFunc))
WriteOutput("MyFunc is a user-defined function");

else
WriteOutput("Myfunc is defined but is NOT a user-defined function");

else
WriteOutput("MyFunc is not defined");

</cfscript>

You do not surround the argument to IsCustomFunction in quotation marks, so you can
use this function to determine if function arguments are themselves functions.

Using the Evaluate function
If your user-defined function uses the Evaluate function on arguments that contain
strings, you must make sure that all variable names you use as arguments include the
scope identifier. Doing so avoids conflicts with function-only variables.

The following example returns the result of evaluating its argument. It produces the
expected results, the value of the argument, if you pass the argument using its fully
scoped name, Variables.myname. However, the function returns the value of the function
local variable if you pass the argument as myname, without the Variables scope identifier.

<cfscript>
myname = "globalName";
function readname(name)
{

var myname = "localName";
return (Evaluate(name));

}
</cfscript>

<cfoutput>
<!--- This one collides with local variable name --->

The result of calling readname with myname is:
#readname("myname")#

<!--- This one finds the name passed in --->
The result of calling readname with Variables.myname is:

#readname("Variables.myname")#
</cfoutput>
188 Chapter 9 Writing and Calling User-Defined Functions

Passing complex data
Structures, queries, and complex objects such as COM objects are passed to UDFs by
reference, so the function uses the same copy of the data as the caller. Arrays are passed to
user-defined functions by value, so the function gets a new copy of the array data and the
array in the calling page is unchanged by the function. As a result, you must handle arrays
differently from all other complex data types.

Passing structures, queries, and objects

For your function to modify the caller’s copy of a structure, query, or object, you must
pass the variable as an argument. Because the function gets a reference to the caller’s
structure, the caller variable reflects all changes in the function. You do not have to return
the structure to the caller. After the function, returns, the calling page accesses the
changed data by using the structure variable that it passed to the function.

If you do not want a function to modify the caller’s copy of a structure, query, or object,
use the Duplicate function to make a copy and pass the copy to the function.

Passing arrays

If you want your function to modify the caller’s copy of the array, the simplest solution is
to pass the array to the function and return the changed array to the caller in the function
return statement. In the caller, use same variable name in the function argument and
return variable.

The following example shows how to directly pass and return arrays. In this example, the
doubleOneDArray function doubles the value of each element in a one-dimensional array.

<cfscript>
//Initialize some variables
//This creates a simple array.
a=ArrayNew(1);
a[1]=2;
a[2]=22;
//Define the function.
function doubleOneDArray(OneDArray)
{

var i = 0;
for (i = 1; i LE arrayLen(OneDArray); i = i + 1)

{ OneDArray[i] = OneDArray[i] * 2; }
return OneDArray;

}
//Call the function.
a = doubleOneDArray(a);
</cfscript>
<cfdump var="#a#">

This solution is simple, but it is not always optimal:
• This technique requires ColdFusion to copy the entire array twice, once when you

call the function and once when the function returns. This is inefficient for large
arrays and can reduce performance, particularly if the function is called frequently.

• You can use the return value of other purposes, such as a status variable.
Using UDFs effectively 189

If you do not use the return statement to return the array to the caller, you can pass the
array as an element in a structure and change the array values inside the structure. Then
the calling page can access the changed data by using the structure variable it passed to
the UDF.

The following code shows how to rewrite the previous example using an array in a
structure. It returns True as a status indicator to the calling page and uses the structure to
pass the array data back to the calling page.

<cfscript>
//Initialize some variables.
//This creates an simple array as an element in a structure.
arrayStruct=StructNew();
arrayStruct.Array=ArrayNew(1);
arrayStruct.Array[1]=2;
arrayStruct.Array[2]=22;
//Define the function.
function doubleOneDArrayS(OneDArrayStruct)
{

var i = 0;
for (i = 1; i LE arrayLen(OneDArrayStruct.Array); i = i + 1)

{ OneDArrayStruct.Array[i] = OneDArrayStruct.Array[i] * 2; }
return True;

}
//Call the function.
Status = doubleOneDArrayS(arrayStruct);
WriteOutput("Status: " & Status);
</cfscript>
</br>
<cfdump var="#arrayStruct#">

You must use the same structure element name for the array (in this case Array) in the
calling page and the function.

Using recursion
A recursive function is a function that calls itself. Recursive functions are useful when a
problem can be solved by an algorithm that repeats the same operation multiple times
using the results of the preceding repetition. Factorial calculation, used in the following
example, is one case where recursion is useful. The Towers of Hanoi game is also solved
using a recursive algorithm.

A recursive function, like looping code, must have an end condition that always stops the
function. Otherwise, the function will continue until a system error occurs or you stop
the ColdFusion Server.

The following example calculates the factorial of a number, that is, the product of all the
integers from 1 through the number; for example, 4 factorial is 4 X 3 X 2 X 1 = 24.

function Factorial(factor)
{

If (factor LTE 1)
return 1;

else
return factor * Factorial(factor -1);

}

190 Chapter 9 Writing and Calling User-Defined Functions

If the function is called with a number greater than 1, it calls itself using an argument one
less than it received. It multiplies that result by the original argument, and returns the
result. Therefore, the function keeps calling itself until the factor is reduced to 1. The
final recursive call returns 1, and the preceding call returns 2 * 1, and so on until all the
initial call returns the end result.

Caution: If a recursive function calls itself too many times, it causes a stack overflow.
Always test any recursive functions under conditions that are likely to cause the maximum
number of recursions to ensure that they do not cause a stack overflow.

Handling errors in UDFs
This section discusses the following topics:
• Displaying error messages directly in the function
• Returning function status information to the calling page
• Using try/catch or cftry/cfcatch blocks and the cfthrow and cfrethrow tags to

handle and generate exceptions

The technique you use depends on the circumstances of your function and application
and on your preferred programming style. However, most functions should use the
second or third technique, or a combination of the two. The following sections discuss
the uses, advantages, and disadvantages of each technique, and provides examples of their
use.

Displaying error messages

Your function can test for errors and use the WriteOutput function to display an error
message directly to the user. This method is particularly useful for providing immediate
feedback to users for simple input errors. You can use it independently or in conjunction
with either of the other two error-handling methods.

For example, the following variation on a "Hello world" function displays an error
message if you do not enter a name in the form:

<cfform method="POST" action="#CGI.script_name#">
<p>Enter your Name:
<input name="name" type="text" hspace="30" maxlength="30">
<input type="Submit" name="submit" value="OK">

</cfform>
<cfscript>

function HelloFriend(Name)
{

if (Name is "") WriteOutput("You forgot your name!");
else WriteOutput("Hello " & name &"!");
return "";

}
 if (IsDefined("Form.submit")) HelloFriend(Form.name);
</cfscript>
Using UDFs effectively 191

Reviewing the code

The following table describes the code:

Providing status information

In some cases, such as those where the function cannot provide a corrective action, the
function cannot, or should not, handle the error directly. In these cases, your function
can return information to the calling page. The calling page must handle the error
information and act appropriately.

Consider the following mechanisms for providing status information:
• Use the return value to indicate the function status only. The return value can be a

Boolean success/failure indicator. The return value can also be a status code, for
example where 1 indicates success, and various failure types are assigned known
numbers. With this method, the function must set a variable in the caller to the value
of a successful result.

• Set a status variable that is available to the caller (not the return variable) to indicate
success or failure and any information about the failure. With this method, the
function can return the result directly to the caller. In this method, the function
should use only the return value and structure arguments to pass the status back to
the caller.

Each of these methods can have variants, and each has advantages and disadvantages.
Which technique you use should depend on the type of function, the application in
which you use it, and your coding style.

Code Description

<cfform method="POST" action="#CGI.script_name#">
<p>Enter your Name:
<input name="name" type="text" hspace="30"

maxlength="30">
<input type="Submit" name="submit" value="OK">

</cfform>

Creates a simple form requesting you to enter your name.

Uses the script_name CGI variable to post to this page
without specifying a URL.

If you do not enter a name, the form posts an empty string as
the name field.

<cfscript>
function HelloFriend(Name)
{

if (Name is "") WriteOutput("You forgot your
name!");

else WriteOutput("Hello " & name &"!");
return "";

}
if (IsDefined("Form.submit"))

HelloFriend(Form.name);
</cfscript>

Defines a function to display "Hello name!" First, checks
whether the argument is an empty string. If so, displays an
error message.

Otherwise displays the hello message.

Returns the empty string. (The caller does not use the return
value). It is not necessary to use curly braces around the if or
else statement bodies because they are single statements.

If this page has been called by submitting the form, calls the
HelloFriend function. Otherwise, the page just displays the
form.
192 Chapter 9 Writing and Calling User-Defined Functions

The following example, which modifies the function used in “A User-defined function
example” on page 182, uses one version of the status variable method. It provides two
forms of error information:
• It returns -1, instead of an interest value, if it encounters an error. This value can serve

as an error indicator because you never pay negative interest on a loan.
• It also writes an error message to a structure that contains an error description

variable. Because the message is in a structure, it is available to both the calling page
and the function.

The TotalInterest function

After changes to handle errors, the TotalInterest function looks like the following. Code
that is changed from the example in “A User-defined function example” on page 182 is in
bold.

<cfscript>
function TotalInterest(principal, annualPercent, months, status)
{

Var years = 0;
Var interestRate = 0;
Var totalInterest = 0;
principal = trim(principal);
principal = REReplace(principal,"[\$,]","","ALL");
annualPercent = Replace(annualPercent,"%","","ALL");
if ((principal LE 0) OR (annualPercent LE 0) OR (months LE 0))
{

Status.errorMsg = "All values must be greater than 0";
Return -1;

}
interestRate = annualPercent / 100;
years = months / 12;
totalInterest = principal*(((1+ interestRate)^years)-1);
Return DollarFormat(totalInterest);

}
</cfscript>
Using UDFs effectively 193

Reviewing the code

The following table describes the code that has been changed or added to the previous
version of this example. For a description of the initial code, see “A User-defined function
example” on page 182.

Calling the function

The code that calls the function now looks like the following. Code that is changed from
the example in “A User-defined function example” on page 182 is in bold.

<cfset status = StructNew()>
<cfset myInterest = TotalInterest(Form.Principal,

Form.AnnualPercent,Form.Months, status)>
<cfif myInterest EQ -1>

<cfoutput>
ERROR: #status.errorMsg#

</cfoutput>
<cfelse>

<cfoutput>
Loan amount: #Form.Principal#

Annual percentage rate:

#Form.AnnualPercent#

Loan duration: #Form.Months# months

TOTAL INTEREST: #myInterest#

</cfoutput>
</cfif>

Reviewing the code

The following table describes the code that has been changed or added:

Code Description

function TotalInterest(principal,
annualPercent, months, status)

The function now takes an additional argument, a
status structure. Uses a structure for the status
variable so that changes that the function makes
affect the status structure in the caller.

if ((principal LE 0) OR
(annualPercent LE 0) OR
(months LE 0))

{
Status.errorMsg = "All values

must be greater than 0";
Return -1;

}

Checks to make sure the principal, percent rate, and
duration are all greater than zero.

If any is not, sets the errorMsg key (the only key) in the
Status structure to a descriptive string. Also, returns
-1 to the caller and exits the function without
processing further.

Code Description

<cfset status = StructNew()> Creates a structure to hold the function
status.

<cfset myInterest = TotalInterest
(Form.Principal, Form.AnnualPercent,
Form.Months, status)>

Calls the function. This time, the function
requires four arguments, including the
status variable.
194 Chapter 9 Writing and Calling User-Defined Functions

Using exceptions

UDFs written in CFScript can handle exceptions using the try and catch statements.
UDFs written using the cffunction tag can use the cftry, cfcatch, cfthrow, and cfrethrow
tags. Using exceptions corresponds to the way many functions in other programming
languages handle errors, and can be an effective way to handle errors. In particular, it
separates the functional code from the error-handling code, and it can be more efficient
than other methods at runtime, because it does not require testing and branching.

Exceptions in UDFs have the following two dimensions:
• Handling exceptions generated by running the UDF code
• Generating exceptions when the UDF identifies invalid data or other conditions that

would cause errors if processing continued.

Handling exceptions in UDFs

A UDF should use try/catch blocks to handle exceptions in the same conditions that any
other ColdFusion application uses try/catch blocks. These are typically circumstances
where the function uses an external resource, such as a Java, COM, or CORBA object, a
database, or a file. When possible, your application should prevent, rather than catch,
exceptions caused by invalid application data. For example, the application should
prevent users from entering a zero value for a form field that is used to divide another
number, rather than handling exceptions generated by dividing by zero.

When ColdFusion catches an exception, the function can use any of the following
methods to handle the exception:
• If the error is recoverable (for example, if the problem is a database timeout where a

retry might resolve the issue), try to recover from the problem.
• Display a message, as described in “Displaying error messages” on page 191.
• Return an error status, as described in “Providing status information” on page 192.
• If the UDF is defined using the cffunction tag, throw a custom exception, or rethrow

the exception so that it will be caught by the calling ColdFusion page. For more
information on throwing and rethrowing exceptions, see “Handling runtime
exceptions with ColdFusion tags,” in Chapter 14.

<cfif myInterest EQ -1>
<cfoutput>

ERROR: #status.errorMsg#

</cfoutput>

If the function returns -1, there must be an
error. Displays the message that the
function placed in the status.errorMsg
structure key.

<cfelse>
<cfoutput>

Loan amount: #Form.Principal#

Annual percentage rate:

#Form.AnnualPercent#

Loan duration: #Form.Months# months

TOTAL INTEREST: #myInterst#

</cfoutput>
</cfif>

If the function does not return -1, it returns
an interest value. Displays the input values
and the function return value.

Code Description
Using UDFs effectively 195

Generating exceptions in UDFs

If you define your function using the cffunction tag, you can use the cfthrow and
cfrethrow tags to throw errors to the page that called the function. You can use this
technique whenever your UDF identifies an error, instead of displaying a message or
returning an error status. For example, the following code rewrites the example from
“Providing status information” on page 192 to use the cffunction tag and CFML, and to
throw and handle an exception if any of the form values are not positive numbers.

The lines that identify invalid data and throw the exception are in bold. The remaining
lines are equivalent to the CFScript code in the previous example. However, the code that
removes unwanted characters must precede the error checking code.

<cffunction name="TotalInterest">
<cfargument name="principal" required="Yes">
<cfargument name="annualPercent" required="Yes">
<cfargument name="months" required="Yes">
<cfset principal = trim(principal)>
<cfset principal = REReplace(principal,"[\$,]","","ALL")>
<cfset annualPercent = Replace(annualPercent,"%","","ALL")>

<cfif ((principal LE 0) OR (annualPercent LE 0) OR (months LE 0))>
<cfthrow type="InvalidData" message="All values must be greater

than 0.">
</cfif>

<cfset years = 0>
<cfset interestRate = 0>
<cfset totalInterest = 0>
<cfset interestRate = annualPercent / 100>
<cfset years = months / 12>
<cfset totalInterest = principal*

(((1+ interestRate)^years)-1)>
<cfreturn DollarFormat(totalInterest)>

</cffunction>

The code that calls the function and handles the exception looks like the following. The
changed lines are in bold.

<cftry>
<cfset status = StructNew()>
<cfset myInterest = TotalInterest(Form.Principal, Form.AnnualPercent,

Form.Months, status)>
<cfoutput>

Loan amount: #Form.Principal#

Annual percentage rate: #Form.AnnualPercent#

Loan duration: #Form.Months# months

TOTAL INTEREST: #myInterest#

</cfoutput>
<cfcatch type="InvalidData">

<cfoutput>
#cfcatch.message#

</cfoutput>
</cfcatch>
</cftry>
196 Chapter 9 Writing and Calling User-Defined Functions

CHAPTER 10

Creating and Using Custom CFML

Tags
This chapter describes how to create and use custom CFML tags that encapsulate
common code.

Contents

• Creating custom tags ... 198

• Passing data to custom tags .. 202

• Managing custom tags ... 207

• Executing custom tags ... 208

• Nesting custom tags... 212
197

Creating custom tags
Custom tags let you extend CFML by adding your own tags to the ones supplied with
ColdFusion. After you define a custom tag, you can use it on a ColdFusion page just as
you would any of the standard CFML tags, such as cfquery and cfoutput.

You use custom tags to encapsulate your application logic so that it can be referenced
from any ColdFusion page. Custom tags allow for rapid application development and
code reuse while offering off-the-shelf solutions for many programming chores.

For example, you might create a custom tag, named cf_happybirthday, to generate a
birthday message. You could then use that tag in a ColdFusion page, as follows:

<cf_happybirthday name="Ted Cantor" birthDate="December 5, 1987">

When ColdFusion processes the page containing this tag, it could output the message:

December 5, 1987 is Ted Cantor’s Birthday.
Please wish him well.

A custom tag can also have a body and end tag, for example:

<cf_happybirthdayMessge name="Ellen Smith" birthDate="June 8, 1993">
<P> Happy Birthday Ellen!</P>
<P> May you have many more!</P>

</cf_happybirthdayMessge>

This tag could output the message:

June 8, 1993 is Ellen Smith’s Birthday.
Happy Birthday Ellen!
May you have many more!

For more information about using end tags, see “Handling end tags” on page 208.

Creating and calling custom tags
You implement a custom tag with a single ColdFusion page. You then call the custom tag
from a ColdFusion page by inserting the prefix cf_ before the page’s file name. The page
referencing the custom tag is referred to as the calling page.

To create and call a custom tag:

1 Create a ColdFusion page, the custom tag page, that shows the current date:
<cfoutput>#DateFormat(Now())#</cfoutput>

2 Save the file as date.cfm.

3 Create a ColdFusion page, the calling page, with the following content:
<html>
<head>

<title>Date Custom Tag</title>
</head>
<body>

<!--- Call the custom tag defined in date.cfm --->
<cf_date>

</body>
</html>
198 Chapter 10 Creating and Using Custom CFML Tags

4 Save the file as callingdate.cfm.

5 View callingdate.cfm in your browser.

This custom tag returns the current date in the format DD-MMM-YY.

As you can see from this example, creating a custom tag in CFML is no different from
writing any ColdFusion page. You can use all CFML constructs, as well as HTML. You
are free to use any naming convention that fits your development practice. Unique
descriptive names make it easy for you and others to find the right tag.

Note: Although tag names in ColdFusion pages are case-insensitive, custom tag filenames
must be lowercase on UNIX.

Storing custom tag pages

You must store custom tag pages in any one of the following:
• The same directory as the calling page
• The cfusion\CustomTags directory
• A subdirectory of the cfusion\CustomTags directory
• A directory that you specify in the ColdFusion Administrator

To share a custom tag among applications in multiple directories, place it in the
cfusion\CustomTags directory. You can create subdirectories to organize custom tags.
ColdFusion searches recursively for the Custom Tags directory, stepping down through
any existing subdirectories until the custom tag is found.

You might have a situation where you have multiple custom tags with the same name. To
guarantee which tag ColdFusion calls, copy it to the same directory as the calling page.
Or, use the cfmodule tag with the template attribute to specify the absolute path to the
custom tag. For more information on cfmodule, see the next section.

Calling custom tags using the cfmodule tag

You can also use the cfmodule tag to call custom tags if you want to specify the location of
the custom tag page. The cfmodule tag is useful if you are concerned about possible name
conflicts when invoking a custom tag, or if the application must use a variable to
dynamically call a custom tag at runtime.
Creating custom tags 199

You must use either a template or name attribute in the tag, but you cannot use both. The
following table describes the basic cfmodule attributes:

For example, the following code specifies to execute the custom tag defined by the
mytag.cfm page in the parent directory of the calling page:

<cfmodule template="../mytag.cfm">

For more information on using the cfmodule tag, see CFML Reference.

Calling custom tags using the cfimport tag

You can use the cfimport tag to import custom tags from a directory as a tag library. The
following example imports the tags from the directory myCustomTags:

<cfimport prefix="mytags" taglib="myCustomTags">

Once imported, you call the custom tags using the prefix that you set when importing, as
the following example shows:

<mytags:customTagName>

where customTagName corresponds to a ColdFusion application page named
customTagName.cfm. If the tag takes attributes, you include them in the call:

<mytags:custom_tag_name attribute1=val_1 attribute2=val_2>

You can also include end tags when calling your custom tags, as the following example
shows:

<mytags:custom_tag_name attribute1=val_1 attribute2=val_2>

...
</mytags:custom_tag_name>

ColdFusion calls the custom tag page twice for a tag that includes an end tag: once for
the start tag and once for the end tag. For more information on how ColdFusion handles
end tags, and how to write your custom tags to handle them, see “Handling end tags” on
page 208.

Attribute Description

template Required if the name attribute is not used. Same as the template attribute in
cfinclude. This attribute:

• Specifies a path relative to the directory of the calling page.

• If the path value is prefixed with "/", ColdFusion searches directories explicitly
mapped in the ColdFusion Administrator for the included file.

Example: <cfmodule template="../MyTag.cfm"> identifies a custom tag file in
the parent directory.

name Required if the template attribute is not used. Use period-separated names to
uniquely identify a subdirectory under the CustomTags root directory.

Example: <cfmodule name="MyApp.GetUserOptions"> identifies the file
GetUserOptions.cfm in the CustomTags\MyApp directory under the ColdFusion
root directory.

attributes The custom tag's attributes.
200 Chapter 10 Creating and Using Custom CFML Tags

One of the advantages to using the cfimport tag is that you can define a directory
structure for your custom tags to organize them by category. For example, you can put all
security tags in one directory, and all interface tags in another. You then import the tags
from each directory and give them a different prefix:

<cfimport prefix="security" taglib="securityTags">
<cfimport prefix="ui" taglib="uiTags">
...
<security:validateUser name="Bob">
...
<ui:greeting name="Bob">
...

Reading your code becomes easier because you can identify the location of your custom
tags from the prefix.

Securing custom tags
The ColdFusion security framework enables you to selectively restrict access to individual
tag files and tag directories. This can be an important safeguard in team development.
For details, see Administering ColdFusion MX.

Accessing existing custom tags
Before creating a custom tag in CFML, you should review the Custom Tag section of the
ColdFusion Developer Exchange at http://devex.macromedia.com/developer/gallery/
index.cfm. You might find a tag here that does what you want.

Tags are grouped in several broad categories and are downloadable as freeware, shareware,
or commercial software. You can view each tag’s syntax and usage information. The
gallery contains a wealth of background information on custom tags and an online
discussion forum for tag topics.

Tag names with the cf_ preface are CFML custom tags; those with the cfx_ preface are
ColdFusion extensions written in C++. For more information about the CFX tags, see
Chapter 12, “Building Custom CFXAPI Tags” on page 243.

If you do not find a tag that meets your specific needs, you can create your own custom
tags in CFML.
Creating custom tags 201

Passing data to custom tags
To make your custom tags flexible, you will often want to pass data to them for
processing. This section describes how to write custom tags that take tag attributes and
other data as input from a calling page.

Passing values to and from custom tags
Because custom tags are individual ColdFusion pages, variables and other data are not
automatically shared between a custom tag and the calling page. To pass data from the
calling page to the custom tag, you can specify attribute name/value pairs in the custom
tag, just as you do for normal HTML and CFML tags.

For example, to pass the value of the NameYouEntered variable to the cf_getmd tag, you
can call the custom tag as follows:

<cf_getmd Name=#NameYouEntered#>

To pass multiple attributes to a custom tag, separate them with a space in the tag as
follows:

<cf_mytag Firstname="Thadeus" Lastname="Jones">

In the custom tag, you use the Attributes scope to access attributes passed to the tag.
Therefore, in the getmd.cfm page, you refer to the passed attribute as Attributes.Name.
The mytag.cfm custom tag page refers to the passed attributes as Attributes.Firstname
and Attributes.Lastname.

The custom tag page can also access variables set in the calling page by prefixing the
calling page’s local variable with Caller. However, this is not the best way to pass
information to a custom tag, because each calling page would be required to create
variables with the names required by the custom tag. You can create more flexible custom
tags by passing parameters using attributes.

Variables created within a custom tag are deleted when the processing of the tag
terminates. Therefore, if you want to pass information back to the calling page, you must
write that information back to the Caller scope of the calling page. You cannot access the
custom tag’s variables outside the custom tag itself.

For example, use the following code in the getmd.cfm page to set the variable Doctor on
the calling page:

<cfset Caller.Doctor="Doctor " & Attributes.Name>

If the variable Doctor does not exist in the calling page, this statement creates it. If the
variable exists, the custom tag overwrites it.
202 Chapter 10 Creating and Using Custom CFML Tags

The following figure shows the relationship between the variables on the calling page and
the custom tag:

One common technique used by custom tags is for the custom tag to take as input an
attribute containing the name of the variable to use to pass back results. For example, the
calling page passes returnHere as the name of the variable to use to pass back results:

<cf_mytag resultName="returnHere">

In mytag.cfm, the custom tag passes back its results using the following code:

<cfset "Caller.#Attributes.resultName#" = result>

Tip: Be careful not to overwrite variables in the calling page from the custom tag. You
should adopt a naming convention to minimize the chance of overwriting variables. For
example, prefix the returned variable with customtagname_, where customtagname is the
name of the custom tag.

Note: Data pertaining to the HTTP request or to the current application is visible in the
custom tag page. This includes the variables in the Form, Url, Cgi, Request, Cookies, Server,
Application, Session, and Client scopes.

Using tag attributes summary
Custom tag attribute values are passed from the calling page to the custom tag page as
name-value pairs. CFML custom tags support required and optional attributes. Custom
tag attributes conform to the following CFML coding standards:
• ColdFusion passes any attributes in the Attributes scope.
• Use the Attributes.attribute_name syntax when referring to passed attributes to

distinguish them from custom tag page local variables.
• Attributes are case-insensitive.
• Attributes can be listed in any order within a tag.
• Attribute name-value pairs for a tag must be separated by a space in the tag

invocation.
• Passed values that contain spaces must be enclosed in double-quotes.
• Use the cfparam tag with a default attribute at the top of a custom tag to test for and

assign defaults for optional attributes that are passed from a calling page. For
example:
<!--- The value of the variable Attributes.Name comes from the calling page. If

the calling page does not set it, make it “Who". --->
<cfparam name="Attributes.Name" default="Who">

calling page getmd.cfm
Passing data to custom tags 203

• Use the cfparam tag or a cfif tag with an IsDefined function at the top of a custom
tag to test for required attributes that must be passed from a calling page; for
example, the following code issues an abort if the user does not specify the Name
attribute to the custom tag:
<cfif not IsDefined("Attributes.Name")>

<cfabort showError="The Name attribute is required.">
</cfif>

Custom tag example with attributes
The example in this section creates a custom tag that uses an attribute that is passed to it
to set the value of a variable called Doctor on the calling page.

To create a custom tag:

1 Create a new ColdFusion page (the calling page) with the following content:
<html>
<head>

<title>Enter Name</title>
</head>
<body>
<!--- Enter a name, which could also be done in a form --->
<!--- This example simply uses a cfset --->
<cfset NameYouEntered="Smith">

<!--- Display the current name --->
<cfoutput>
Before you leave this page, you're #Variables.NameYouEntered#.

</cfoutput>

<!--- go to the custom tag --->
<cf_getmd Name="#NameYouEntered#">
<!--- Come back from the Custom tag --->

<!--- display the results of the custom tag --->
<cfoutput>
You are now #Variables.Doctor#.

</cfoutput>
</body>
</html>

2 Save the page as callingpage.cfm.

3 Create another new page (the custom tag) with the following content:
<!--- The value of the variable Attributes.Name comes from the calling page. If

the calling page does not set it, make it “Who". --->
<cfparam name="Attributes.Name" default="Who">

<!--- Create a variable called Doctor, make its value "Doctor "
 followed by the value of the variable Attributes.Name.
 Make its scope Caller so it is passed back to the calling page

--->
<cfset Caller.Doctor="Doctor " & Attributes.Name>

4 Save the page as getmd.cfm.
204 Chapter 10 Creating and Using Custom CFML Tags

5 Open the file callingpage.cfm in your browser.

The calling page uses the getmd custom tag and displays the results.

Reviewing the code

The following table describes the code and its function:

Passing custom tag attributes using CFML structures
You can use the reserved attribute attributecollection to pass attributes to custom tags
using a structure. The attributecollection attribute must reference a structure
containing the attribute names as the keys and the attribute values as the values. You can
freely mix attributecollection with other attributes when you call a custom tag.

The key-value pairs in the structure specified by the attributecollection attribute get
copied into the custom tag page’s Attributes scope. This has the same effect as specifying
the attributecollection entries as individual attributes when you call the custom tag.
The custom tag page refers to the attributes passed using attributecollection the same
way as it does other attributes; for example, as Attributes.CustomerName or
Attributes.Department_number.

Note: You can use both tag attributes and attributecollections. If you pass an attribute
with the same name using both methods, ColdFusion passes only the tag attribute to the
custom tag and ignores the corresponding attribute from the attribute collection.

Code Description

<cfset NameYouEntered="Smith"> In the calling page, create a variable NameYouEntered
and assign it the value "Smith."

<cfoutput>
Before you leave this page, you're

#Variables.NameYouEntered#.

</cfoutput>

In the calling page, display the value of the
NameYouEntered variable before calling the custom
tag.

<cf_getmd Name="#NameYouEntered#"> In the calling page, call the getmd custom tag and pass
it the Name attribute whose value is the value of the local
variable NameYouEntered.

<cfparam name="Attributes.Name"
default="Who">

The custom tag page normally gets the Name variable in
the Attributes scope from the calling page. Assign it the
value "Who" if the calling page did not pass an attribute.

<cfset Caller.Doctor="Doctor " &
Attributes.Name>

In the custom tag page, create a variable called Doctor
in the Caller scope so it will exist in the calling page as a
local variable.

Set its value to the concatenation of the string "Doctor"
and the value of the Atributes.Name variable.

<cfoutput>
You are now #Variables.Doctor#.

</cfoutput>

In the calling page, display the value of the Doctor
variable returned by the custom tag page. (This example
uses the Variables scope prefix to emphasize the fact
that the variable is returned as a local variable.)
Passing data to custom tags 205

Custom tag processing reserves the attributecollection attribute to refer to the structure
holding a collection of custom tag attributes. If attributecollection does not refer to
such a collection, ColdFusion generates a template exception.

The following example uses an attributecollection attribute to pass two of four
attributes:

<cfset zort=StructNew()>
<cfset zort.x = "-X-">
<cfset zort.y = "-Y-">
<cf_testtwo a="blab" attributecollection=#zort# foo="16">

If testtwo.cfm contains the following code:

---custom tag ---

<cfoutput>#attributes.a# #attributes.x# #attributes.y#

#attributes.foo#</cfoutput>

--- end custom tag ---

its output is the following statement:

---custom tag ---
blab -X- -Y- 16
--- end custom tag ---

One use for attributecollection is to pass the entire Attributes scope of one custom tag
to another. This often happens when you have one custom tag that calls a second custom
tag and you want to pass all attributes from the first tag to the second.

For example, you call a custom tag with the following code:

<cf_first attr1="foo" attr2="bar">

To pass all the attributes of the first custom tag to the second, you include the following
statement in first.cfm:

<cf_second attributecollection="#attributes#">

Within the body of second.cfm, you reference the parameters passed to it as follows:

<cfoutput>#attributes.attr1#</cfoutput>
<cfoutput>#attributes.attr2#</cfoutput>
206 Chapter 10 Creating and Using Custom CFML Tags

Managing custom tags
If you deploy custom tags in a multideveloper environment or distribute your tags
publicly, you can use the following additional ColdFusion capabilities:
• Advanced security
• Template encoding

Securing custom tags
The ColdFusion security framework enables you to selectively restrict access to individual
tags or to tag directories. This can be an important safeguard in team development. For
more information, see Chapter 16, “Securing Applications” on page 347.

Encoding custom tags
You can use the command-line utility cfencode to encode any ColdFusion application
page. By default, the utility is installed in the cf_root/bin directory. It is especially useful
for securing custom tag code before distributing it.

The cfencode tag uses the following syntax:

cfencode infile outfile [/r /q] [/h "message"] /v"2"

The following table describes the options:

Note: Although it is possible to encode binary files with cfencode, it is not recommended.

Option Description

infile The file you want to encode. The cfencode tag does not process an encoded file.

outfile Path and filename of the output file.

Warning: If you do not specify an output filename, a warning message asks if you
want to continue, and the encoded file will overwrite the source file.

/r Recursive, when used with wildcards, recurses through subdirectories to encode
files.

/q Suppresses warning messages.

/h Header, allows custom header to be written to the top of the encoded file(s).

/v Required parameter that allows encoding using a specified version number. Use
"1" for pages you want to run on ColdFusion 3.x. Use "2" for pages you want to
run strictly on ColdFusion 4.0 and later.
Managing custom tags 207

Executing custom tags
The following sections provide information about executing custom tags, including
information about handling end tags and processing body text.

Accessing tag instance data
When a custom tag page executes, ColdFusion keeps data related to the tag instance in
the thisTag structure. You can access the thisTag structure from within your custom tag
to control processing of the tag. The behavior is similar to the File tag-specific variable
(sometimes called the File scope).

ColdFusion generates the variables in the following table and writes them to the thisTag
structure:

The following example accesses the ExecutionMode variable of the thisTag structure from
within a custom tag:

<cfif thisTag.ExecutionMode is 'start'>

Handling end tags
The examples of custom tags shown so far in this chapter all reference a custom tag using
just a start tag, as in:

<cf_date>

In this case, ColdFusion calls the custom tag page date.cfm to process the tag.

However, you can create custom tags that have both a start and an end tag. For example,
the following tag has both a start and an end tag:

<cf_date>
...

</cf_date>

ColdFusion calls the custom tag page date.cfm twice for a tag that includes an end tag:
once for the start tag and once for the end tag. As part of the date.cfm page, you can
determine if the call is for the start or end tag, and perform the appropriate processing.

Variable Description

ExecutionMode Contains the execution mode of the custom tag. Valid values are
"start", "end", and "inactive".

HasEndTag Distinguishes between custom tags that are called with and without
end tags. Used for code validation. If the user specifies an end tag,
HasEndTag is set to True; otherwise, it is set to False.

GeneratedContent The content that has been generated by the tag. This includes
anything in the body of the tag, including the results of any active
content, such as ColdFusion variables and functions. You can
process this content as a variable.

AssocAttribs Contains the attributes of all nested tags if you use cfassociate to
make them available to the parent tags. For more information, see
“High-level data exchange” on page 213.
208 Chapter 10 Creating and Using Custom CFML Tags

ColdFusion will also call the custom tag page twice if you use the shorthand form of an
end tag:

<cf_date/>

You can also call a custom tag using the cfmodule tag, as shown in the following example:

<cfmodule ...>
...

</cfmodule>

If you specify an end tag to cfmodule, then ColdFusion calls your custom tag as if it had
both a start and an end tag.

Determining if an end tag is specified

You can write a custom tag that requires users to include an end tag. If a tag must have an
end tag provided, you can use thisTag.HasEndTag in the custom tag page to verify that the
user included the end tag.

For example, in date.cfm, you could include the following code to determine whether the
end tag is specified:

<cfif thisTag.HasEndTag is 'False'>
<!--- Abort the tag--->
<cfabort showError="An end tag is required.">

</cfif>

Determining the tag execution mode

The variable thisTag.ExecutionMode contains the mode of invocation of a custom tag
page. The variable has one of the following values:
• Start Mode for processing the start tag.
• End Mode for processing the end tag.
• Inactive Mode when the custom tag uses nested tags. For more information, see

“Nesting custom tags” on page 212.

If an end tag is not explicitly provided, ColdFusion invokes the custom tag page only
once, in Start mode.

A custom tag page named bold.cfm that bolds text could be written as follows:

<cfif thisTag.ExecutionMode is 'start'>
<!--- Start tag processing --->

<cfelse>
<!--- End tag processing --->

</cfif>

You then use this tag to convert text to bold:

<cf_bold>This is bolded text</cf_bold>

You can also use cfswitch to determine the execution mode of a custom tag:

<cfswitch expression=#thisTag.ExecutionMode#>
<cfcase value= 'start'>

<!--- Start tag processing --->
</cfcase>
Executing custom tags 209

<cfcase value='end'>
<!--- End tag processing --->

</cfcase>
</cfswitch>

Considerations when using end tags

How you code your custom tag to divide processing between the start tag and end tag is
greatly dependent on the function of the tag. However, you can use the following rules to
help you make your decisions:
• Use the start tag to validate input attributes, set default values, and validate the

presence of the end tag if it is required by the custom tag.
• Use the end tag to perform the actual processing of the tag, including any body text

passed to the tag between the start and end tags. For more information on body text,
see “Processing body text” on page 210.

• Perform output in either the start or end tag; do not divide it between the two tags.

Processing body text
Body text is any text that you include between the start and end tags when you call a
custom tag; for example:

<cf_happybirthdayMessge name="Ellen Smith" birthDate="June, 8, 1993">
<P> Happy Birthday Ellen!</P>
<P> May you have many more!</P>

</cf_happybirthdayMessge>

In this example, the two lines of code after the start tag are the body text.

You can access the body text within the custom tag using the thisTag.GeneratedContent
variable. The variable contains all body text passed to the tag. You can modify this text
during processing of the tag. The contents of the thisTag.GeneratedContent variable are
returned to the browser as part of the tag’s output.

The thisTag.GeneratedContent variable is always empty during the processing of a start
tag. Any output generated during start tag processing is not considered part of the tag’s
generated content.

A custom tag can access and modify the generated content of any of its instances using
the thisTag.GeneratedContent variable. In this context, the term generated content
means the results of processing the body of a custom tag. This includes all text and
HTML code in the body, the results of evaluating ColdFusion variables, expressions, and
functions, and the results generated by descendant tags. Any changes to the value of this
variable result in changes to the generated content.

As an example, consider a tag that comments out the HTML generated by its
descendants. Its implementation could look like this:

<cfif thisTag.ExecutionMode is 'end'>
<cfset thisTag.GeneratedContent ='<!--#thisTag.GeneratedContent#-->'>

</cfif>
210 Chapter 10 Creating and Using Custom CFML Tags

Terminating tag execution
Within a custom tag, you typically perform error checking and parameter validation. As
part of those checks, you can choose to abort the tag, using cfabort, if a required
attribute is not specified or other severe error is detected.

The cfexit tag also terminates execution of a custom tag. However, the cfexit tag is
designed to give you more flexibility when coding custom tags than cfabort. The cfexit
tag’s method attribute specifies where execution continues. The cfexit tag can specify that
processing continues from the first child of the tag or continues immediately after the
end tag marker.

You can also use the method attribute to specify that the tag body executes again. This
enables custom tags to act as high-level iterators, emulating cfloop behavior.

The following table summarizes cfexit behavior:

Method attribute value Location of cfexit call Behavior

ExitTag (default) Base page Acts like cfabort

ExecutionMode=start Continue after end tag

ExecutionMode=end Continue after end tag

ExitTemplate Base page Acts like cfabort

ExecutionMode=start Continue from first child in body

ExecutionMode=end Continue after end tag

Loop Base page Error

ExecutionMode=start Error

ExecutionMode=end Continue from first child in body
Executing custom tags 211

Nesting custom tags
A custom tag can call other custom tags from within it’s body text, thereby nesting tags.
ColdFusion uses nested tags such as cfgraph and cfgraphdata, cfhttp and cfhttppam, and
cftree and cftreeitem. The ability to nest tags allows you to provide similar
functionality.

The following example shows a cftreeitem tag nested within a cftree tag:

<cftree name="tree1"
required="Yes"
hscroll="No">
<cftreeitem value=fullname

query="engquery"
queryasroot="Yes"
img="folder,document">

</cftree>

The calling tag is known as an ancestor, parent, or base tag, while the tags that ancestor
tags call are known as descendant, child, or sub tags. Together, the ancestor and all
descendant tags are called collaborating tags.

In order to nest tags, the parent tag must have a closing tag.

The following table lists the terms that describe the relationships between nested tags:

You can create multiple levels of nested tags. In this case, the sub tag becomes the base tag
for its own sub tags. Any tag with an end tag present can be an ancestor to another tag.

Nested custom tags operate through three modes of processing, which are exposed to the
base tags through the variable thisTag.ExecutionMode:
• The start mode, in which the base tag is processed for the first time.
• The inactive mode, in which sub tags and other code contained within the base tag

are processed. No processing occurs in the base tag during this phase.
• The end mode, in which the base tag is processed a second time. The end mode

occurs when ColdFusion reaches the custom tag’s end tag.

Passing data between nested custom tags
A key custom tag feature is for collaborating custom tags to exchange complex data
without user intervention, while encapsulating each tag’s implementation so that others
cannot see it.

Calling tag
Tag nested within
the calling tag Description

Ancestor Descendant An ancestor is any tag that contains other tags between
its start and end tags. A descendant is any tag called by
a tag.

Parent Child Parent and child are synonyms for ancestor and
descendant.

Base tag Sub tag A base tag is an ancestor that you explicitly associate
with a descendant, called a sub tag, with cfassociate.
212 Chapter 10 Creating and Using Custom CFML Tags

When you decide to you use nested tags, you must address the following issues:
• What data should be accessible?
• Which tags can communicate to which tags?
• How are the source and targets of the data exchange identified?
• What CFML mechanism is used for the data exchange?

What data is accessible?

To enable developers to obtain maximum productivity in an environment with few
restrictions, CFML custom tags can expose all their data to collaborating tags.

When you develop custom tags, you should document all variables that collaborating
tags can access and/or modify. When your custom tags collaborate with other custom
tags, you should make sure that they do not modify any undocumented data.

To preserve encapsulation, put all tag data access and modification operations into
custom tags. For example, rather than documenting that the variable MyQueryResults in
a tag's implementation holds a query result and expecting users to manipulate
MyQueryResults directly, create a nested custom tag that manipulates MyQueryResult.
This protects the users of the custom tag from changes in the tag's implementation.

Variable scopes and special variables
Use the Request scope for variables in nested tags. The Request scope is available to the
base page, all pages it includes, all custom tag pages it calls, and all custom tag pages
called by the included pages and custom tag pages. Collaborating custom tags that are
not nested in a single tag can exchange data using the request structure. The Request
scope is represented as a structure named Request.

Where is data accessible?

Two custom tags can be related in a variety of ways in a page. Ancestor and descendant
relationships are important because they relate to the order of tag nesting.

A tag’s descendants are inactive while the page is executed; that is, the descendent tags
have no instance data. A tag, therefore, can only access data from its ancestors, not its
descendants. Ancestor data is available from the current page and from the whole
runtime tag context stack. The tag context stack is the path from the current tag element
up the hierarchy of nested tags, including those in included pages and custom tag
references, to the start of the base page for the request. Both cfinclude tags and custom
tags appear on the tag context stack.

High-level data exchange
While the ability to create nested custom tags is a tremendous productivity gain, keeping
track of complex nested tag hierarchies can become a chore. The cfassociate tag lets the
parent know what the children are up to. By adding this tag to a sub tag, you enable
communication of its attributes to the base tag.
Nesting custom tags 213

In addition, there are many cases in which descendant tags are used only as a means for
data validation and exchange with an ancestor tag, such as cfhttp/cfhttpparam and
cftree/cftreeitem. You can use the cfassociate tag to encapsulate this processing.

The cfassociate tag has the following format:

<cfassociate baseTag="tagName" dataCollection="collectionName">

The baseTag attribute specifies the name of the base tag that gets access to this tag’s
attributes. The dataCollection attribute specifies the name of the structure in which the
base tag stores the sub-tag data. Its default value is AssocAttribs. You only need to specify
a dataCollection attribute if the base tag can have more than one type of subtag. It is
convenient for keeping separate collections of attributes, one per tag type.

Note: If the custom tag requires an end tag, the code processing the structure referenced
by the dataCollection attribute must be part of end-tag code.

When cfassociate is encountered in a sub tag, the sub tag’s attributes are automatically
saved in the base tag. The attributes are in a structure appended to the end of an array
whose name is thisTag.collectionName.

The cfassociate tag performs the following operations:

<!--- Get base tag instance data --->
<cfset data = getBaseTagData(baseTag)>
<!--- Create a string with the attribute collection name --->
<cfset collection_Name = "data.#dataCollection#">
<!--- Create the attribute collection, if necessary --->
<cfif not isDefined(collectionName)>
<cfset #collection_Name# = arrayNew(1)>
</cfif>
<!--- Append the current attributes to the array --->
<cfset temp=arrayAppend(evaluate(collectionName), attributes)>

The code accessing sub-tag attributes in the base tag could look like the following:
<!--- Protect against no sub-tags --->

<cfparam Name='thisTag.assocAttribs' default=#arrayNew(1)#>

<!--- Loop over the attribute sets of all sub tags --->
<cfloop index=i from=1 to=#arrayLen(thisTag.assocAttribs)#>

<!--- Get the attributes structure --->
<cfset subAttribs = thisTag.assocAttribs[i]>
<!--- Perform other operations --->

</cfloop>
214 Chapter 10 Creating and Using Custom CFML Tags

Ancestor data access

The ancestor’s data is represented by a structure object that contains all the ancestor’s
data.

The following functions provide access to ancestral data:
• GetBaseTagList() Returns a comma-delimited list of uppercase ancestor tag names,

as a string. The first list element is the current tag, the next element is the parent tag
name if the current tag is a nested tag. If the function is called for a top-level tag, it
returns an empty string.

• GetBaseTagData(TagName, InstanceNumber=1) Returns an object that contains all the
variables (not just the local variables) of the nth ancestor with a given name. By
default, the closest ancestor is returned. If there is no ancestor by the given name, or if
the ancestor does not expose any data (such as cfif), an exception is thrown.

Example: ancestor data access

This example creates two custom tags and a simple page that calls each of the custom
tags. The first custom tag calls the second. The second tag reports on its status and
provides information about its ancestors.

To create the calling page:

1 Create a ColdFusion page (the calling page) with the following content:
Call cf_nesttag1 which calls cf_nesttag2

<cf_nesttag1>
<hr>

Call cf_nesttag2 directly

<cf_nesttag2>
<hr>

2 Save the page as nesttest.cfm.

To create the first custom tag page:

1 Create a ColdFusion page with the following content:
<cf_nesttag2>

2 Save the page as nesttag1.cfm.

To create the second custom tag page:

1 Create a ColdFusion page with the following content:
<cfif thisTag.executionmode is 'start'>

<!--- Get the tag context stack. The list will look something like
"MYTAGNAME, CALLINGTAGNAME, ..." --->
<cfset ancestorlist = getbasetaglist()>

<!--- Output your own name. You are the first entry in the context stack.
--->

<cfoutput>
<p>I'm custom tag #ListGetAt(ancestorlist,1)#</p>
Nesting custom tags 215

<!--- output all the contents of the stack a line at a time --->
<cfloop index="loopcount" from="1" to=#listlen(ancestorlist)#>
Ancestorlist entry #loopcount# n is #ListGetAt(ancestorlist,loopcount)#

</cfloop>

</cfoutput>

<!--- Determine whether you are nested inside a custom tag. Skip the first
element of the ancestor list, i.e., the name of the custom tag I'm in --->

<cfset incustomtag = ''>
<cfloop index=elem

list=#listrest(ancestorlist)#>
<cfif (left(elem, 3) eq 'cf_')>

<cfset incustomtag = elem>
<cfbreak>

</cfif>
</cfloop>

<cfif incustomtag neq ''>
<!--- Say you are there --->
<cfoutput>

I'm running in the context of a custom
tag named #inCustomTag#.<p>

</cfoutput>

<!--- Get the tag instance data --->
<cfset tagdata = getbasetagdata(incustomtag)>

<!--- Find out the tag's execution mode --->
I'm located inside the
<cfif tagdata.thisTag.executionmode neq 'inactive'>

custom tag code either because it is in
its start or end execution mode.

<cfelse>
body of the tag

</cfif>
<p>

<cfelse>
<!--- Say you are lonely --->
I'm not nested inside any custom tags. :^(<p>

</cfif>
</cfif>

2 Save the page as nesttag2.cfm.

3 Open the file nesttest.cfm in your browser.
216 Chapter 10 Creating and Using Custom CFML Tags

CHAPTER 11

Building and Using ColdFusion

Components
ColdFusion components let you encapsulate and re-use code in ColdFusion
development, generate web services, and create Flash interfaces for your application.

Contents

• About ColdFusion components ... 218

• Building ColdFusion components ... 219

• Interacting with component methods .. 222

• Using advanced ColdFusion component functionality... 234
217

About ColdFusion components
ColdFusion components encapsulate application functionality and provide a standard
interface for client access to that functionality. Clients access component functionality by
invoking methods on components. Components support a variety of client interfaces,
including web pages, Flash movies, web services, and other objects accessible from
ColdFusion components and pages. Component method invocation serves as the
gateway to component functionality, including passing parameters and receiving
component method results.

Like other ColdFusion Markup Language (CFML) code reuse techniques, such as
user-defined functions (UDFs) and custom CFML tags, components let you create
application functionality that can be reused wherever you need it. If you want to modify,
add, or remove component functionality, you only need to make changes in one
component file.

Note: For more information about UDFs, custom tags, and other ColdFusion code reuse
techniques, see Chapter 8, “Reusing Code in ColdFusion Pages” on page 157.

Applying design patterns to component development
As your development projects grow larger and teams of developers become involved,
ColdFusion components can structure CFML to serve as building blocks for design
pattern methodologies.

Established design pattern specifications represent the accumulated knowledge of veteran
software developers, which is used to establish guidelines for application development.
When applied correctly, design patterns streamline software production, manage the
application development process, and ensure code maintainability for the life cycle of the
application.

When making the decision about whether to use a design pattern methodology for a
development project, keep the following points in mind:
• While implementing a design pattern methodology involves more planning initially,

you will save time and money later in the development cycle.
• Each design pattern methodology has strengths and weaknesses. Select the

methodology that best fits your development project needs.

For more information about design patterns, see Rapid Development: Taming Wild
Software Schedules, Steve McConnell, 1996: Microsoft Press.
218 Chapter 11 Building and Using ColdFusion Components

Building ColdFusion components
Just like ColdFusion pages, you store component files in a domain accessible by your web
server and ColdFusion. Unlike ColdFusion pages, you save component files with the
CFC suffix, such as componentName.cfc.

Save your component files in one of the following locations:
• Directories accessible from the web server, which includes the web root and web

server virtual directories.
• Directories accessible from ColdFusion mappings.
• Subdirectories of custom tag roots.

Note: For more information about saving components and component naming
conventions, see “Using component packages” on page 237.

All ColdFusion variable scopes are available to components, including Session, Client,
Server, and Application. In addition, the This scope is available during component
method execution.

You use the cfcomponent and cffunction tags to create ColdFusion components. By
itself, the cfcomponent tag does not provide functionality. Rather, the cfcomponent tag
provides an envelope that describes the functionality that you build in CMFL and
enclose in cffunction tags.

Syntax for the cfcomponent tag

<cfcomponent extends="anotherComponent">

The following table displays the tag attribute, data type, and description:

Note: The cfcomponent tag is optional.

Syntax for the cffunction tag

<cffunction name="methodName" returnType="dataType"
roles="securityRoles" access="methodAccess" output="yes/no">

The following table displays the tag attribute, data type, and description:

Attribute Type Required Description For more information

extends string no Name of parent
component.

See “Using component
inheritance” on page 239.

Attribute Type Required Description For more information

name string yes Name of component
method

See “Defining component
methods” on page 220.

returnType string no Data type validation
for returned values.

See “Returning values from
component methods” on
page 232.

roles string no Assigns component
method to ColdFusion
security roles.

“Building secure ColdFusion
components” on page 234.
Building ColdFusion components 219

The following example creates a component with two methods:

<cfcomponent>
<cffunction name="getEmp">

 <cfquery name="empQuery" datasource="ExampleApps" dbtype="ODBC" >
 SELECT FIRSTNAME, LASTNAME, EMAIL
 FROM tblEmployees
 </cfquery>
 <cfreturn empQuery>

</cffunction>
<cffunction name="getDept">

<cfquery name="deptQuery" datasource="ExampleApps" dbtype="ODBC" >
 SELECT *
 FROM tblDepartments
 </cfquery>
 <cfreturn deptQuery>

</cffunction>
</cfcomponent>

In the example, two cffunction tags define two component methods, getEmp and getDept.
When invoked, the component methods query the ExampleApps database. The cfreturn
tag returns the query results to the client. For more information, see “Invoking
component methods” on page 222.

Defining component methods
Component method definitions exist between opening and closing cffunction tags. To
separate the component method code from the component file, use the cfinclude tag to
call the page that contains the component method code.

To create a component method:

1 Create a new ColdFusion component, and save it as tellTime.cfc in a directory below
your web-root directory.

2 Modify the code so that it appears as follows:
<cfcomponent>

<cffunction name="getLocalTime">
<cfscript>

serverTime=now();
localStructure=structNew();
localStructure.Hour=DatePart("h", serverTime);
localStructure.Minute=DatePart("n", serverTime);

</cfscript>

access string no Restricts component
method access by
client type.

See “Building secure
ColdFusion components” on
page 234

output Boolean no Suppresses
component method
output

See “Building secure
ColdFusion components” on
page 234.

Attribute Type Required Description For more information
220 Chapter 11 Building and Using ColdFusion Components

<cfoutput>
#localStructure.Hour#:#localStructure.Minute#

</cfoutput>
</cffunction>

</cfcomponent>

In the example, the cfscript and cfoutput statements execute during component
method processing.

3 Save your work.

By placing the method execution code in a separate file, template methods separate
execution and markup code from the component method definitions.

To create component method using the cfinclude tag:

1 Open the tellTime.cfc file, and modify the code so that it appears as follows:
<cfcomponent>

<cffunction name="getLocalTime">
<cfinclude template="getTime.cfm">

</cffunction>
</cfcomponent>

In the example, the getLocalTime method definition calls the getTime.cfm file with
the cfinclude tag.

2 Save your work.

3 Create a ColdFusion page, and save it as getTime.cfm in the same directory as
tellTime.cfc.

4 Modify getTime.cfm so that the code appears as follows:
<cfscript>

serverTime=now();
localStruct=structNew();
localStruct.Hour=DatePart("h", serverTime);
localStruct.Minute=DatePart("n", serverTime);

</cfscript>
<cfoutput>#localStruct.Hour#:#localStruct.Minute#</cfoutput>

In the example, a CFScript statement uses the now() and DatePart() functions to
populate a structure with hour and minute values. The values are then displayed with
the cfoutput tag. Notice that no value is returned to the client. Instead, the getTime
method displays the variable.

5 Save your work.
Building ColdFusion components 221

Interacting with component methods
The vast majority of ColdFusion applications require data to be passed back and forth
between a number of pages. For example, a typical web shopping cart application uses
multiple ColdFusion pages to gather user data, access databases, and confirm credit card
information.

ColdFusion components support passing and returning simple and complex values using
the cfinvoke tag, URL and form controls, CFScript, the Macromedia Flash Remoting
service, and web services. Whether you are receiving registration information from a
simple HTML page or passing a query object back to a sophisticated web service,
interacting with ColdFusion components means that you must be able to pass data into
and out of a component.

Interacting with components consists of the following operations:
• Invoke a component method Use the cfinvoke tag in ColdFusion pages and

components, the HTTP form methods GET and POST, CFScript invocation, Flash
Remoting invocation, or web service invocation. For more information, see
“Invoking component methods” on page 222.

• Pass a parameter to a component method Do three things: define the parameter in
the component method definition, choose a parameter-passing technique, and access
the data passed in the parameter. For more information, see “Passing parameters to
component methods” on page 226.

• Return a value from a component method Do two things: insert the cfreturn tag
into the component method definition to specify a variable to return to the client,
and access the returned values in the client. For more information, see “Returning
values from component methods” on page 232.

Invoking component methods
To interact with ColdFusion components, you invoke component methods from the
client. Components support many client types, including web pages, ColdFusion pages,
Flash movies, web services, and other components. The invocation process depends on
what type of client invokes a component method.

The following table displays the different ways to invoke component methods:

Invocation Description For more information

cfinvoke tag The cfinvoke tag instantiates and
invokes component methods from
within ColdFusion pages and
components.

See “Invoking component methods
using the cfinvoke tag” on page
223.

cfobject tag The cfobject tag instantiates a
component. However, you must
still use the cfinvoke tag or
CFScript to invoke component
methods, pass parameters, and
return results.

See “Invoking component methods
using the cfobject tag” on page
225.
222 Chapter 11 Building and Using ColdFusion Components

Note: To restrict component method invocation, you use the access and roles attributes of
the cffunction tag. For more information, see “Using web server authentication” on page
234.

Note: To invoke components within the component method definition, you use the
cfinvoke tag with its method attribute. In CFScript, you use the method name in standard
function syntax, such as methodName().

Invoking component methods using the cfinvoke tag

In ColdFusion pages or components, use the cfinvoke tag to invoke component
methods. You can place multiple cfinvoke tags in a ColdFusion page to invoke multiple
component methods.

Syntax for the cfinvoke tag

<cfinvoke component="componentName" method="methodName"
returnVariable="variableName" argumentCollection="argumentStruct">

The following table displays the tag attribute, data type, and description:

URL control

(HTTP GET)

You use the component and
method names in the URL string to
invoke component methods.

See “Invoking component methods
using a URL” on page 225.

Form control

(HTTP POST)

HTML and ColdFusion forms
invoke component methods using
the HTML form and input tags and
their attributes.

See “Invoking component methods
using a form” on page 225.

CFScript CFScript instantiates component
methods using the createObject
function. The component method
can then be called using
componentName.componetMetho
d() syntax.

See “Invoking component methods
with CFScript” on page 226.

Flash Remoting In client-side ActionScript, you use
the NetServices functions to
invoke component methods.

See Chapter 29, “Using the Flash
Remoting Service” on page 673.

Web services You use the cfinvoke tag and
CFScript to consume web services
in ColdFusion.

See Chapter 31, “Using Web
Services” on page 729.

Invocation Description For more information

Attribute Type Required Description For more information

component string yes Name of
component

method string yes Name of
component method

See “Invoking
component methods
using the cfinvoke tag”
on page 223.
Interacting with component methods 223

To invoke a component method using the cfinvoke tag:

1 Open the tellTime.cfc file, and modify the code so that it appears as follows:
<cfcomponent>

<cffunction name="getLocalTime">
 <cfscript>

serverTime=now();
localStruct=structNew();
localStruct.Hour=DatePart("h", serverTime);
localStruct.Minute=DatePart("n", serverTime);

</cfscript>
<cfoutput>#localStruct.Hour#:#localStruct.Minute#</cfoutput>

</cffunction>
<cffunction name="getUTCTime">

<cfscript>
serverTime=now();
utcTime=GetTimeZoneInfo();
utcStruct=structNew();
utcStruct.Hour=DatePart("h", serverTime);
utcStruct.Minute=DatePart("n", serverTime);
utcStruct.Hour=utcStruct.Hour + utcTime.utcHourOffSet;
utcStruct.Minute=utcStruct.Minute + utcTime.utcMinuteOffSet;

</cfscript>
<cfoutput>#utcStruct.Hour#:#utcStruct.Minute#</cfoutput>

</cffunction>
</cfcomponent>

The example defines two component methods, getLocalTime and getUTCTime.

2 Create a new ColdFusion page, and save it as timeDisplay.cfm in the same directory
as the tellTime component.

3 Modify the ColdFusion page so that is appears as follows:
<h3>Time Display Page</h3>
Server's Local Time:
<cfinvoke component="tellTime" method="getLocalTime">

Calculated UTC Time:
<cfinvoke component="tellTime" method="getUTCTime">

Using the cfinvoke tag, the example invokes the getLocalTime and getUTCTime
component methods.

returnVariable string no Creates a variable
by the name
entered and
assigns the
component method
results into that
variable

See “Returning values
from component
methods” on page 232.

argumentCollection structure no Passes structure to
component method
as parameters

See “Passing
parameters to
component methods”
on page 226

Attribute Type Required Description For more information
224 Chapter 11 Building and Using ColdFusion Components

4 The following figure shows the results when you execute timeDisplay.cfm in a web
browser:

Invoking component methods using the cfobject tag

To separate the instantiation of the component and the invocation of the component
method, use the cfobject tag. First, use the cfobject tag to instantiate the component
and assign the component to a variable; for example:

<cfobject name="tellTimeComp" component="tellTime">

To invoke component methods, use the cfinvoke tag. The cfinvoke tag’s name attribute
references the variable name in the cfobject tag’s name attribute; for example:

<cfobject name="tellTimeComp" component="tellTime">
<cfinvoke component="#tellTimeComp#" method="getLocalTime">
<cfinvoke component="#tellTimeComp#" method="getUTCTime">

Invoking component methods using a URL

To invoke a component method using a URL, you must append the method name to the
URL in the standard URL query-string, name-value syntax. You can only invoke one
component method per URL request; for example:

http://localhost:8500/tellTime.cfc?method=getLocalTime

Note: To use URL invocation, you must set the cffunction tag’s access attribute to remote.

Invoking component methods using a form

To invoke a method using a ColdFusion or an HTML form, you must enter the file path
to the ColdFusion component in the action attribute and the method name as a form
variable that is submitted.

Note: To use form invocation, you must set the cffunction tag’s access attribute to remote.

To invoke component methods using a form:

1 Open timeDisplay.cfm, and modify the page so that it appears as follows:
<h3>Time Display Page</h3>
<p>Make your selection and press the Got the time? button:</p>
<cfform action="tellTime.cfc" method="POST">
<cfselect name="Method" required="Yes">

<option value="getLocalTime" selected>Local Time</option>
<option value="getUTCTime">UTC Time</option>

</cfselect>
<input type="submit" value="Got the time?">
</cfform>
Interacting with component methods 225

In the example, the cfform tag’s action attribute points toward the tellTime
component file. The cfselect statement passes the component method name.

2 Save your work.

3 Start your web browser, and browse to the following URL:
http://localhost:8500/timeDisplay.cfm

The following figure shows the results:

Make a selection from the drop-down box, and click the Got the Time? button.
Depending on your selection, the server’s local or UTC time displays.

Invoking component methods with CFScript

To invoke a a component method using CFScript, use the createObject function or
cfobject tag to instantiate the component. After you instantiate the component, you use
normal function syntax to invoke component methods; for example:

<!--- instantiate once and reuse the instance--->
<cfscript>

tellTimeCFC=createObject("component","tellTime");
</cfscript>
Server's Local Time:

<cfscript>
tellTimeCFC.getLocalTime();

</cfscript>

Calculated UTC Time:
<cfscript>

tellTimeCFC.getUTCTime();
</cfscript

In the example, the two CFScript statements assign the tellTimeCFC variable to the
tellTime component using the createObject function. Next, you use normal function
syntax to invoke the component method.

Passing parameters to component methods
To perform conditional processing in ColdFusion components based on data sent from
the client, you pass parameters to component methods. In ColdFusion applications,
parameters typically consist of user name and password information, session state data,
keywords for database queries, and so on.
226 Chapter 11 Building and Using ColdFusion Components

To pass parameters in ColdFusion components:

1 Define the parameter in the component method definition using the cfargument
tag. For more information, see “Defining the parameter in the component method
definition” on page 227.

2 Choose your parameter-passing technique. Use the parameter-passing technique
best suited for your client type. For more information, see “Choosing a
parameter-passing technique” on page 228.

Defining the parameter in the component method definition

In the component method, you create parameter definitions using the cfargument tag
within the component method definition. You define multiple parameter with multiple
cfargument tags. To access the parameter values in the component method definition, you
use structure- or array-like notation with the argument variable.

Syntax for the cfargument tag

<cfargument name="parameterName" type="dataType"
required="true/false"default="defaultValue">

The following table displays the tag attribute, data type, and description:

Also, if the required attribute is not set to true, you can specify a default value for the
parameter value using the default attribute. The following example defines two
parameters and references the parameter values in the component method definition.

Note: For the following procedures to work, you must have the example applications
installed with ColdFusion. For more information, see CFML Reference.

To define parameters in the component method definition:

1 Create a new component, and save it as corpQuery.cfc in a directory under your web
root directory.

2 Modify the code in corpQuery.cfc so that it appears as follows:
<cfcomponent>

<cffunction name="getEmp">
<cfargument name="lastName" required="true">
 <cfquery name="empQuery" datasource="ExampleApps" dbtype="ODBC">
 SELECT LASTNAME, FIRSTNAME, EMAIL
 FROM tblEmployees

WHERE LASTNAME LIKE '#arguments.lastName#'
 </cfquery>

Attribute Type Required Description

name string yes Name of parameter

type data type no Validates all valid data types

required Boolean no Specifies whether the parameter is required
to execute the component method

argumentCollection all types no Provides a default value when a parameter is
not passed
Interacting with component methods 227

 <cfoutput>Results filtered by #arguments.lastName#:</cfoutput>

 <cfdump var=#empQuery#>

</cffunction>
<cffunction name="getCat">
<cfargument name="cost" required="true">

<cfquery name="catQuery" datasource="ExampleApps" dbtype="ODBC">
 SELECT ItemName, ItemDescription, ItemCost
 FROM tblItems

WHERE ItemCost <= #arguments.cost#
 </cfquery>
 <cfoutput>Results filtered by #arguments.cost#:</cfoutput>

 <cfdump var=#catQuery#>

</cffunction>
</cfcomponent>

In the example, the cfargument tag’s name attribute defines the parameter’s name. The
required attribute indicates that the parameter is required or an exception will be
thrown. The arguments variable scope provides access to the parameter values.

Note: You can also reference multiple parameter values using array- and structure-like
syntax. For example, arguments.cost is the same as argument[1]. Array and structure-like
notation also lets you loop over multiple parameters. In addition, you can access
arguments directly using pound signs, such as #cost#.

3 Save your work.

Choosing a parameter-passing technique

Like ColdFusion pages, you can pass parameters using a URL or the HTTP GET and POST
form methods with ColdFusion components. Components also accept passing
parameters using the cfinvoke tag.

The following table describes your parameter-passing options:

Parameter type Description For more information

cfinvoke tag Specify the parameters as
cfinvoke tag attributes or the
argumentsCollection attribute.

See “Passing parameters using
the cfinvoke tag” on page 229.

cfinvokeargument
tag

Specify parameter name and
values using the
cfinvokeargument tag.

See “Passing parameters using
the cfinvokeargument tag” on
page 229.

URL Specify the parameters in the
standard URL query-string,
name-value pair syntax.

See “Passing parameters using a
URL” on page 230.

Form Specify the parameters as form
input values.

See “Passing parameters using a
form” on page 230.

CFScript Specify the parameters as
ordered arguments or named
arguments.

See “Passing parameters using
CFScript” on page 232.
228 Chapter 11 Building and Using ColdFusion Components

Passing parameters using the cfinvoke tag

You can pass a single or multiple parameters in one cfinvoke tag as tag attribute
name-value pairs. The following example passes a single parameter:

<cfinvoke component="authQuery" method="getAuth" lastName=session.username>

In the example, the lastName attribute passes the value of the session scope variable to the
component method. To pass multiple parameters, use an attribute name-value pair for
each parameter; for example:

<cfinvoke component="authQuery" method="getAuthSecure"
lastName=session.username password=#url.password#>

In the example, the parameters are passed as the lastName and password attributes. Notice
that different variable scopes are used in the attribute values.

Note: The cfinvoke tag attribute names are reserved and cannot be used for parameter
names. The reserved attribute names are component, method, argumentCollection, and
returnVariable. For more information, see CFML Reference.

If you save attributes to a structure, you can directly pass the structure using the cfinvoke
tag’s argumentCollection attribute.

The following example invokes a component that performs simple addition and
subtraction:

<cfscript>
exampleStruct = StructNew();
exampleStruct[1] = 1;
exampleStruct[2] = 2;

</cfscript>
<cfinvoke component="arithCFC" method="add" argumentCollection=exampleStruct>

This example passes two parameters to the component method as a structure. Notice the
use of the argumentCollection attribute of the cfinvoke tag.

Passing parameters using the cfinvokeargument tag

To pass parameters independently of the cfinvoke tag, use the cfinvokeargument tag.
Using the cfinvokergument tag, for example, you can build conditional processing that
passes a different parameter based on user input.

Flash Remoting Specify the parameters in
client-side ActionScript.

See Chapter 29, “Using the
Flash Remoting Service” on
page 673.

Web services Specify the parameters as
cfinvoke tag attributes or the
argumentsCollection attribute.

See Chapter 31, “Using Web
Services” on page 729.

Parameter type Description For more information
Interacting with component methods 229

Syntax for the cfinvokeargument tag

<cfinvokeargument name="parameterName" value="anyValue">

The following table displays the tag attribute, data type, and description:

The following example invokes the corpQuery component:

<cfinvoke component="corpQuery" method="getEmp">
<cfinvokeargument name="lastName" value="camden">

Notice that the cfinvokeargument tag passes the lastName parameter to the component
method.

Note: For more information about parameter precedence, see CFML Reference.

Passing parameters using a URL

To pass parameters to component methods using a URL, append the parameters to the
URL in standard URL query-string, name-value pair syntax. For example:

http://localhost:8500/corpQuery.cfc?method=getEmp&lastName=camden

To pass multiple parameters within a URL, use the ampersand (&) character to delimit
the name-value pairs. Here is an example:

http://localhost:8500/
corpQuerySecure.cfc?method=getAuth&store=women&dept=shoes

Note: Due to security concerns, Macromedia strongly recommends that you do not pass
sensitive information over the web using URL strings. Potentially sensitive information
includes all personal user information, including passwords, addresses, telephone numbers,
and so on.

Passing parameters using a form

To pass parameters to components using an HTML or ColdFusion form, the names of
the client input controls must match the names of the parameter definition in the
component file.

To pass parameters using a form:

1 Open the corpFind.cfm file and modify the code so that it appears as follows:
<h2>Find People and Products</h2>
<form action="components/corpQuery.cfc" method="post">

<p>Enter employee's last Name:</p>
<input type="Text" name="lastName">
<input type="Hidden" name="method" value="getEmp">
<input type="Submit" title="Submit Query">

</form>
<form action="components/corpQuery.cfc" method="post">

<p>Enter maximum product price:</p>
<input type="Text" name="cost">
<input type="Hidden" name="method" value="getCat">

Attribute Type Required Description

name string yes Name of parameter

value all types yes Value of parameter
230 Chapter 11 Building and Using ColdFusion Components

<input type="Submit" title="Submit Query">
</form>

In the example, the form tag action attribute points to the corpQuery component. The
input tags invoke the component method.

2 Open corpQuery.cfc and add access="remote" to each cffunction tag, as the
following example shows:
<cfcomponent>

<cffunction name="getEmp" access="remote">
<cfargument name="lastName" required="true">
 <cfquery name="empQuery" datasource="ExampleApps" dbtype="ODBC">
 SELECT LASTNAME, FIRSTNAME, EMAIL
 FROM tblEmployees

WHERE LASTNAME LIKE '#arguments.lastName#'
 </cfquery>
 <cfoutput>Results filtered by #arguments.lastName#:</cfoutput>

 <cfdump var=#empQuery#>

</cffunction>
<cffunction name="getCat" access="remote">
<cfargument name="cost" required="true">

<cfquery name="catQuery" datasource="ExampleApps" dbtype="ODBC">
 SELECT ItemName, ItemDescription, ItemCost
 FROM tblItems

WHERE ItemCost <= #arguments.cost#
 </cfquery>
 <cfoutput>Results filtered by #arguments.cost#:</cfoutput>

 <cfdump var=#catQuery#>

</cffunction>
</cfcomponent>

In this example, the cffunction access attribute lets remote clients, such as web
browsers and Flash applications, to access component methods.

3 Save your work.

4 Open a web browser and enter the following URL:
http://localhost/corpFind.cfm

The following figure shows the results:
Interacting with component methods 231

Depending on what you enter, after you click the Submit Query button, the web
browser displays the results, as shown in the following figure:

Passing parameters using CFScript

The following example instantiates a component, invokes the getAuth component
method in three different ways, and passes parameters in each method invocation:

<cfscript>
corpQCFC = createObject("component", "corpSecurity");
corpQCFC.getAuth(username="skippy" password="dippy");
tempStruct = structNew();
tempStruct.username = "skippy"
tempStruct.password = "dippy"
corpQCFC.getAuth(argumentsCollention = tempStruct);
corpQCFC.getAuth("skippy", "dippy");

</cfscript>

Returning values from component methods
In the component method definition, you return the results to the client using the
cfreturn tag. The equivalent to the return CFScript statement, the cfreturn tag only
accepts one variable to return at a time. Therefore, if you want to return more than one
result value at a time, populate a structure with name-value pairs and return the structure
using the cfreturn tag.

To access the result values returned to the client, use the variable scope specified as the
value of the cfinvoke tag’s returnVariable attribute.

Returning component method results to the client

To return component method results to the client, use the cfreturn tag in the
component method definition. You can pass values of all data types, including strings,
integers, arrays, and structures.

To prepare the component method definition to return a value:

1 Open the corpQuery.cfc file, and modify the code so that it appears as follows:
<cfcomponent>

<cffunction name="getEmp">
 <cfquery name="empQuery" datasource="ExampleApps" dbtype="ODBC">
 SELECT LASTNAME, FIRSTNAME, EMAIL
 FROM tblEmployees
 </cfquery>
232 Chapter 11 Building and Using ColdFusion Components

 <cfreturn empQuery>
</cffunction>
<cffunction name="getCat">

<cfquery name="catQuery" datasource="ExampleApps" dbtype="ODBC">
 SELECT ItemName, ItemDescription, ItemCost
 FROM tblItems
 </cfquery>
 <cfreturn catQuery>

</cffunction>
</cfcomponent>

In the example, the cfreturn tags return the query objects created by the component
methods.

2 Save your work.

3 Open the corpFind.cfm file, and modify the code so that it appears as follows:
<cfinvoke component="corpQuery" method="getEmp" returnVariable="empResult">
<cfdump var=#empResult#>

In the example, the cfinvoke tag’s returnVariable attribute specifies the variable scope
name that holds the component method results. The cfdump tag displays the contents
of the empResult variable.

4 Open a web browser and browse to the following URL:
http://localhost/corpFind.cfm

The following figure shows the results:
Interacting with component methods 233

Using advanced ColdFusion component functionality
Beyond basic component functionality, ColdFusion components offer advanced
functionality to streamline application development, deployment, and extensibility. The
following table displays advanced component functionality:

Building secure ColdFusion components
To restrict access to component methods, ColdFusion components use the following
security features:

1 Web server basic authentication

For more information, see “Using web server authentication” on page 234.

2 Application security

For more information, see “Using ColdFusion application security” on page 235.

3 Role-based security

For more information, see “Using role-based security” on page 236.

4 Programmatic security

For more information, see “Using programmatic security” on page 237.

Using web server authentication

The majority of web servers allow directory access protection using basic authentication.
When a client tries to access one of the resources under a protected directory and is not
properly authenticated, the server automatically sends back a authentication challenge to
the web browser. The web browser shows a login dialog box.

When you enter your authentication information, the web browser authenticates the
information to the web server. If the authentication passes, the web browser caches the
authentication data while the browser window is open and every subsequent request to
the web server sends the same authentication data

Feature Description For more information

Component method
security

Using the roles and access
attributes of the cffunciton tag,
you build component
method-level security measures.

See “Building secure ColdFusion
components” on page 234.

Component
packages

Using component packages, you
avoid possible naming conflicts
with components.

See “Using component
packages” on page 237.

Component
inheritance

Using the extends attribute of the
cfcomponent tag, you import
another component’s methods
and properties.

See “Using component
inheritance” on page 239.

Component
introspection

Using component metadata, you
can describe component
functionality programmatically.

See “Using component
metadata” on page 240.
234 Chapter 11 Building and Using ColdFusion Components

ColdFusion developers can use the authentication information for ColdFusion resources,
such as ColdFusion pages or components, in the appropriate application.cfm file, as the
following example shows:

<cflogin>
<cfif IsDefined(“cflogin”)>

<cfif cflogin.name eq “admin”>
<cfset roles = “user,admin”>

<cfelse>
<cfset roles = “user”>

</cfif>
<cfloginuser name = ”#cflogin.name#”
password = ”#cflogin.password#”
roles = “#roles#” />

<cfelse>
<!--- this should never happen --->
<h4>Authentication data is missing.</h4>
Try to reload the page or contact the site administrator.
<cfabort>

</cfif>
</cflogin>

Using ColdFusion application security

You can use the previous example with minor modification to include the login challenge
in the application.cfm file as well. You can create an HTML form page that passes
authentication information to ColdFusion, or you can return the access-denied 401
information back to the web browser.

The following example shows an authentication challenge by generating and HTML
page with a login form. The login form sends two form fields, j_username and
j_password, to ColdFusion, which are automatically detected by the cflogin tag.

<cflogin>
<cfif IsDefined("cflogin")>

<cfif cflogin.name eq "admin" and cflogin.password eq "p1">
<cfset roles = "user,admin">
<cfelseif cflogin.name eq "user" and cflogin.password eq "p2">
<cfset roles = "user">

</cfif>
</cfif>
<cfif IsDefined("roles")>

<cfloginuser name="#cflogin.name#"
password="#cflogin.password#"
roles="#roles#">

<cfelse>
<!--- authentication failed – generate the login form --->
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><title>Application Log In</title></head>
<body>

<form action="" method="post">
<pre>

username: <input type="text" name="j_username">
password: <input type="password" name="j_password">
<input type="submit" value="log in">

</pre>
Using advanced ColdFusion component functionality 235

</form>
</body>
</html>
<cfabort>

</cfif>
</cflogin>

When you return a 401 access denied response, the browser automatically displays a login
dialog box. When the user enters his or her login dialog, the authentication parameters
are passed in the request header and are detected by the cflogin tag, as shown in the
following example:

<cflogin>
<cfif IsDefined("cflogin")>

<cfif cflogin.name eq "admin" and cflogin.password eq "p1">
<cfset roles = "user,admin">

<cfelseif cflogin.name eq "user" and cflogin.password eq "p2">
<cfset roles = "user">

</cfif>
</cfif>
<cfif IsDefined("roles")>

<cfloginuser name="#cflogin.name#" password="#cflogin.password#"
roles="#roles#">

<cfelse>
<!--- authentication failed – send back 401 --->
<cfsetting enablecfoutputonly="yes" showdebugoutput="no">
<cfheader statuscode="401">
<cfheader name="WWW-Authenticate" value="Basic realm=""MySecurity""">
<cfoutput>Not authorized</cfoutput>
<cfabort>

</cfif>
</cflogin>

The security realm name can be used to bind multiple directories together. If
Application.cfm files located in those directories use the same realm name, only a single
login is required to access resources in those directories. However, each Application.cfm
file can establish different roles for a user.

Using role-based security

Access to a particular method in component can be restricted using roles security. When
a component method is restricted to one or more roles using the roles attribute of the
cffunction tag, users must fall into one of the security roles, as shown in the following
example:

<cffunction name=”foo” roles=”admin,moderator”>
. . .

</cffunction>

Use the cfloginuser tag to establish the security roles. The cflogin tag caches the
authentication information.When a user tries to invoke a method that he or she is not
authorized to invoke, an exception is returned. For more information, see Chapter 16,
“Securing Applications” on page 347.
236 Chapter 11 Building and Using ColdFusion Components

Using programmatic security

In the component method definition, you can protect resources using the same CFML
constructs as ColdFusion pages. For example, the IsUserInRole function determines
whether the user is authenticated in a particular security role:

<cffunction name=”foo”>
<cfif IsUserInRole(“admin”)>

… do stuff allowed for admin
<cfelseif IsUserInRole(“user”)>

… do stuff allowed for user
<cfelse>

<cfoutput>unauthorized access</cfoutput>
<cfabort>

</cfif>
</cffunction>

Using component packages
Components invoked by ColdFusion pages do not need to be in the same directory as the
client ColdFusion page or component, web page, or Macromedia Flash movie. In fact,
components can reside in any folder under the web root directory or virtual directory
mapping in the web server, in a directory under a ColdFusion mapping, or the custom
tag roots.

Components stored in the same directory are members of a component package.
Component packages help prevent naming conflicts and facilitate easy component
deployment.

To invoke a packaged component method using the cfinvoke tag:

1 In your web root directory, create a folder named appResources.

2 In the appResources directory, create a folder named components.

3 Move tellTime.cfc and utcTimeFormatted.cfm to the components directory.

4 Create a new ColdFusion page and save it in your web root as timeDisplay.cfm.

5 Modify the page so that is appears as follows:
<h3>Time Display Page</h3>
Server's Local Time:
<cfinvoke component="appResources.components.tellTime"

method="getLocalTime">

Calculated UTC Time:
<cfinvoke component="appResources.components.tellTime"

method="getUTCTime">

You use dot syntax to navigate directory structures. Prefix the directory name before
the component name.

6 Save your work.

The following example shows a CFScript invocation:

<cfscript>
helloCFC = createObject("component", "appResources.components.catQuery");
helloCFC.getSaleItems();
</cfscript>
Using advanced ColdFusion component functionality 237

The following example shows an URL invocation:

http://localhost/appResources/components/catQuery.cfc?method=getSalesItems

Saving ColdFusion components

The following table contains the locations in which you can save component files and the
available accessibility options from each location:

Note: ColdFusion mappings and custom tag roots can exist within the web root. If so, they
are accessible to remote requests, including URL, form, Flash Remoting, and web service
invocation.

Naming ColdFusion components

Establishing a descriptive naming convention is a good practice, especially if the
components will be installed as a part of packaged application. Like the common Java
naming convention, you can reserve the order of your domain name, continue with
application name, and so on, as the following example shows:

com.mycompany.catalog.product.saw

When you refer to a component using the fully qualified name, ColdFusion looks for the
component in the following order:
• ColdFusion attempts to resolve the physical path from the request, such as /com/

mycompany/catalog/product/saw.cfc, to a component file located in directories
under the web root or directories under ColdFusion mappings.

• Otherwise, ColdFusion attempts to resolve the physical path in the custom tag root,
such as {customTagRoot}/com/mycompany/catalog/product/saw.cfc,.

When a component is invoked using any of the interfaces mentioned previously,
ColdFusion generates the key name in the component metadata structure in the
following order:
• If a component file exists in a directory accessible by ColdFusion mappings, use

GetRealPath function to evaluate the component physical path. The URI path string
after .cfc and the leading slash is removed, and all slashes are replaced with dots.

• Otherwise, ColdFusion loops over the custom tag roots looking for the ancestor
directory of the component. The physical path string after the root path and file
extension are removed, and all slashes are replaced with dots

• Otherwise, ColdFusion uses the file name without the extension as the component
name.

Web root
ColdFusion
mappings

Custom
tag roots

Current
directory

URL Yes Yes No Yes

Form Yes No No Yes

Flash Remoting Yes No No Yes

Web services Yes No No Yes

Local Yes Yes Yes Yes
238 Chapter 11 Building and Using ColdFusion Components

Using component inheritance
Component inheritance lets you import component methods and properties from one
component into another component. In addition, inherited components also share any
component methods or properties that they inherit from other components.

When using component inheritance, inheritance should define an is a relationship
between components. For example, a component named president.cfc inherits the
component methods of manager.cfm, which inherits its methods from employee.cfc. In
other words, president.cfc is a manager.cfc. The manager.cfc is a employee.cfc. In turn,
president.cfc is a employee.cfc

To use component inheritance:

1 Open the corpQuery.cfc file, and modify the code so that it appears as follows:
<cfcomponent extends="appResources.components.tellTime">

<cffunction name="getEmp" returnType="query">
<cfargument name="lastName" required="yes">

 <cfquery name="empQuery" datasource="ExampleApps" dbtype="ODBC">
 SELECT LASTNAME, FIRSTNAME, EMAIL
 FROM tblEmployees

WHERE LASTNAME LIKE '#arguments.lastName#'
 </cfquery>
 <cfif empQuery.recordcount LT 1>
 <cfthrow type="noQueryResult"

message="No results were found. Please try again.">
<cfelse>

 <cfreturn empQuery>
</cfif>

</cffunction>
<cffunction name="getCat" returnType="query">

<cfquery name="catQuery" datasource="ExampleApps" dbtype="ODBC">
 SELECT ItemName, ItemDescription, ItemCost
 FROM tblItems
 </cfquery>
 <cfif #getCat.recordcount# LT 1>
 <cfthrow type="noQueryResult"

message="No results were found. Please try again.">
 <cfelse>
 <cfreturn catQuery>
 </cfif>

</cffunction>
</cfcomponent>

In the example, the cfcomponent tag’s extends attribute points to the tellTime
component.

2 Save your work.

3 Create a new ColdFusion page, and save it as inherit.cfm in your web-root directory.

4 Modify the code in the inherit.cfm file so that it appears as follows:
<cfinvoke component="corpQuery" method="getEmp" lastName="gilson">
<cfinvoke component="corpQuery" method="getLocalTime">

5 Save your work.
Using advanced ColdFusion component functionality 239

When you execute the inherit.cfm file, the getLocalTime component method executes
like the getEmp component method.

Using component metadata
When you access a ColdFusion component directly with a web browser without
specifying a component method, the following chain of events occurs:
• The request is redirected to CFCExplorer.cfc, which is located in the

[webroot]\CFIDE\componentutils directory.
• The CFCExplorer component prompts users for the ColdFusion RDS password.
• The CFCExplorer renders an HTML description. For example, when the corpQuery

component is accessed directly by a web browser, it produces the following results:

The following figure shows the HTML description for the corpQuery component:

The description that displays in the web browser, components list the methods that you
build. Development teams can use a component’s automatically generated description as
always up-to-date API reference information.

In addition, you can use the cfcToMCDL and cfcToHTML component methods of utils.cfc,
which is located in the [webroot]\CFIDE\componentutils directory.

You can also browse the components available in ColdFusion using the Component
Browser, which is located at [webroot]\CFIDE\componentutils\componentdoc.cfm.
240 Chapter 11 Building and Using ColdFusion Components

The following figure shows the Component browser:

Note: To access the Component Browser in a virtual directory, you must add the virtual
directory to the ColdFusion mappings.
Using advanced ColdFusion component functionality 241

242 Chapter 11 Building and Using ColdFusion Components

CHAPTER 12

Building Custom CFXAPI Tags
Sometimes, the best approach to application development is to develop elements of your
application by building executables to run with ColdFusion. Perhaps the application
requirements go beyond what is currently feasible in CFML. Perhaps you can improve
application performance for certain types of processing. Or, you have existing code that
already solves an application problem and you want to incorporate it into your
ColdFusion application.

To meet these types of requirements, you can use the ColdFusion Extension Application
Programming Interface (CFX API) to develop custom ColdFusion tags. This chapter
documents custom tag development using Java or C++.

Contents

• What are CFX tags? ... 244

• Before you begin developing CFX tags in Java ... 245

• Writing a Java CFX tag .. 247

• ZipBrowser example .. 251

• Approaches to debugging Java CFX tags .. 253

• Developing CFX tags in C++... 256
243

What are CFX tags?
ColdFusion Extension (CFX) tags are custom tags written against the ColdFusion
Extension Application Programming Interface. Generally, you create a CFX tag if you
want to do something that is not possible in CFML, or if you want to improve the
performance of a repetitive task.

One common use of CFX tags is to incorporate existing application functionality into a
ColdFusion application. That means if you already have the code available, CFX tags
make it easy to use it in your application.

CFX tags can do the following:
• Handle any number of custom attributes.
• Use and manipulate ColdFusion queries for custom formatting.
• Generate ColdFusion queries for interfacing with non-ODBC based information

sources.
• Dynamically generate HTML to be returned to the client.
• Set variables within the ColdFusion application page from which they are called.
• Throw exceptions that result in standard ColdFusion error messages.

You can build CFX tags using C++ or Java.

Note: ColdFusion provides several different techniques to create reusable code, including
custom tags. For information on all of these techniques, see Chapter 8, “Reusing Code in
ColdFusion Pages” on page 157.
244 Chapter 12 Building Custom CFXAPI Tags

Before you begin developing CFX tags in Java
Before you begin developing CFX tags in Java, you must configure your Java
development environment. Also, you might want to take a look at some examples before
creating your own CFX tags. This section contains information about examples and how
to configure your development environment.

Sample Java CFX tags
Before you begin developing a CFX tag in Java, you might want to study sample CFX
tags. You can find the Java source files for the examples on Windows in the
cfx\java\distrib\examples subdirectory of the main installation directory. On UNIX
systems, the files are located in the cfx/java/examples directory. The following table
describes the example tags:

Setting up your development environment to develop CFX tags in Java
You can use a wide range of Java development environments, including the Java
Development Kit (JDK) v 1.3.1 from Sun, to build Java CFX tags. You can download
the JDK from Sun http://java.sun.com/j2se.

Macromedia recommends that you use one of the commercial Java IDEs, such as
Dreamweaver MX, that provide an integrated environment for development, debugging,
project management, and access to documentation.

Configuring the classpath

To configure your development environment to build Java CFX tags, you must ensure
that the supporting classes are visible to your Java compiler. These classes are located in
the cfx.jar archive, located in the lib subdirectory of your ColdFusion installation
directory. Consult your Java development tool documentation to determine how to
configure the compiler classpath for your particular environment.

Example Action Demonstrates

HelloColdFusion Prints a personalized
greeting.

The minimal implementation required
to create a CFX tag.

ZipBrowser Retrieves the contents of a
zip archive.

How to generate a ColdFusion query
and return it to the calling page.

ServerDateTime Retrieves the date and time
from a network server.

Attribute validation, using numeric
attributes, and setting variables within
the calling page.

OutputQuery Returns a ColdFusion query
in an HTML table.

How to handle a ColdFusion query as
input, throw exceptions, and generate
dynamic output.

HelloWorldGraphic Generates a “Hello World!”
graphic in JPEG format.

How to dynamically create and return
graphics from a Java CFX tag.
Before you begin developing CFX tags in Java 245

The lib directory created by the ColdFusion setup program serves two purposes:
• It contains the supporting classes required for developing and deploying Java CFX

tags. This is the com.allaire.cfx package located in the cfx.jar archive.
• It supports a feature that reloads Java CFX tags located in the directory every time

they are changed. Although this is not the default behavior for other Java classes, this
behavior is very useful during an iterative development and testing cycle.

When you create new Java CFX tags, you should develop them in the web_root/
WEB-INF/classes directory. Doing this simplifies your development, debugging, and
testing processes.

After you finish with development and testing, you can deploy your Java CFX tag
anywhere on the classpath visible to the ColdFusion embedded JVM. For more details on
customizing the classpath, see “Customizing and configuring Java”.

Customizing and configuring Java
Use the JVM and Java Settings page on the ColdFusion Administrator Server tab to
customize your Java development environment, such as by customizing the classpath and
Java system properties, or specifying an alternate JVM. For more information, see the
ColdFusion Administrator’s online Help.
246 Chapter 12 Building Custom CFXAPI Tags

Writing a Java CFX tag
To create a Java CFX tag, create a class that implements the CustomTag interface. This
interface contains one method, processRequest, which is passed Request and Response
objects that are then used to do the work of the tag.

The example in the following procedure creates a very simple Java CFX tag named
cfx_MyHelloColdFusion that writes a text string back to the calling page.

To create a Java CFX tag:

1 Create a new source file in your editor with the following code:
import com.allaire.cfx.* ;

public class MyHelloColdFusion implements CustomTag
{
 public void processRequest(Request request, Response response)

throws Exception
 {

String strName = request.getAttribute("NAME") ;
response.write("Hello, " + strName) ;

 }
}

2 Save the file as MyHelloColdFusion.java in the web_root/WEB_INF/classes
directory.

3 Compile the java source file into a class file using the Java compiler. If you are using
the command-line tools bundled with the JDK, use the following command line,
which you execute from within the classes directory:
javac -classpath cf_root\lib\cfx.jar MyHelloColdFusion.java

Note: The previous command works only if the Java compiler (javac.exe) is in your
path. If it is not in your path, specify the fully qualified path; for example,
c:\jdk1.3.1_01\bin\javac on Windows or /usr/java/bin/javac on UNIX.

If you receive errors during compilation, check the source code to make sure you entered
it correctly. If no errors occur, you successfully wrote your first Java CFX tag. For
information on using your new tag in a ColdFusion page, see “Calling the CFX tag from
a ColdFusion page” on page 247.

Calling the CFX tag from a ColdFusion page
You call Java CFX tags from within ColdFusion pages by using the name of the CFX tag
that is registered on the ColdFusion Administrator CFX tags page. This name should be
the prefix cfx_ followed by the class name (without the .class extension).

To register a Java CFX tag in the ColdFusion Administrator:

1 On the ColdFusion Administrator Server tab, select Extensions > CFX Tags to open
the CFX Tags page.

2 Click Register Java CFX.

3 Enter the tag name (for example, cfx_MyHelloColdFusion).

4 Enter the class name without the .class extension (for example, MyHelloColdFusion).
Writing a Java CFX tag 247

5 (Optional) Enter a description.

6 Click Submit.

You can now call the tag from a ColdFusion page.

To call a CFX tag from a ColdFusion page:

1 Create a ColdFusion page (.cfm) in your editor with the following content to call the
HelloColdFusion custom tag:
<html>
<body>

<cfx_MyHelloColdFusion NAME="Les">
</body>
</html>

2 Save the file in a directory configured to serve ColdFusion pages. For example, you
can save the file as C:\inetpub\wwwroot\cfdocs\testjavacfx.cfm on Windows or /
home/docroot/cfdocs/testjavacfx.cfm on UNIX.

3 If you have not already done so, register the CFX tag in the ColdFusion
Administrator (see “Registering CFX tags” on page 257).

4 Request the page from your browser using the appropriate URL; for example:

http://localhost/cfdocs/testjavacfx.cfm

ColdFusion processes the page and returns a page that displays the text “Hello, Les.” If an
error is returned instead, check the source code to make sure you have entered it
correctly.

To delete a CFX tag in the ColdFusion Administrator:

1 On the ColdFusion Administrator Server tab, select Extensions > CFX Tags to open
the CFX Tags page.

2 For the tag you want to delete, click the Delete icon in the Controls column of the
Registered CFX Tags list.

Processing requests
Implementing a Java CFX tag requires interaction with the Request and Response objects
passed to the processRequest method. In addition, CFX tags that need to work with
ColdFusion queries also interface with the Query object. The com.allaire.cfx package,
located in the lib/cfx.jar archive, contains the Request, Response, and Query objects.

This section provides an overview of these object types. For a complete description of
these object types, see CFML Reference.

For a complete example Java CFX tag that uses Request, Response, and Query objects, see
“ZipBrowser example” on page 251.
248 Chapter 12 Building Custom CFXAPI Tags

Request object

The Request object is passed to the processRequest method of the CustomTag interface.
The following table lists the methods of the Request object for retrieving attributes,
including queries, passed to the tag and for reading global tag settings:

For detailed reference information on each of these interfaces, see CFML Reference.

Response object

The Response object is passed to the processRequest method of the CustomTag interface.
The following table lists the methods of the Response object for writing output,
generating queries, and setting variables within the calling page:

For detailed reference information on each of these interfaces, see CFML Reference.

Query object

The Query object provides an interface for working with ColdFusion queries. The
following table lists the methods of the Query object for retrieving name, row count, and
column names and methods for getting and setting data elements:

Method Description

attributeExists Checks whether the attribute was passed to this tag.

getAttribute Retrieves the value of the passed attribute.

getIntAttribute Retrieves the value of the passed attribute as an integer.

getAttributeList Retrieves a list of all attributes passed to the tag.

getQuery Retrieves the query that was passed to this tag, if any.

getSetting Retrieves the value of a global custom tag setting.

debug Checks whether the tag contains the debug attribute.

Method Description

write Outputs text to the calling page.

setVariable Sets a variable in the calling page.

addQuery Adds a query to the calling page.

writeDebug Outputs text to the debug stream.

Method Description

getName Retrieves the name of the query.

getRowCount Retrieves the number of rows in the query.

getColumns Retrieves the names of the query columns.

getData Retrieves a data element from the query.
Writing a Java CFX tag 249

For detailed reference information on each of these interfaces, see CFML Reference.

Loading Java CFX classes
Each Java CFX class has its own associated ClassLoader that loads it and any dependent
classes also located in the web_root/WEB-INF/classes directory. When Java CFX classes
are reloaded after a change, a new ClassLoader is associated with the freshly loaded class.
This special behavior is similar to the way Java servlets are handled by the web server and
other servlet engines, and is required in order to implement automatic class reloading.

However, this behavior can cause subtle problems when you are attempting to perform
casts on instances of classes loaded from a different ClassLoader. The cast fails even
though the objects are apparently of the same type. This is because the object was created
from a different ClassLoader and therefore is not technically the same type.

To solve this problem, only perform casts to class or interface types that are loaded using
the standard Java classpath, that is, classes not located in the classes directory. This works
because classes loaded from outside the classes directory are always loaded using the
system ClassLoader, and therefore, have a consistent runtime type.

Automatic class reloading
You can determine how the server treats changed Java CFX class files by specifying the
reload attribute when you use a CFX tag in your ColdFusion page. The following table
describes the allowable values for the reload attribute:

The default value is reload="Auto". This is appropriate for most applications. Use
reload="Always" during the development process, when you must ensure that you always
have the latest class files, even when only a dependent class changed. Use reload="Never"
to increase performance, by omitting the check for changed classes.

Note: The reload attribute applies only to class files located in the classes directory. The
ColdFusion server loads classes located on the Java classpath once per server lifetime. You
must stop and restart ColdFusion Server to reload these classes.

addRows Adds a new row to the query.

setData Sets a data element within the query.

Method Description

Value Description

Auto Automatically reload Java CFX and dependent classes within the classes
directory whenever the CFX class file changes. Does not reload if a
dependent class file changes but the CFX class file does not change.

Always Always reload Java CFX and dependent classes within the classes directory.
Ensures a class reload even if a dependent class changes, but the CFX class
file does not change.

Never Never reload Java CFX classes. Load them once per server lifetime.
250 Chapter 12 Building Custom CFXAPI Tags

Life cycle of Java CFX tags
A new instance of the Java CFX object is created for each invocation of the Java CFX tag.
This means that it is safe to store per-request instance data within the members of your
CustomTag object. To store data and/or objects that are accessible to all instances of your
CustomTag, use static data members. If you do so, you must ensure that all accesses to the
data are thread-safe.

ZipBrowser example
The following example shows the use of the Request, Response, and Query objects. The
example uses the java.util.zip package to implement a Java CFX tag called
cfx_ZipBrowser, which is a zip file browsing tag.

Note: The Java source file that implements cfx_ZipBrowser, ZipBrowser.java, is included in
the cf_root\cfx\java\distrib\examples directory. Compile ZipBrowser.java to implement the
tag.

The tag’s archive attribute specifies the fully qualified path of the zip archive to browse.
The tag’s name attribute must specify the query to return to the calling page. The returned
query contains three columns: Name, Size, and Compressed.

For example, to query an archive at the path C:\logfiles.zip for its contents and output
the results, you use the following CFML code:

<cfx_ZipBrowser
 archive="C:\logfiles.zip"
 name="LogFiles" >

<cfoutput query="LogFiles">
#Name#, #Size#, #Compressed#

</cfoutput>

The Java implementation of ZipBrowser is as follows:

import com.allaire.cfx.* ;
import java.util.Hashtable ;
import java.io.FileInputStream ;
import java.util.zip.* ;

public class ZipBrowser implements CustomTag
{
 public void processRequest(Request request, Response response)
 throws Exception
 {
 // validate that required attributes were passed
 if (!request.attributeExists("ARCHIVE") ||
 !request.attributeExists("NAME"))
 {
 throw new Exception(
 "Missing attribute (ARCHIVE and NAME are both " +
 "required attributes for this tag)") ;
 }

 // get attribute values
 String strArchive = request.getAttribute("ARCHIVE") ;
 String strName = request.getAttribute("NAME") ;

ZipBrowser example 251

// create a query to use for returning the list of files
 String[] columns = { "Name", "Size", "Compressed" } ;
 int iName = 1, iSize = 2, iCompressed = 3 ;
 Query files = response.addQuery(strName, columns) ;

// read the zip file and build a query from its contents
 ZipInputStream zin =
 new ZipInputStream(new FileInputStream(strArchive)) ;
 ZipEntry entry ;
 while ((entry = zin.getNextEntry()) != null)
 {
 // add a row to the results
 int iRow = files.addRow() ;

 // populate the row with data
 files.setData(iRow, iName,
 entry.getName()) ;
 files.setData(iRow, iSize,
 String.valueOf(entry.getSize())) ;
 files.setData(iRow, iCompressed,
 String.valueOf(entry.getCompressedSize())) ;

 // finish up with entry
 zin.closeEntry() ;
 }

 // close the archive
 zin.close() ;
 }
}

252 Chapter 12 Building Custom CFXAPI Tags

Approaches to debugging Java CFX tags
Java CFX tags are not stand-alone applications that run in their own process, like typical
Java applications. Rather, they are created and invoked from an existing
process—ColdFusion Server. This makes debugging Java CFX tags more difficult,
because you cannot use an interactive debugger to debug Java classes that have been
loaded by another process.

To overcome this limitation, you can use one of the following techniques:
• Debug the CFX tag while it is running within ColdFusion Server by outputting the

debug information as needed.
• Debug the CFX tag using a Java IDE (Integrated Development Environment) that

supports debugging features, such as setting breakpoints, stepping through your code,
and displaying variable values.

• Debug the request in an interactive debugger offline from ColdFusion Server using
the special com.allaire.cfx debugging classes.

Outputting debugging information
Before using interactive debuggers became the norm, programmers typically debugged
their programs by inserting output statements in their programs to indicate information
such as variable values and control paths taken. Often, when a new platform emerges,
this technique comes back into vogue while programmers wait for more sophisticated
debugging technology to develop for the platform.

If you need to debug a Java CFX tag while running against a live production server, this is
the technique you must use. In addition to outputting debugging text using the
Response.write method, you can also call your Java CFX tag with the debug="On"
attribute. This attribute flags the CFX tag that the request is running in debug mode and
therefore should output additional extended debugging information. For example, to call
the HelloColdFusion CFX tag in debugging mode, use the following CFML code:

<cfx_HelloColdFusion name="Robert" debug="On">

To determine whether a CFX tag is invoked with the debug attribute, use the
Request.debug method. To write debugging output in a special debugging block after the
tag finishes executing, use the Response.writeDebug method. For information on using
these methods, see CFML Reference.

Debugging in a Java IDE
You can use a Java IDE to debug your Java CFX tags. This means you can develop your
Java CFX tag and debug it in a single environment.

To use a Java IDE to debug your CFX tag:

1 Start your IDE.

2 In the project properties (or your IDE's project setting), make sure your CFX class is

in the web_root\WEB-INF\classes directory or in the system classpath.
Approaches to debugging Java CFX tags 253

3 Make sure the libraries cf_root\lib\cfx.jar and cf_root\runtime\lib\jrun.jar are included

in your classpath.

4 In your project settings, set your main class to jrunx.kernel.JRun and application

parameters to -start default.
5 Debug your application by setting breakpoints, single stepping, displaying variables,

or by performing other debugging actions.

Using the debugging classes
To develop and debug Java CFX tags in isolation from the ColdFusion, you use three
special debugging classes that are included in the com.allaire.cfx package. These classes
lets you simulate a call to the processRequest method of your CFX tag within the context
of the interactive debugger of a Java development environment. The three debugging
classes are:
• DebugRequest An implementation of the Request interface that lets you initialize the

request with custom attributes, settings, and a query.
• DebugResponse An implementation of the Response interface that lets you print the

results of a request once it has completed.
• DebugQuery An implementation of the Query interface that lets you initialize a query

with a name, columns, and a data set.

To use the debugging classes:

1 Create a main method for your Java CFX class.

2 Within the main method, initialize a DebugRequest and DebugResponse, and a
DebugQuery. Use the appropriate attributes and data for your test.

3 Create an instance of your Java CFX tag and call its processRequest method, passing
in the DebugRequest and DebugResponse objects.

4 Call the DebugResponse.printResults method to output the results of the request,
including content generated, variables set, queries created, and so on.

After you implement a main method as described previously, you can debug your Java
CFX tag using an interactive, single-step debugger. Specify your Java CFX class as the
main class, set breakpoints as appropriate, and begin debugging.
254 Chapter 12 Building Custom CFXAPI Tags

Debugging classes example

The following example demonstrates how to use the debugging classes:

import java.util.Hashtable ;
import com.allaire.cfx.* ;

public class OutputQuery implements CustomTag
{
 // debugger testbed for OutputQuery
 public static void main(String[] argv)
 {
 try
 {
 // initialize attributes
 Hashtable attributes = new Hashtable() ;
 attributes.put("HEADER", "Yes") ;
 attributes.put("BORDER", "3") ;

 // initialize query

 String[] columns =
 { "FIRSTNAME", "LASTNAME", "TITLE" } ;

 String[][] data = {
 { "Stephen", "Cheng", "Vice President" },
 { "Joe", "Berrey", "Intern" },
 { "Adam", "Lipinski", "Director" },
 { "Lynne", "Teague", "Developer" } } ;

 DebugQuery query =
 new DebugQuery("Employees", columns, data) ;

 // create tag, process debugging request, and print results
 OutputQuery tag = new OutputQuery() ;
 DebugRequest request = new DebugRequest(attributes, query) ;
 DebugResponse response = new DebugResponse() ;
 tag.processRequest(request, response) ;
 response.printResults() ;
 }
 catch(Throwable e)
 {
 e.printStackTrace() ;
 }
 }

 public void processRequest(Request request) throws Exception
 {
 // ...code for processing the request...
 }
}

Approaches to debugging Java CFX tags 255

Developing CFX tags in C++
The following sections provide information to help you develop CFX tags in C++.

Sample C++ CFX tags
Before you begin development of a CFX tag in C++, you might want to study the two
CFX tags included with ColdFusion. These examples will help you get started working
with the CFXAPI. The two example tags are as follows:
• CFX_DIRECTORYLIST Queries a directory for the list of files it contains.
• CFX_NTUSERDB (Windows NT only) Lets you add and delete Windows NT users.

On Windows NT, these tags are located in the \cfusion\cfx\examples directory. On
UNIX, these tags are in cf_root/coldfusion/cfx/examples.

Setting up your C++ development environment
The following compliers generate valid CFX code for UNIX platforms:

Before you can use your C++ compiler to build custom tags, you must enable the
compiler to locate the CFX API header file, cfx.h. In Windows, you do this by adding the
CFX API include directory to your list of global include paths. In Windows, this
directory is \cfusion\cfx\include. On UNIX this directory is /opt/coldfusion/cfx/include.
On UNIX, you will need -I <includepath> on your compile line (see the Makefile for
the directory list example in the cfx/examples directory).

Compiling C++ CFX tags
CFX tags built in Windows and on UNIX must be thread-safe. Compile CFX tags for
Solaris with the -mt switch on the Sun compiler.

Locating your C++ library files on Unix
On Unix systems, your C++ library files can be in any directory as long as the directory is
included in LD_LIBRARY_PATH or SHLIB_PATH (HP-UX only).

Implementing C++ CFX tags
CFX tags built in C++ use the tag request object, represented by the C++ class
CCFXRequest. This object represents a request made from an application page to a custom
tag. A pointer to an instance of a request object is passed to the main procedure of a
custom tag. The methods available from the request object let the custom tag accomplish
its work. For information about the CFX API classes and members, see CFML Reference.

Platform Compiler

Solaris Sun C++ compiler 5.0 or higher (gcc does not work)

Linux RedHat 6.2 gcc/egcs 1.1.2 compiler

HPUX 11 HP aCC C++ compiler
256 Chapter 12 Building Custom CFXAPI Tags

Debugging C++ CFX tags
After you configure a debugging session, you can run your custom tag from within the
debugger, set breakpoints, single-step, and so on.

Debugging on Windows

You can debug custom tags within the Visual C++ environment.

To debug C++ CFX tags in Windows:

1 Build your C++ CFX tag using the debug option.

2 Restart ColdFusion.

3 Start Visual C++ 6.0.

4 Select Build > Start Debug > AttachProcess.

5 Select jrunsvc.exe.

Macromedia recommends that you shut down all other Java programs.

6 Execute any ColdFusion page that calls the CFX tag.

7 Select File > Open to open a file in VisualDev in which to set a breakpoint.

8 Set a breakpoint in the CFX project.

The best place is to put it in ProcessRequest(). Next time you execute the page you
will hit the breakpoint.

Registering CFX tags
To use a CFX tag in your ColdFusion applications, first register it in the Extensions, CFX
Tags page in the ColdFusion Administrator.

To register a C++ CFX tag:

1 On the ColdFusion Administrator Server tab, select Extensions > CFX Tags to open
the CFX Tags page.

2 Click Register C++ CFX.

3 Enter the Tag name (for example, cfx_MyNewTag).

4 If the Server Library .dll field is empty, enter the filepath.

5 Accept the default Procedure entry.

6 Clear the Keep library loaded box while developing the tag.

For improved performance, when the tag is ready for production use, you can select
this option to keep the DLL in memory.

7 (Optional) Enter a description.

8 Click Submit.

You can now call the tag from a ColdFusion page.
Developing CFX tags in C++ 257

To delete a CFX tag:

1 On the ColdFusion Administrator Server tab, select Extensions > CFX Tags to open
the CFX Tags page.

2 For the tag you want to delete, click the Delete icon in the Controls column of the
Registered CFX Tags list.
258 Chapter 12 Building Custom CFXAPI Tags

PART III

Developing CFML Applications
This part describes how to develop ColdFusion applications. It describes
the elements of a ColdFusion application and how to structure an
application, handle errors, use variables that are shared among pages,
lock code segments, and secure your application. It also describes how to
create a globalized applicatio,n and debug and troubleshoot application
problems.

The following chapters are included:

Designing and Optimizing a ColdFusion Application261

Handling Errors ..281

Using Persistent Data and Locking.. 315

Securing Applications ...347

Developing Globalized Applications ...373

Debugging and Troubleshooting Applications .. 389

CHAPTER 13

Designing and Optimizing a

ColdFusion Application
This chapter describes the elements that make your ColdFusion pages into an effective
Internet application. It provides an overview of application elements, describes how you
can structure an application on your server, and provides detailed information on using
the Application.cfm file. It also describes coding methods for optimizing application
efficiency.

Contents

• About applications... 262

• Elements of a ColdFusion application.. 262

• Mapping an application... 265

• Creating the Application.cfm page... 268

• Optimizing ColdFusion applications ... 272
261

About applications
The term application can mean many things. An application can be as simple as a guest
book or as sophisticated as a full Internet commerce system with catalog pages, shopping
carts, and reporting.

However, an application has a specific meaning in ColdFusion. A ColdFusion
application consists of one or more ColdFusion pages that work together and share a
common set of resources. In particular, the application shares an application name as
specified in a cfapplication tag, and all pages in the application share variables in the
Application scope. What appears to a user to be a single application, for example, a
company’s website, might consist of multiple ColdFusion applications.

While there are no definite rules as to how you represent your web application as a
ColdFusion application or applications, the following guidelines are useful:
• Application pages share a common general purpose. For example, a web storefront is

typically a single ColdFusion application.
• Many, but not necessarily all, pages in a ColdFusion application share data or

common code elements, such as a single login mechanism.
• Application pages share a common look and feel, often enforced by using common

code elements, such as the same header and footer pages, and a common error
message template.

This chapter describes the tools that ColdFusion provides to create an application, and
presents information on how you can develop and optimize your application.

Elements of a ColdFusion application
Before you develop a ColdFusion application, you must determine how to structure the
application and how to handle application-wide needs and issues. In particular, you must
consider all of the following:
• The overall application framework
• Application-level settings and functions
• Reusable application elements
• Shared variables
• Application security and user identification

The following sections introduce these application elements and provide references to
more detailed information.

The application framework
The application framework is the overall structure of the application and how your
directory structure and application pages reflect that structure. You can use a single
application framework to structure multiple ColdFusion applications into a single
website or Internet application. You can structure a ColdFusion application using many
methodologies. For example, the FuseBox application development methodology is one
popular framework for developing ColdFusion web applications. (For more information
on FuseBox, see http://www.fusebox.org.)
262 Chapter 13 Designing and Optimizing a ColdFusion Application

This chapter does not provide information on how to use or develop a specific
application framework. However, it does discuss how an application’s directory structure
affects the application and how you can map the directory structure. For more
information on mapping the application framework, see “Mapping an application” on
page 265.

Note: For one example of an application framework, see "ColdFusion Methodologies for
Content Management", available at http://www.macromedia.com/v1/handlers/
index.cfm?ID=20750&method=full.

Application-level settings and functions
ColdFusion processes the following two pages, if they are available, every time it
processes any page in the application:
• The Application.cfm page is processed before each page in the application.
• The OnRequestEnd.cfm page is processed after each page in the application.

Note: UNIX systems are case-sensitive. To ensure that your pages work on UNIX, always
capitalize the A in Application.cfm and the O, R, and E in OnRequestEnd.cfm.

The Application.cfm page provides a good place to define the application. It can contain
the cfapplication tag that specifies the application name, and contains code that must be
processed for all pages in the application. This page defines application-level settings,
functions, and features.

Application-level features can include page processing settings, default variables, data
sources, style settings, and other application-level constants, and application-specific
custom error pages. When defined and set on the Application.cfm page, they are available
on all pages in the application.

ColdFusion applications can have application-level variables that are not in the
Application scope. For example, every page in an application might have a currentPage
variable that identifies the page. The Application.cfm page can set this variable in the
Variables scope, so each page gets a different, local value. Because every page in the
application has the variable, it can be considered to be an application-level variable, even
though it is not an Application scope variable.

The OnRequestEnd.cfm page is used in fewer applications than the Application.cfm
page. It lets you provide common clean-up code that gets processed after all application
pages.

For more information on the Application.cfm and OnRequestEnd.cfm pages, see
“Creating the Application.cfm page” on page 268. For information on placing these
pages in the application directory structure, see “Mapping an application” on page 265.

Note: You can create a ColdFusion application without using Application.cfm or
OnRequestEnd.cfm pages. However, it is much easier to use the Application.cfm page than
to have each page in the application use a cfapplication tag and define common
application elements.
Elements of a ColdFusion application 263

Reusable application elements
ColdFusion provides a variety of reusable elements that you can use to provide
commonly-used functionality and extend CFML. These elements include the following:
• User-defined functions (UDFs)
• CFML custom tags
• ColdFusion components
• CFX (ColdFusion Extension) tags
• pages that you include using the cfinclude tag

For an overview of these elements, and information about how to choose among them,
see Chapter 8, “Reusing Code in ColdFusion Pages” on page 157.

Shared variables
The following ColdFusion variable scopes maintain data that lasts beyond the scope of
the current HTTP request:

For more information on using these variables, including how to use locks to ensure that
the data they contain remains accurate, see Chapter 15, “Using Persistent Data and
Locking” on page 315.

Application security and user identification
All applications must ensure that malicious users cannot make improper use of their
resources. Additionally, many applications require user identification, typically to control
the portions of a site that the user can access, to control the operations that the user can
perform, or to provide user-specific content. ColdFusion provides the following forms of
application security to address these issues:
• Resource (file and directory-based) security Limits the ColdFusion resources,

such as tags, functions, and data sources that application pages in particular
directories can access. You must consider the resource security needs of your
application when you design the application directory structure.

• User (programmatic) security Provides an authentication (login) mechanism and
a role-based authorization mechanism to ensure that users can only access and use
selected features of the application. User security also incorporates a user ID which
you can use to customize page content. To implement user security, you include
security code, such as the cflogin and cfloginuser tags, in your application.

For more on implementing security, see Chapter 16, “Securing Applications.

Variable scope Description

Session Variables that are available for a single client browser for a single
browser session in one application.

Client Variables that are available for a single client browser over multiple
browser sessions in one application.

Application Variables that are available to all pages in an application for all clients.

Server Variables that are available to all applications on a server and all clients.
264 Chapter 13 Designing and Optimizing a ColdFusion Application

Mapping an application
When you design a ColdFusion application, you must map the directory structure. This
activity is an important step in designing a ColdFusion application. Before you start
building the application, you must establish a root directory for the application. You can
store application pages in subdirectories of the root directory.

The following sections describe how you determine where to place your application pages
and the Application.cfm and OnRequestEnd pages in a directory structure. For more
information on how to define and use the Application.cfm page, see “Creating the
Application.cfm page” on page 268.

Processing the Application.cfm and OnRequestEnd.cfm pages
ColdFusion uses similar, but different, rules to locate and process the Application.cfm
and OnRequestEnd.cfm pages.

Processing the Application.cfm page

When ColdFusion receives a request for an application page, it searches the page's
directory for a file named Application.cfm. If one exists, the Application.cfm code is
logically included at the beginning of that application page.

If the application page directory does not have an Application.cfm page, ColdFusion
searches up the directory tree until it finds an Application.cfm page. If several directories
in the directory tree have an Application.cfm page, ColdFusion uses the first page it
finds. If the Application.cfm page is present in the directory tree (and has the required
permissions set), you cannot prevent ColdFusion from including it.

ColdFusion processes only one Application.cfm page for each request. If a ColdFusion
page has a cfinclude tag pointing to an additional ColdFusion page, ColdFusion does
not search for an Application.cfm page when it includes the additional page.

If your application runs on a UNIX platform, which is case-sensitive, you must spell
Application.cfm with an initial capital letter.

Processing the OnRequestEnd.cfm page

Just as the Application.cfm page runs before the code on an application page, an
OnRequestEnd.cfm page runs, if it exists, after each application page in the same
application.

The OnRequestEnd.cfm page must be in the same directory as the Application.cfm page
ColdFusion uses for the current page. ColdFusion does not search beyond that directory,
so it does not run an OnRequestEnd.cfm page that resides in another directory.

The OnRequestEnd.cfm page does not run if there is an error or an exception on the
application page, or if the application page executes the cfabort or cfexit tag.

On UNIX systems, you must spell the OnRequestEnd.cfm file with the capital letters
shown.
Mapping an application 265

Defining the directory structure
Defining an application directory structure with an application-specific root directory
has the following advantages:
• Development The application is easier to develop and maintain, because the

application page files are well-organized.
• Portability You can easily move the application to another server or another part of

a server without changing any code in the application page files.
• Application-level settings Application pages that are under the same directory can

share application-level settings and functions.
• Security Application pages that are under the same directory can share web server

security settings.

When you put your application in an application-specific directory hierarchy, you can
use a single Application.cfm page in the application root directory, or put different
Application.cfm pages that govern individual sections of the application in different
directories.

You can divide your logical web application into multiple ColdFusion applications by
using multiple Application.cfm pages with different application names. Alternatively, you
can use multiple Application.cfm pages that specify the same application name, but have
different common code, for different subsections of your application.

The directory trees in the following figure show two approaches to implementing an
application framework:
• In the example on the left, a company named Web Wonders, Inc. uses a single

Application.cfm file installed in the application root directory to process all
application page requests.

• In the example on the right, Bandwidth Associates uses the settings in individual
Application.cfm files to create individual ColdFusion applications at the
departmental level. Only the Products application pages are processed using the
settings in the root Application.cfm file. The Consulting, Marketing, and Sales
directories each have their own Application.cfm file.
266 Chapter 13 Designing and Optimizing a ColdFusion Application

Mapping an application 267

Creating the Application.cfm page
The Application.cfm page defines application-level settings and functions such as the
following:
• Application name
• Client, application, and session variable variable management options
• Page processing settings
• Default variables, data sources, style settings, and other application-level constants
• Login processing
• Application-specific error handling

Naming the application
In ColdFusion, you define an application by giving it a name using the cfapplication
tag. By using a specific application name in a cfapplication tag, you define a set of pages
as part of the same logical application. Although you can create an application by putting
a cfapplication tag with the application name on each page, you normally put the tag in
the Application.cfm file; for example:

<cfapplication name="SearchApp">

Note: The value you set for the name attribute in the cfapplication tag is limited to 64
characters.

ColdFusion supports unnamed applications, which are useful for ColdFusion
applications that must interoperate with JSP tags and servlets. Consider creating an
unnamed application only if your ColdFusion pages must share Application or Session
scope data with existing JSP pages and servlets. You cannot have more than one unnamed
application on a server. For more information on using unnamed applications, see
Chapter 32, “Integrating J2EE and Java Elements in CFML Applications” on page 759.

Setting the client, application, and session variables options
You use the cfapplication tag to specify client state and persistent variable use, as follows:
• To use Client scope variables, you must specify clientManagement=True.
• To use Session scope variables, you must specify sessionManagment=True.

You can also optionally do the following:
• Set application-specific time-outs for Application and Session scope variables. These

settings override the default values set in the ColdFusion Administrator.
• Specify a storage method for Client scope variables. This setting overrides the method

set in the ColdFusion Administrator.
• Specify not to use cookies on the client browser.

For more information on configuring these options, see Chapter 15, “Using Persistent
Data and Locking” on page 315 and CFML Reference.
268 Chapter 13 Designing and Optimizing a ColdFusion Application

Defining page processing settings
The cfsetting tag lets you specify the following page processing attributes that you
might want to apply to all pages in your application:

Often, you use the cfsetting tag on individual pages, but you can also use it in your
Application.cfm. For example, you might use it in multi-application environment to
override the ColdFusion Administrator settings in one application.

Setting application default variables and constants
You can set default variables and application-level constants on the Application.cfm page.
For example, you can specify the following values:
• A data source
• A domain name
• Style settings, such as fonts or colors
• Other important application-level variables

Often, an Application.cfm page uses one or more cfinclude tags to include libraries of
commonly used code, such as user-defined functions, that are required on many of the
application’s pages.

Processing logins
When an application requires a user to log in, you typically put the cflogin tag on the
Application.cfm page. For detailed information on security and creating logins, including
an Application.cfm page that manages user logins, see Chapter 16, “Securing
Applications” on page 347.

Attribute Use

showDebugOutput Specifies whether to show debugging output. This setting cannot
enable debugging if it is disabled in the ColdFusion Administrator.
However, this option can ensure that debugging output is not
displayed, even if the Administrator enables it.

requestTimeout Specifies the page request time-out. If ColdFusion cannot
complete processing a page within the time-out period, it
generates an error. This setting overrides the setting in the
ColdFusion Administrator. You can use this setting to increase the
page time-out if your application or page frequently accesses
external resources that might be particularly slow, such as external
LDAP servers or web services providers.

enableCFOutputOnly Disables output of text that is not included inside cfoutput tags.
This setting can help ensure that extraneous text that might be in
your ColdFusion pages does not get displayed.
Creating the Application.cfm page 269

Handling errors
You can use the cferror tag on your Application.cfm page to specify application-specific
error-handling pages for request, validation, or exception errors, as shown in the example
in the following section. This way you can include application-specific information, such
as contact information or application or version identifiers, in the error message, and you
display all error messages in the application in a consistent manner.

You can also use the Application.cfm page to develop more sophisticated
application-wide error-handling techniques, including error-handling methods that
provide specific messages or use structured error-handling techniques.

For more information on error pages and error handling, see Chapter 14, “Handling
Errors” on page 281.

Example: an Application.cfm page
The following example shows a sample Application.cfm file that uses several of the
techniques typically used in Application.cfm pages. For the sake of simplicity, it does not
show login processing; for a login example, see Chapter 16, “Securing Applications” on
page 347.

<!--- Set application name and enable Client and Session variables --->
<cfapplication name="Products"

clientmanagement="Yes"
clientstorage="myCompany"
sessionmanagement="Yes">

<!--- Set page processing attributes --->
<cfsetting showDebugOutput="No" >

<!--- Set custom global error handling pages for this application--->
<cferror type="request"

template="requesterr.cfm"
mailto="admin@company.com">

<cferror type="validation"
template="validationerr.cfm">

<!--- Set the Application variables if they aren’t defined. --->
<!--- Initilialize local app_is_initialized flag to false --->
<cfset app_is_initialized = False>
<!--- Get a readonly lock --->
<cflock scope="application" type="readonly" timeout=10>
<!--- Read init flag and store it in local variable --->

<cfset app_is_initialized = IsDefined("Application.initialized")>
</cflock>
<!--- Check the local flag --->
<cfif not app_is_initialized >
<!--- Application variables are Not initialized yet.

Get an exclusive lock to write scope --->
<cflock scope="application" type="exclusive" timeout=10>

<!--- Check the Application scope initialized flag since another request could
have set the variables after this page released the read-only lock. --->

<cfif not IsDefined("Application.initialized") >
270 Chapter 13 Designing and Optimizing a ColdFusion Application

<!--- Do initializations --->
<cfset Application.ReadOnlyData.Company = "MyCompany" >
<!--- and so on --->
<!--- Set the Application scope initialization flag --->
<cfset Application.initialized = "yes">

</cfif>
</cflock>

</cfif>

<!--- Set a Session variable.--->
<cflock timeout="20" scope="Session" type="exclusive">

<cfif not IsDefined("session.pagesHit")>
<cfset session.pagesHit=1>

<cfelse>
<cfset session.pagesHit=session.pagesHit+1>

</cfif>
</cflock>

<!--- Set Application-specific Variables scope variables. --->
<cfset mainpage = "default.cfm">
<cfset current_page = "#cgi.path_info#?#cgi.query_string#">

<!--- Include a file containing user-defined functions called throughout
the application --->

<cfinclude template="commonfiles/productudfs.cfm">

Reviewing the code

The following table describes the code and its function:

Code Description

<cfapplication name="Products"
clientmanagement="Yes"
clientstorage="myCompany"
sessionmanagement="Yes">

Names the application, enables Client and
Session scope variables, and sets the client
variable store to the myCompany data source.

<cfsetting showDebugOutput="No" > Ensure that debugging output is not displayed,
if the ColdFusion MX Administrator enables it.

<cferror type="request"
template="requesterr.cfm"
mailto="admin@company.com">

<cferror type="validation"
template="validationerr.cfm">

Specifies custom error handlers for request
and validation errors encountered in the
application. Specifies the mailing address for
use in the request error handler.

<cfset app_is_initialized = False>
.
.
.

Sets the Application scope variables, if they are
not already set. For a detailed description of the
technique used to set the Application scope
variables, see Chapter 15, “Using Persistent
Data and Locking” on page 315.
Creating the Application.cfm page 271

Optimizing ColdFusion applications
You can optimize your ColdFusion application in many ways. Much of optimizing
ColdFusion involves good development and coding practices. For example, good
database design and usage is a prime contributor to efficient ColdFusion applications.

In several places, this book documents optimization techniques as part of the discussion
of the related ColdFusion topic. This section provides information about general
ColdFusion optimization tools and strategies, and particularly about using CFML
caching tags for optimization. This section also contains information on optimizing
database use, an important area for application optimization.

The ColdFusion MX Administrator provides caching options for ColdFusion pages and
SQL queries. For information on these options, see the Administrator online Help and
Administering ColdFusion MX.

For information on debugging techniques that can help you identify slow pages, see
Chapter 18, “Debugging and Troubleshooting Applications” on page 389.

For additional information on optimizing ColdFusion, see the Macromedia ColdFusion
support center at http://www.macromedia.com/support/coldfusion.

Caching ColdFusion pages that change infrequently
Some ColdFusion pages produce output that changes infrequently. For example, you
might have an application that extracts a vendor list from a database or produces a
quarterly results summary. Normally, when ColdFusion gets a request for a page in the
application, it does all the business logic and display processing required to produce the
report or generate and display the list. If the results change infrequently, this can be an
inefficient use of processor resources and bandwidth.

The cfcache tag tells ColdFusion to cache the HTML that results from processing a page
request in a temporary file on the server. This HTML does not need to be generated each
time the page is requested. When ColdFusion gets a request for a cached ColdFusion

<cflock timeout="20"
scope="Session"
type="exclusive">

<cfif not IsDefined("session.pagesHit")>
<cfset session.pagesHit=1>

<cfelse>
<cfset session.pagesHit=

session.pagesHit+1>
</cfif>

</cflock>

Sets the Session scope pagesHit variable,
which counts the number of pages touched in
this session. If the variable does not exist,
creates it. Otherwise, increments it.

<cfset mainpage = "default.cfm">
<cfset current_page =

"#cgi.path_info#?#cgi.query_string#">

Sets two Variables scope variables that are
used throughout the application. Creates the
current_page variable dynamically; it’s value
varies from request to request.

<cfinclude template=
"commonfiles/productudfs.cfm">

Includes a library of user-defined functions that
are used in most pages in the application.

Code Description
272 Chapter 13 Designing and Optimizing a ColdFusion Application

page, it retrieves the pregenerated HTML page without having to process the ColdFusion
page. ColdFusion can also cache the page on the client. If the client browser has its own
cached copy of the page from a previous viewing, ColdFusion instructs the browser to use
the client’s page rather than resending the page.

Note: The cfcache tag caching mechanism considers each URL to be a separate page.
Therefore, http://www.mySite.com/view.cfm?id=1 and http://www.mySite.com/
view.cfm?id=2 result in two separate cached pages. Because ColdFusion caches a separate
page for each unique set of URL parameters, the caching mechanism accommodates pages
for which different parameters result in different output.

Using the cfcache tag

You tell ColdFusion to cache the page results by putting a cfcache tag on your
ColdFusion page above code that outputs text. The tag lets you specify the following
information:
• Whether to cache the page results on the server, the client system, or both. The

default is both. The default is optimal for pages that are identical for all users. If the
pages contain client-specific information, or are secured with ColdFusion user
security, set the action attribute in the cfcache tag to ClientCache.

• The directory on the server in which to store the cached pages. The default directory
is cf_root/cache. It is a good practice to create a separate cache directory for each
application. Doing so can prevent the cfcache tag flush action from inappropriately
flushing more than one application’s caches at a time.

• The time span indicating how long the page lasts in the cache from when it is stored
until it is automatically flushed.

You can also specify several attributes for accessing a cached page on the web server,
including a user name and password (if required by the web server), the port, and the
protocol (HTTP or HTTPS) to use to access the page.

Place the cfcache tag above any code on your page that generates output, typically at the
top of the page body. For example, the following tag tells ColdFusion to cache the page
on both the client and the server. On the server, the page is cached in the e:/temp/
page_cache directory. ColdFusion retains the cached page for one day.

<cfcache timespan="#CreateTimespan(1, 0, 0, 0)#" directory="e:/temp/page_cache">

Caution: If your Application.cfm page displays text; for example, if it includes a header
page, use the cfcache tag on the Application.cfm page in addition to the pages that you
cache. Otherwise, ColdFusion displays the Application.cfm page output twice on each
cached page.

Flushing cached pages

ColdFusion automatically flushes any cached page if you change the code on the page. It
also automatically flushes pages after the expiration timespan passes.

You can use the cfcache tag with the action="flush" attribute to immediately flush one
or more cached pages. You can optionally specify the directory that contains the cached
pages to be flushed and a URL pattern that identifies the pages to flush. If you do not
specify a URL pattern, all pages in the directory are flushed. The URL pattern can
include asterisk (*) wildcards to specify parts of the URL that can vary.
Optimizing ColdFusion applications 273

When you use the cfcache tag to flush cached pages, ColdFusion deletes the pages cached
on the server. If a flushed page is cached on the client system, it is deleted, and a new
copy gets cached, the next time the client tries to access the ColdFusion page.

The following example flushes all the pages in the e:/temp/page_cache/monthly directory
that start with HR:

<cfcache action="flush" directory="e:/temp/page_cache/monthly" expirURL="HR*">

If you have a ColdFusion page that updates data you use in cached pages, the page that
does the updating includes a cfcache tag that flushes all pages that use the data.

For more information on the cfcache tag, see CFML Reference.

Caching parts of ColdFusion pages
In some cases, your ColdFusion page might contain a combination of dynamic
information that ColdFusion must generate each time it displays the page, and parts it
generates dynamically, but that change less frequently. In this case, you cannot use the
cfcache tag to cache the entire page. Instead, use the cfsavecontent tag to cache the
infrequently changed content.

The cfsavecontent tag saves the results of processing the tag body in a variable. For
example, if the body of the cfsavecontent tag contains a cfexecute tag that runs an
executable program that displays data, the variable saves the output.

You can use the cfsavecontent tag to cache infrequently changing output in a shared
scope variable. If the information is used throughout the application, save the output in
the Application scope. If the information is client-specific, use the Session scope. Because
of the overhead of locking shared scope variables, use this technique only if the
processing overhead of generating the output is substantial.

Before you use this technique, also consider whether other techniques are more
appropriate. For example, query caching eliminates the need to repeat a common query.
However, if the effort of processing the data or in formatting the output is substantial,
using the cfsavecontent tag can save processing time.

Using this technique, if the variable exists, the page uses the cached output. If the variable
does not exist, the page gets the data, generates the output, and saves the results to the
shared scope variable.

The following example shows this technique. It has two parts. The first part welcomes
the user and prints out a random lucky number. This part runs and produces a different
number each time a user opens the page. The second part performs a database query to
get information that changes infrequently, in this case a listing of the current special sale
items. It uses the cfsavecontent tag to get the data only when needed.

Tip: If you use this technique frequently, consider incorporating it in a custom CFML tag.

<!--- Greet the user --->
<cfoutput>

Welcome to our home page.

The time is #TimeFormat(Now())#.

Your lucky number is: #RandRange(1,1000)#

<hr>

</cfoutput>
274 Chapter 13 Designing and Optimizing a ColdFusion Application

<!--- Set a flag to indicate whether the Application scope variable exists --->
<cflock scope="application" timeout="20" type="readonly">

<cfset IsCached = Not IsDefined("Application.ProductCache")>
</cflock>

<!--- If the flag is false, query the DB, and save an image of
the results output to a variable --->

<cfif not IsCached>
<cfsavecontent variable="ProductCache">
<!--- Perform database query --->

<cfquery dataSource="ProductInfo" name="specialQuery">
SELECT ItemName, Item_link, Description, BasePrice
FROM SaleProducts

</cfquery>
<!--- Calculate sale price and display the results --->

<h2>Check out the following specials</h2>
<table>
<cfoutput query="specialQuery">

<cfset salePrice= BasePrice * .8>
<tr>

<td>#ItemNAme#</td>
<td>#Item_Link#</td>
<td>#Description#</td>
<td>#salePrice#</td>

</tr>
</cfoutput>
</table>

</cfsavecontent>

<!--- Save the results in the Applicaiton scope --->
<cflock scope="Application" type="Exclusive" timeout=30>

<cfset Application.productCache = ProductCache>
</cflock>

</cfif>

<!--- Use the Application scope variable to display the sale items --->
<cflock scope="application" timeout="20" type="readonly">

<cfoutput>#Application.ProductCache#</cfoutput>
</cflock>
Optimizing ColdFusion applications 275

Reviewing the code

The following table describes the code and its function:

Code Description

<cfoutput>
Welcome to our home page.

The time is #TimeFormat(Now())#.

Your lucky number is:

#RandRange(1,1000)#

<hr>

</cfoutput>

Displays the part of the page that must change
each time.

<cflock scope="application" timeout="20"
type="readonly">

<cfset IsCached = IsDefined
("Application.ProductCache")>

</cflock>

Inside a read-only lock, tests to see if the part of
the page that changes infrequently is already
cached in the Application scope, and sets a
boolean flag variable with the result.

<cfif not IsCached>
<cfsavecontent variable="ProductCache">

If the flag is False, uses a cfsavecontent tag to
save output in a Variables scope variable. Using
the Variables scope eliminates the need to do a
query (which can take a long time) in an
Application scope lock.

<cfquery dataSource="ProductInfo"
name="specialQuery">

SELECT ItemName, Item_link,
Description, BasePrice

FROM SaleProducts
</cfquery>

Queries the database to get the necessary
information

<h2>Check out the following specials</h2>
<table>

<cfoutput query="specialQuery">
<cfset salePrice = BasePrice * .8>
<tr>

<td>#ItemNAme#</td>
<td>#Item_Link#</td>
<td>#Description#</td>
<td>#salePrice#</td>

</tr>
</cfoutput>
</table>

Displays the sale items in a table. Inside a
cfoutput tag, calculates each item’s sale price
and displays the item information in a table row.

Because this code is inside a cfsavecontent
tag, ColdFusion does not display the results of
the cfoutput tag. Instead, it saves the formatted
output as HTML and text in the ProductCache
variable.

</cfsavecontent> Ends the cfsavecontent tag block.

<cflock scope="Application"
type="Exclusive"

timeout=30>
<cfset Application.productCache =

productcache>
</cflock>

Inside an Exclusive cflock tag, saves the
contents of the local variable ProductCache in
the Application scope variable
Application.productCache.

</cfif> Ends the code that executes only if the
Application.productCache variable does not
exist.

<cflock scope="application" timeout="20"
type="readonly">

<cfoutput>#Application.ProductCache#</
cfoutput>
</cflock>

Inside a cflock tag, displays the contents of the
Application.productCache variable.
276 Chapter 13 Designing and Optimizing a ColdFusion Application

Optimizing database use
Two important ColdFusion MX tools for optimizing your use of databases are the
cfstoredproc tag and the cfquery tag cachedWithin attribute.

Note: Poor database design and incorrect or inefficient use of the database are among the
most common causes of inefficient applications. Consider the different methods that are
available for using databases and information from databases when you design your
application. For example, if you need to average the price of a number of products from an
SQL query, it is more efficient to use SQL to get the average than to use a loop in
ColdFusion.

Using stored procedures

The cfstoredproc tag lets ColdFusion MX use stored procedures in you database
management system. A stored procedure is a sequence of SQL statements that is assigned
a name, compiled, and stored in the database system. Stored procedures can encapsulate
programming logic in SQL statements, and database systems are optimized to execute
stored procedures efficiently. As a result, stored procedures are faster than cfquery tags.

You use the cfprocparam tag to send parameters to the stored procedure, and the
cfproresult tag to get the record sets that the stored procedure returns.

The following example executes a Sybase stored procedure that returns three result sets,
two of which the example uses. The stored procedure returns the status code and one
output parameter, which the example displays.

<!--- cfstoredproc tag --->
<cfstoredproc procedure = "foo_proc" dataSource = "MY_SYBASE_TEST"

username = "sa" password = "" returnCode = "Yes">

<!--- cfprocresult tags --->
<cfprocresult name = RS1>
<cfprocresult name = RS3 resultSet = 3>

<!--- cfprocparam tags --->
<cfprocparam type = "IN"

CFSQLType = CF_SQL_INTEGER
value = "1" dbVarName = @param1>

<cfprocparam type = "OUT"CFSQLType = CF_SQL_DATE
variable = FOO dbVarName = @param2>

<!--- Close the cfstoredproc tag --->
</cfstoredproc>

<cfoutput>
The output param value: '#foo#'

</cfoutput>

<h3>The Results Information</h3>
<cfoutput query = RS1>

#name#,#DATE_COL#

</cfoutput>

<cfoutput>

<hr>
Record Count: #RS1.recordCount#

Columns: #RS1.columnList#

Optimizing ColdFusion applications 277

<hr>
</cfoutput>

<cfoutput query = RS3>
#col1#,#col2#,#col3#

</cfoutput>

<cfoutput>

<hr>

Record Count: #RS3.recordCount#

Columns: #RS3.columnList#

<hr>

The return code for the stored procedure is: '#cfstoredproc.statusCode#'

</cfoutput>

Reviewing the code

The following table describes the code and its function:

Code Description

<cfstoredproc procedure = "foo_proc"
dataSource = "MY_SYBASE_TEST" username = "sa"
password = "" returnCode = "Yes">

Runs the stored procedure foo_proc on
the MY_SYBASE_TEST data source.
Populates the cfstoredproc.
statusCode variable with the status
code returned by stored procedure.

<cfprocresult name = RS1>
<cfprocresult name = RS3 resultSet = 3>

Gets two record sets from the stored
procedure: the first and third result sets
it returns.

<cfprocparam type = "IN"
CFSQLType = CF_SQL_INTEGER

value = "1" dbVarName = @param1>
<cfprocparam type = "OUT" CFSQLType = CF_SQL_DATE

variable = FOO dbVarName = @param2>
</cfstoredproc>

Specifies two parameters for the
stored procedure, an input parameter
and an output parameter. Sets the
input parameter to 1 and the
ColdFusion variable that gets the
output to FOO.

Ends the cfstoredproc tag body.
278 Chapter 13 Designing and Optimizing a ColdFusion Application

For more information on creating stored procedures, see your database management
software documentation. For more information on using the cfstoredproc tag, see CFML
Reference.

Using the cfquery tag cachedWithin attribute

The cfquery tag cachedWithin attribute tells ColdFusion to save the results of a database
query for a specific period of time. This way, ColdFusion accesses the database on the
first page request, and does not query the database on further requests until the specified
time expires. Using the cachedWithin attribute can significantly limit the overhead of
accessing databases that do not change rapidly.

This technique is useful if the database contents only change at specific, known, times. or
if the database does not change frequently and the purpose of the query does not require
absolutely up to date results

You must use the CreateTimeSpan function to specify the cachedWithin attribute value (in
days, hours, minutes, seconds format). For example, the following code caches the results
of getting the contents of the Employees table of the CompanyInfo data source for one
hour.

<cfquery datasource="CompanyInfo" name="master"
cachedWithin=#CreateTimeSpan(0,1,0,0)#>
SELECT * FROM Employees

</cfquery>

<cfoutput>
The output param value: ’#foo#’

</cfoutput>

<h3>The Results Information</h3>
<cfoutput query = RS1>

#name#,#DATE_COL#

</cfoutput>

<cfoutput>
<hr>
Record Count: #RS1.recordCount#

Columns: #RS1.columnList#

<hr>

</cfoutput>

<cfoutput query = RS3>
#col1#,#col2#,#col3#

</cfoutput>

<cfoutput>
<hr>

Record Count: #RS3.recordCount#

Columns: #RS3.columnList#

<hr>
The return code for the stored procedure is:
’#cfstoredproc.statusCode#’

</cfoutput>

Displays the results of running the
stored procedure:

• The output parameter value,

• The contents of the two columns in
the first record set identified by the
name and DATE_COL variables.
You set the values of these variables
elsewhere on the page.

• The number of rows and the names
of the columns in the first record set

• The contents of the columns in the
other record set identified by the
col1, col2, and col3 variables.

• The number of rows and the names
of the columns in the record set

• The status value returned by the
stored procedure.

Code Description
Optimizing ColdFusion applications 279

Providing visual feedback to the user
If an application might take a while to process data, it is useful to provide visual feedback
to indicate that something is happening so the user does not assume that there is a
problem and request the page again. Although doing this does not optimize your
application’s processing efficiency, it does make the application appear more responsive.

You can use the cfflush tag to return partial data to a user, as shown in Chapter 26,
“Retrieving and Formatting Data” on page 579.

You can also use the cfflush tag to create a progress bar. For information on this
technique, see the technical article "Understanding Progress Meters in ColdFusion 5" at
http://www.macromedia.com/v1/handlers/index.cfm?id=21216&method=full.
(Although this article was written for ColdFusion 5, it also applies to ColdFusion MX.)
280 Chapter 13 Designing and Optimizing a ColdFusion Application

CHAPTER 14

Handling Errors
ColdFusion includes many tools and techniques for responding to errors that your
application encounters. These tools include error handling mechanisms and error logging
tools. This chapter describes these tools and how to use them.

This chapter does not discuss techniques for preventing errors, including methods for
specifying user input validation. It also does not discuss code debugging. For information
on user input validation, see Chapter 26, “Retrieving and Formatting Data” on page 579
and Chapter 27, “Building Dynamic Forms” on page 607. For information on
debugging, see Chapter 18, “Debugging and Troubleshooting Applications” on
page 389.

Contents

• About error handling in ColdFusion.. 282

• Understanding errors ... 283

• Error messages and the standard error format .. 289

• Determining error-handling strategies ... 291

• Specifying custom error messages with cferror ... 293

• Logging errors with the cflog tag.. 297

• Handling runtime exceptions with ColdFusion tags .. 299
281

About error handling in ColdFusion
By default, ColdFusion generates its own error messages when it encounters errors. In
addition, it provides a variety of tools and techniques for you to customize error
information and handle errors when they occur. You can use any of the following
error-management techniques:
• Specify custom pages for ColdFusion to display in each of the following cases:

− when a ColdFusion page is missing (the Missing Template Handler page)

− when an otherwise-unhandled exception error occurs during the processing of a
page (the Site-wide Error Handler page)

You specify these pages on the ColdFusion MX Administrator Server Settings page.
For more information on specifying custom error pages in the Administrator, see the
Administrator Help.

• Use the cferror tag to specify ColdFusion pages to handle specific types of errors.
• Log errors. ColdFusion logs certain errors by default. You can use the cflog tag to log

other errors.
• Use the cftry, cfcatch, cfthrow, and cfrethrow tags to catch and handle exception

errors directly on the page where they occur.
• In CFScript, use the try and catch statements to handle exceptions.

The remaining sections in this chapter provide the following information:
• The basic building blocks for understating types of ColdFusion errors and how

ColdFusion handles them
• How to use the cferror tag to specify error-handling pages
• How to log errors
• How to handle ColdFusion exceptions

Note: This chapter discusses using the cftry and cfcatch tags, but not the equivalent
CFScript try and catch statements. The general discussion of exception handling in this
chapter applies to tags and CFScript statements. However, the code that you use and the
information available in CFScript differs from those in the tags. For more information on
handling exceptions in CFScript, see “Handling errors in UDFs,” in Chapter 9 .
282 Chapter 14 Handling Errors

Understanding errors
There are many ways to look at errors; for example, you can look at errors by their causes.
You can also look at them by their effects, particularly by whether your application can
recover from them. You can also look at them the way ColdFusion does. The following
sections discuss these ways of looking at errors.

About error causes and recovery
Errors can have many causes. Depending on the cause, the error might be recoverable. A
recoverable error is one for which your application can identify the error cause and take
action on the problem. Some errors, such as time-out errors, might be recoverable
without indicating to the user that an error was encountered. An error for which a
requested application page does not exist is not recoverable, and the application can only
display an error message.

Errors such as validation errors, for which the application cannot continue processing the
request, but can provide an error-specific response, can also be considered recoverable.
For example, an error that occurs when a user enters text where a number is required can
be considered recoverable, because the application can recognize the error and redisplay
the data field with a message providing information about the error’s cause and telling the
user to reenter the data.

Some types of errors might be recoverable in some, but not all circumstances. For
example, your application can retry a request following a time-out error, but it must also
be prepared for the case where the request always times out.

Error causes fall in the broad categories listed in the following table:

Although these categories do not map completely to the way ColdFusion categorizes
errors they provide a useful way of thinking about errors and can help you in preventing
and handling errors in your code.

Category Description

Program errors Can be in the code syntax or the program logic. The ColdFusion
compiler identifies and reports program syntax errors when it compiles
CFML into Java classes. Errors in your application logic are harder to
locate. For information on debugging tools and techniques, see
Chapter 18, “Debugging and Troubleshooting Applications” on
page 389.

Unlike ColdFusion syntax errors, SQL syntax errors are only caught at
runtime.

Data errors Are typically user data input errors. You use validation techniques to
identify errors in user input data and enable the user to correct the
errors.

System errors Can come from a variety of causes, including database system
problems, time-outs due to excessive demands on your server,
out-of-memory errors in the system, file errors, and disk errors.
Understanding errors 283

ColdFusion error types
Before you can effectively manage ColdFusion errors, you must understand how
ColdFusion classifies and handles them. ColdFusion categorizes errors as detailed in the
following table:

Most ColdFusion errors are exceptions. The following sections describe them in detail.

About ColdFusion exceptions

You can categorize ColdFusion exceptions in two ways:
• When they occur
• Their Type

When exceptions occur

ColdFusion errors can occur at two times, when the CFML is compiled into Java and
when the resulting Java executes, called runtime exceptions.

Compiler exceptions

Compiler exceptions are programming errors that ColdFusion identifies when it
compiles CFML into Java. Because compiler exceptions occur before the ColdFusion
page is converted to executable code, you cannot handle them on the page that causes
them. However, other pages can handle these errors. For more information, see
“Handling compiler exceptions”

runtime exception

A runtime exception occurs when the compiled ColdFusion Java code runs. It is an event
that disrupts the application’s normal flow of instructions. Exceptions can result from
system errors or program logic errors. Runtime exceptions include:
• Error responses from external services, such as an ODBC driver or CORBA server
• CFML errors or the results of cfthrow or cfabort tags
• Internal errors in the ColdFusion Server

Type Description

Exception An error that prevents normal processing from continuing. All
ColdFusion exceptions are, at their root, Java exceptions.

Missing template An HTTP request for a ColdFusion page that cannot be found.
Generated if a browser requests a ColdFusion page that does not exist.

Missing template errors are different from missing include exceptions,
which result from cfinclude tags or custom tag calls that cannot find
their targets.

Form field data
validation

User data that does not meet the server-side form field validation rules
in a form being submitted. You specify server-side form validation by
using hidden HTML form fields. All other types of server-side validation,
such as the cfparam tag generate runtime exceptions. For more
information on validating form fields see Chapter 27, “Building Dynamic
Forms” on page 607.
284 Chapter 14 Handling Errors

ColdFusion exception types

ColdFusion exceptions have types that you specify in the cferror, cfcatch, and cfthrow
error-handling tags. A cferror or cfcatch tag will handle only exceptions of the specified
type. You identify an exception type by using an identifier from one (or more) of the
following type categories:
• Basic
• Custom
• Advanced
• Java class

Note: Use only custom error type names and the Application basic type name in cfthrow
tags. All other built-in exception type names identify specific types of system-identified
errors, so you should not use them for errors that you identify yourself.

Basic exception types

All ColdFusion exceptions except for custom exceptions belong to a basic type category.
These types consist of a broadly-defined categorization of ColdFusion exceptions. The
following table describes the basic exception types:

Type Type name Description

Database failures Database Failed database operations, such as failed
SQL statements, ODBC problems, and so
on.

Missing include file
errors

MissingInclude Errors where files specified by the cfinclude,
cfmodule, and cferror tags are missing. (A
cferror tag generates a missingInclude error
only when an error of the type specified in the
tag occurs.)

The MissingInclude error type is a
subcategory of Template error. If you do not
specifically handle the MissingInclude error
type, but do handle the Template error type,
the Template error handler catches these
errors. MissingInclude errors are caught at
runtime.

Template errors Template General application page errors, including
invalid tag and attribute names. Most
Template errors are caught at compile time,
not runtime.

Object exceptions Object Exceptions in ColdFusion code that works
with objects.

Security exceptions Security Catchable exceptions in ColdFusion code
that works with security.

Expression exceptions Expression Failed expression evaluations; for example, if
you try to add 1 and "a".

Locking exceptions Lock Failed locking operations, such as when a
cflock critical section times out or fails at
runtime.
Understanding errors 285

Note: The Any type includes all error with the Java object type of java.lang.Exception. It
does not include java.lang.Throwable errors. To catch Throwable errors, specify
java.lang.Throwable in the cfcatch tag type attribute.

Custom exceptions

You can generate an exception with your own type by specifying a custom exception type
name, for example MyCustomErrorType, in a cfthrow tag. You then specify the custom
type name in a cfcatch or cferror tag to handle the exception. Custom type names must
be different from any built-in type names, including basic types and Java exception
classes.

Advanced exception types

The Advanced exceptions consist of a set of specific, narrow exception types. These types
are supported in ColdFusion MX for backward-compatibility. For a list of advanced
exception types, see CFML Reference.

Java exception classes

Every ColdFusion exception belongs to, and can be identified by, a specific Java
exception class in addition to its basic, custom, or advanced type. The first line of the
stack trace in the standard error output for an exception identifies the exception’s Java
class.

For example, if you attempt to use an array function such as ArrayIsEmpty on an integer
variable, ColdFusion generates an exception that belongs to the Expression exception
basic type and the coldfusion.runtime.NonArrayException Java class.

In general, most applications do not need to use Java exception classes to identify
exceptions. However, you can use Java class names to catch exceptions in non-CFML
Java objects; for example, the following line catches all Java input/output exceptions:

<cfcatch type="java.io.IOException">

Verity Search engine
exception

SearchEngine Exceptions generated by the Verity search
engine when processing cfindex,
cfcolletion, or cfsearch tags.

Application-defined
exception events
raised by cfthrow

Application Custom exceptions generated by a cfthrow
tag that do not specify a type, or specify the
type as Application.

All exceptions Any Any exceptions. Includes all types in this table
and any exceptions that are not specifically
handled in another error handler, including
unexpected internal and external errors.

Type Type name Description
286 Chapter 14 Handling Errors

How ColdFusion handles errors
The following sections describes briefly how ColdFusion handles errors. The rest of this
chapter expands on this information.

Missing template errors

If a user requests a page that the ColdFusion cannot find, and the Administrator Server
Settings Missing Template Handler field specifies a Missing Template Handler page,
ColdFusion uses that page to display error information. Otherwise, it displays a standard
error message.

Form field validation errors

When a user enters invalid data in an HTML tag that uses server-side (hidden form field)
data validation, and a cferror tag in the Application.cfm page specifies a Validation error
handler, ColdFusion displays the specified error page. Otherwise, it displays the error
information in a standard format that consists of a default header, a bulleted list
describing the error(s), and a default footer. For more information on using hidden form
field validation, see Chapter 26, “Validating form field data types” on page 603.

Compiler exception errors

If ColdFusion encounters a compiler exception, how it handles the exception depends on
whether the error occurs on a requested page or on an included page:
• If the error occurs on a page that is accessed by a cfinclude or cfmodule tag, or on a

custom tag page that you access using the cf_ notation, ColdFusion handles it as a
runtime exception in the page that accesses the tag. See the “Runtime exception
errors” section, next, for a description of how these errors are handled.

• If the error occurs directly on the requested page, ColdFusion handles the error as
follows:

− If a cferror tag on the Application.cfm page specifies an error handler for the
exception type, ColdFusion displays the specified error page.

− If the Administrator Settings Site-wide Error Handler field specifies an error
handler page, ColdFusion displays the specified error page.

− Otherwise, ColdFusion reports the error using the standard error message format
described in “Error messages and the standard error format” on page 289.
Understanding errors 287

Runtime exception errors

If ColdFusion encounters a runtime exception, it does the action for the first matching
condition in the following table:

For example, if an exception occurs in CFML code that is not in a cftry block, but a
cferror tag specifies a page to handle this error type, ColdFusion uses the specified error
page.

Condition Action

The code with the error is inside a cftry tag
and the exception type is specified in a
cfcatch tag.

Executes the code in the cfcatch tag.

If the cftry block does not have a cfcatch
tag for this error, tests for an appropriate
cferror handler or site-wide error handler.

A cferror tag specifies an exception error
handler for the exception type.

Uses the error page specified by the cferror
tag.

The Administrator Settings Site-wide Error
Handler field specifies an error handler page.

Uses the custom error page specified by the
Administrator setting.

A cferror tag specifies a Request error
handler.

Uses the error page specified by the cferror
tag.

The default case. Uses the standard error message format
288 Chapter 14 Handling Errors

Error messages and the standard error format
If your application does not handle an error, ColdFusion displays a diagnostic message in
the user’s browser, such as the one shown in the following figure:

Error information is also written to a log file for later review. (For information on error
logging, see “Logging errors with the cflog tag” on page 297.)

The standard error format consists of the information listed in the following table.
ColdFusion does not always display all sections.

Section Description

Error description A brief, typically on-line, description of the error.

Error message A detailed description of the error. The error message diagnostic
information displayed depends on the type of error. For example, if you
specify an invalid attribute for a tag, this section includes a list of all valid
tag attributes.

Error location The page and line number where ColdFusion encountered the error,
followed by a short section of your CFML that includes the line. This
section does not display for all errors.

In some cases, the cause of an error can be several lines above the
place where ColdFusion determines that there is a problem, so the line
that initially causes the error might not be in the display.
Error messages and the standard error format 289

Tip: If you get a message that does not explicitly identify the cause of the error, check the
key system parameters, such as available memory and disk space.

Resources Links to documentation, the Knowledge Base, and other resources
that can help you resolve the problem.

Error environment
information

Information about the request that caused the error. All error messages
include the following:

• User browser

• User IP address

• Date and time of error

Stack trace The Java stack at the time of the exception, including the specific Java
class of the exception. This section can be helpful if you must contact
Macromedia Technical Support.

The stack trace is collapsed by default. Click the heading to display the
trace.

Section Description
290 Chapter 14 Handling Errors

Determining error-handling strategies
ColdFusion provides you with many options for handling errors, particularly exceptions,
as described in the section “How ColdFusion handles errors” on page 287. This section
describes considerations for determining which forms of error handling to use.

Handling missing template errors
Missing template errors occur when ColdFusion receives an HTTP request for a page
ending in .cfm that it cannot find. You can create your own missing template error page
to present application-specific information or provide an application-specific appearance.
You specify the missing template error page on the Administrator Settings page.

The missing error page can use CFML tags and variables. In particular, you can use the
CGI.script_name variable in text such as the following to identify the requested page:

<cfoutput>The page #Replace(CGI.script_name, "/", "")# is not available.

Make sure that you entered the page correctly.

</cfoutput>

(In this code, the Replace function removes the leading slash sign from the script name to
make the display more friendly.)

Handling form field validation errors
When you use server-side form field validation, the default validation error message
describes the error cause plainly and clearly. However, you might want to give the error
message a custom look or provide additional information such as service contact phone
numbers and addresses. In this case, use the cferror tag with the Validation attribute on
the Application.cfm page to specify your own validation error handler. The section
“Example of a validation error page,” in Chapter 14 provides an example of such a page.

Handling compiler exceptions
You cannot handle compiler exceptions directly on the page where they occur, because
the exception is caught before ColdFusion starts running the page code. You should fix
all compiler exceptions as part of the development process. Use the reported error
message and the code debugging techniques discussed in Chapter 18, “Debugging and
Troubleshooting Applications” on page 389 to identify and correct the cause of the error.

Compiler exceptions that occur on pages you access by using the cfinclude or cfmodule
tags can actually be handled as runtime errors by surrounding the cfinclude or cfmodule
tag in a cftry block. The compiler exception on the accessed page gets caught as a
runtime error on the base page. However, you should avoid this "solution" to the
problem, as the correct method for handling compiler errors is to remove them before
you deploy the application.
Determining error-handling strategies 291

Handling runtime exceptions
You have many choices for handling exceptions, and the exact path you take depends on
your application and its needs. The following table provides a guide to selecting an
appropriate technique:

Technique Use

cftry Place cftry blocks around specific code sections where exceptions
can be expected and you want to handle those exceptions in a
context-specific manner; for example, if you want to display an error
message that is specific to that code.

Use cftry blocks where you can recover from an exception. For
example, you can retry an operation that times out, or access an
alternate resource. You can also use the cftry tag to continue
processing where a specific exception will not harm your application; for
example, if a missing resource is not required.

For more information, see “Handling runtime exceptions with
ColdFusion tags” on page 299.

cferror with
exception-
specific error
handler pages

Use the cferror tag to specify error pages for specific exception types.
These pages cannot recover from errors, but they can provide the user
with information about the error’s cause and steps that they can take to
prevent the problem.

For more information, see “Specifying custom error messages with
cferror” on page 293.

cferror with a
Request error
page

Use the cferror tag to specify a Request error handler that provides a
customized, application-specific message for unrecoverable
exceptions. Put the tag in the Application.cfm page to make it apply to
all pages in an application.

A Request error page cannot use CFML tags, but it can display error
variables. As a result, you can use it to display common error
information, but you cannot provide error-specific instructions.
Typically, Request pages display error variable values and
application-specific information, including support contact information.

For example code, see “Example of a request error page” on page 296.

Site-wide error
handler page

Specify a site-wide error handler in the Administrator to provide
consistent appearance and contents for all otherwise-unhandled
exceptions in all applications on your server.

Like the Request page, the site-wide error handler cannot perform error
recovery. However, it can include CFML tags in addition to the error
variables.

Because a site-wide error handler prevents ColdFusion from displaying
the default error message, it allows you to limit the information reported
to users. It also lets you provide all users with default contact
information or other instructions.
292 Chapter 14 Handling Errors

Specifying custom error messages with cferror
Custom error pages let you control the error information that users see. You can specify
custom error pages for different types of errors and handle different types of errors in
different ways. For example, you can create specific pages to handle errors that could be
recoverable, such as request time-outs. You can also make your error messages consistent
with the look and feel of your application.

You can specify the following types of custom error message pages:

Specifying a custom error page
You specify the custom error pages with the cferror tag. For Validation errors, the tag
must be on the Application.cfm page. For Exception and Request errors, you can set the
custom error pages on each application page. However, because custom error pages
generally apply to an entire application, it is more efficient to put these cferror tags in
the Application.cfm file also. For more information on using the Application.cfm page,
see Chapter 13, “Designing and Optimizing a ColdFusion Application” on page 261.

The cferror tag has the attributes listed in the following table:

Type Description

Validation Handles server-side form field data validation errors. The validation error
page cannot include CFML tags, but it can display error page variables.

You can use this attribute only on the Application.cfm page. It has no effect
when used on any other page. Therefore, you can specify only one
validation error page per application, and that page applies to all
server-side validation errors.

Exception Handles specific exception errors. You can specify individual error pages
for different types of exceptions.

Request Handles any exception that is not otherwise-handled. The request error
page runs after the CFML language processor finishes. As a result, the
request error page cannot include CFML tags, but can display error page
variables. A request error page is useful as a backup if errors occur in other
error handlers.

Attribute Description

Type The type of error that will cause ColdFusion to display this page: Exception,
Request, or Validation.

Exception Use only for the Exception type. The specific exception or exception
category that will cause the page to be displayed. This attribute can specify
any of the types described in “About ColdFusion exceptions” on page 284.

Template The ColdFusion page to display.

MailTo (Optional) An e-mail address. The cferror tag sets the error page
error.mailTo variable to this value. The error page can use the
error.mailTo value in a message that tells the user to send an error
notification. ColdFusion does not send any message itself.
Specifying custom error messages with cferror 293

The following cferror tag specifies a custom error page for exceptions that occur in
locking code and informs the error page of the of an e-mail address it can use to send a
notification each time this type of error occurs:

<cferror type = "exception"
exception = "lock"
template = "../common/lockexcept.cfm"
mailto = "serverr@mycompany.com">

For detailed information on the cferror tag, see CFML Reference.

Creating an error application page
The following table lists the rules and considerations that apply to error application
pages:

Type Considerations

Validation • Cannot use CFML tags.

• Can use HTML tags.

• Can use the Error.InvalidFields, Error. validationHeader, and
Error.validationFooter variables by enclosing them with pound
sings (#).

• Cannot use any other CFML variables.

Request • Cannot use CFML tags.

• Can use HTML tags.

• Can use nine CFML error variables, such as Error.Diagnostics, by
enclosing them with pound sings.

• Cannot use other CFML variables.

Exception • Can use full CFML syntax, including tags, functions, and variables.

• Can use nine standard CFML Error variables and cfcatch variables.
Use either Error or cferror as the prefix for both types of variables.

• Can use other application-defined CFML variables.

• To display any CFML variable, use the cfoutput tag.
294 Chapter 14 Handling Errors

The following table describes the variables available on error pages:

Error page type Error variable Description

Validation error.invalidFields Unordered list of validation errors that
occurred. This includes any text that you
specify in the value attribute or a hidden
tag used to validate form input.

error.validationHeader Text for the header of the default
validation message.

error.validationFooter Text for the footer of the default validation
message.

Exception and

Request

error.browser Browser that was running when the error
occurred.

error.dateTime Date and time when the error occurred.

error.diagnostics Detailed error diagnostics.

error.generatedContent Any content that ColdFusion generated
in response to the request prior to the
error.

error.HTTPReferer Page containing the HTML link to the
page on which the error occurred. This
value is an empty string if the user
specified the page directly in the browser.

error.mailTo E-mail address of the administrator who
should be notified. This value is set in the
mailTo attribute of the cferror tag.

error.queryString URL query string of the client's request, if
any.

error.remoteAddress IP address of the remote client.

error.template Page being executed when the error
occurred.

Exception only error.messge Error message associated with the
exception.

error.rootCause Java servelet exception reported by the
JVM as the cause of the "root cause" of
the exception. This variable is a Java
object.

error.tagContext Array of structures structure containing
information for each tag in the tag stack
The tag stack consists of each tag that is
currently open. For more information, see
“Exception information in cfcatch blocks”
on page 301

error.type Exception type. For more information,
see “About ColdFusion exceptions” on
page 284.
Specifying custom error messages with cferror 295

Exception error pages can also use all of the exception variables listed in the section
“Exception information in cfcatch blocks” on page 301. To use these variables, replace
the cfcatch prefix with cferror or error. For example, to use the exception message in an
error page, refer to it as error.message.

In general, production Exception and Request pages should not display detailed error
information, such as that supplied by the error.diagnostics variable. Typically,
Exception pages e-mail detailed error information to an administrative address or log the
information using the cflog tag instead of displaying it to the user. For more information
on using the cflog tag, see “Logging errors with the cflog tag” on page 297.

Example of a request error page

The following example shows a custom error page for a request error:

<html>
<head>
<title>Products - Error</title>
</head>
<body>

<h2>Sorry</h2>

<p>An error occurred when you requested this page.</p>
<p>Please send e-mail with the following information to #error.mailTo# to report

this error.</p>

<table border=1>
<tr><td>Error Information

Date and time: #error.DateTime#

Page: #error.template#

Remote Address: #error.remoteAddress#

HTTP Referer: #error.HTTPReferer#

</td></tr></table>

<p>We apologize for the inconvenience and will work to correct the problem.</p>
</body>
</html>

Example of a validation error page

The following example shows a simple custom error page for a validation error:

<html>
<head>
<title>Products - Error</title>
</head>
<body>

<h2>Data Entry Error</h2>

<p>You failed to correctly complete all the fields
in the form. The following problems occurred:</p>

#error.invalidFields#
296 Chapter 14 Handling Errors

</body>
</html>

Logging errors with the cflog tag
ColdFusion provides extensive capabilities for generating, managing, and viewing log
files, as described in Administering ColdFusion MX. It also provides the cflog tag which
adds entries to ColdFusion logs.

ColdFusion automatically logs errors to the default logs in the following cases:
• If you use the default error handlers
• If a cferror handler of type Request handles the error

In all other cases, you must use the cflog tag in your error handling code to generate log
entries.

The cflog tag lets you specify the following information:
• A custom file or standard ColdFusion log file in which to write the message.
• Text to write to the log file. This can include the values of all available error and

cfcatch variables.
• Message severity (type): Information Warning, Fatal, or Error.
• Whether to log any of the following: application name, thread ID, system date, or

system time. By default, all get logged.

For example, you could use a cflog tag in an exception error-handling page to log the
error information to an application-specific log file, as in the following page:

<html>
<head>
<title>Products - Error</title>
</head>
<body>

<h2>Sorry</h2>

<p>An error occurred when you requested this page.
The error has been logged and we will work to correct the problem.
We apologize for the inconvenience. </p>

<cflog type="Error"
file="myapp_errors"
text="Exception error --

Exception type: #error.type#
Template: #error.template#,
Remote Address: #error.remoteAddress#,
HTTP Rerference: #error.HTTPReferer#
Diagnositcs: #error.diagnostics#">

</body>
</html>
Logging errors with the cflog tag 297

Reviewing the code

The following table describes the highlighted code and its function:

A log file entry similar to the following is generated if you try to call a nonexistent
custom tag and this page catches the error:

"Error","web-13","12/19/01","11:29:07",MYAPP,"Exception error --
Exception type: coldfusion.runtime.CfErrorWrapper
Template: /MYStuff/NeoDocs/exceptiontest.cfm,
Remote Address: 127.0.0.1,
HTTP Rerference:
Diagnositcs: Cannot find CFML template for custom tag testCase. Cannot find
CFML template for custom tag testCase. ColdFusion attempted looking in the
tree of installed custom tags but did not find a custom tag with this
name."

The text consists of a comma delimited list of the following entries:
• Log entry type, specified by the cflog type attribute
• ID of the thread that was executing
• Date the entry was written to the log
• Time the entry was written to the log
• Application name, as specified by a cfapplication tag, normally in the

Application.cfm file
• The message specified by the cflog text attribute.

Code Description

<cflog type=”Error”
file="myapp_errors"
text="Exception error
 Exception type: #Error.type#
 Template: #Error.template#,
 Remote Address: #Error.remoteAddress#,
 Diagnositcs: #Error.diagnostics#">

When this page is processed, log an entry in
the file myapp_errors.log file in the
ColdFusion log directory. Identify the entry as
an error message and include an error
message that includes the exception type,
the path of the page that caused the error,
the remote address that called the page, and
the error’s diagnostic message.
298 Chapter 14 Handling Errors

Handling runtime exceptions with ColdFusion tags
Exceptions include any event that disrupts the normal flow of instructions in a
ColdFusion page, such as failed database operations, missing include files, or
developer-specified events. Ordinarily, when ColdFusion encounters an exception, it
stops processing and displays an error message or an error page specified by a cferror tag
or the Administrator Site-wide Error Handler setting. However, you can use the
ColdFusion exception handling tags to catch and process runtime exceptions directly in
ColdFusion pages.

This ability to handle exceptions directly in your application pages enables your
application to do the following:
• Respond appropriately to specific errors within the context of the current application

page
• Recover from errors whenever possible.

Exception-handling tags
ColdFusion provides the exception-handling tags listed in the following table:

Using cftry and cfcatch tags
The cftry tag allows you to go beyond reporting error data to the user:
• You can include code that recovers from errors so your application can continue

processing without alerting the user.
• You can create customized error messages that apply to the specific code that causes

the error.

For example, you can use cftry to catch errors in code that enters data from a user
registration form to a database. The cfcatch code could do the following:

1 Retry the query, so the operation succeeds if the resource was only temporarily
unavailable.

Tag Description

cftry If any exceptions occur while processing the tag body, look for a cfcatch tag
that handles the exception, and execute the code in the cfcatch tag body.

cfcatch Execute code in the body of this tag if the exception caused by the code in
the cftry tag body matches the exception type specified in this tag’s
attributes.

Used in cftry tag bodies only.

cfthrow Generate a user-specified exception.

cfrethrow Exit the current cfcatch block and generates a new exception of the same
type.

Used only in cfcatch tag bodies.
Handling runtime exceptions with ColdFusion tags 299

2 If the retries fail:

• Display a custom message to the user
• Post the data to an email address so the data could be entered by company staff

after the problem has been solved.

Code that accesses external resources such as databases, files, or LDAP servers where
resource availability is not guaranteed is a good candidate for using try/catch blocks.

Try/catch code structure

In order for your code to directly handle an exception, the tags in question must appear
within a cftry block. It is a good idea to enclose an entire application page in a cftry
block. You then follow the cftry block with cfcatch blocks, which respond to potential
errors. When an exception occurs within the cftry block, processing is thrown to the
cfcatch block for that type of exception.

Here is an outline for using cftry and cfcatch to handle errors:

<cftry>
Put your application code here ...
<cfcatch type="exception type1">

Add exception processing code here ...
</cfcatch>
<cfcatch type="exception type2">

Add exception processing code here ...
</cfcatch>
.
.
.
<cfcatch type="Any">

Add exception processing code appropriate for all other exceptions
here ...

</cfcatch>
</cftry>

Try/catch code rules and recommendations

Follow these rules and recommendations when you use cftry and cfcatch tags:
• The cfcatch tags must follow all other code in a cftry tag body.
• You can nest cftry blocks. For example, the following structure is valid:

<cftry>
code that may cause an exception
<cfcatch ...>

<cftry>
First level of exeption handling code
<cfcatch ...>

Second level of exception handling code
</cfcatch

</cftry>
</cfcatch>

</cftry>
300 Chapter 14 Handling Errors

If an exception occurs in the first level of exception-handling code, the inner cfcatch
block can catch and handle it. (An exception in a cfcatch block cannot be handled by
cfcatch blocks at the same level as that block.)

• ColdFusion always responds to the latest exception that gets raised. For example, if
code in a cftry block causes an exception that gets handled by a cfcatch block, and
the cfcatch block causes an exception that has no handler, ColdFusion will display
the default error message for the exception in the cfcatch block, and you will not be
notified of the original exception.

• If an exception occurs when the current tag is nested inside other tags, the CFML
processor checks the entire stack of open tags until it finds a suitable cftry/cfcatch
combination or reaches the end of the stack.

• Use cftry with cfcatch to handle exceptions based on their point of origin within an
application page, or based on diagnostic information.

• The entire cftry tag, including all its cfcatch tags, must be on a single ColdFusion
page. You cannot put the <cftry> start tag on one page and have the </cftry> end tag
on another page.

• For cases when acfcatch block is not able to successfully handle an error, consider
using the cfrethrow tag, as described in “Using the cfrethrow tag” on page 309.

• If an exception can be safely ignored, use a cfcatch tag with no body; for example:
<cfcatch Type = Database />

• In particularly problematic cases, you might enclose an exception-prone tag in a
specialized combination of cftry and cfcatch tags to immediately isolate the tag's
exceptions.

Exception information in cfcatch blocks

Within the body of a cfcatch tag, the active exception’s properties are available in the
cfcatch structure.

Standard cfcatch variables

The following table describes the variables that are available in most cfcatch blocks:

Property variable Description

cfcatch.Detail A detailed message from the CFML compiler. This message,
which can contain HTML formatting, can help to determine which
tag threw the exception.

The cfcatch.Detail value is available in the CFScript cfcatch
statement as the exceptionVariable parameter.

cfcatch.ErrorCode The cfthrow tag can supply a value for this code through the
errorCode attribute. For Type="Database", cfcatch.ErrorCode has
the same value as cfcatch.SQLState.

Otherwise, the value of cfcatch.ErrorCode is the empty string.

cfcatch.ExtendedInfo Custom error message information. This is returned only to
cfcatch tags for which the type attribute is Application or a
custom type.

Otherwise, the value of cfcatch.ExtendedInfo is the empty string.
Handling runtime exceptions with ColdFusion tags 301

Note: If you use cfdump to display the cfcatch variable, the display does not include
variables that do not have values.

The cfcatch.TagContext variable contains an array of tag information structures. Each
structure represents one level of the active tag context at the time when ColdFusion
detected the exception. That is, there is one structure for each tag that is open at the time
of the exception. For example, if the exception occurs in a tag on a custom tag page, the
tag context displays information about the called custom tag and the tag in which the
error occurs.

The structure at position 1 in the array represents the currently executing tag at the time
the exception was detected. The structure at position ArrayLen(cfcatch.tagContext)
represents the initial tag in the stack of tags that were executing when the compiler
detected the exception.

The following table lists the tagContext structure attributes:

cfcatch.Message The exception’s default diagnostic message, if one was provided.
If no diagnostic message is available, this is an empty string.

The cfcatch.Messagee value is included in the value of the
CFScript catch statement exceptionVariable parameter.

cfcatch.RootCause The Java servelet exception reported by the JVM as the cause of
the "root cause" of the exception.

cfcatch.TagContext An array of structures structure containing information for each
tag in the tag stack The tag stack consists of each tag that is
currently open.

cfcatch.Type The exception’s type, returned as a string.

Entry Description

Column Obsolete (retained for backwards compatibility). Always 0.

ID The tag in which the exception occurred. Exceptions in CFScript are
indicated by two question marks (??). All custom tags, including those
called directly, are identified as cfmodule.

Line The line on the page in which the tag is located.

Raw_Trace The raw Java stack trace for the error.

Template The pathname of the application page that contains the tag.

Type The type of page;it is always a ColdFusion page.

Property variable Description
302 Chapter 14 Handling Errors

Database exceptions

The following additional variables are available whenever the exception type is database:

Expression exceptions

The following variable is only available for Expression exceptions:

Locking exceptions

The following additional information is available for exceptions related to errors that
occur in cflock tags:

Property variable Description

cfcatch.NativeErrorCode The native error code associated with this exception.
Database drivers typically provide error codes to assist in
the diagnosis of failing database operations. The values
assumed by cfcatch.NativeErrorCode are
driver-dependent.

If no error code is provided, the value of
cfcatch.nativeErrorCode is -1. The value is 0 for queries of
queries.

cfcatch.SQLState The SQLState code associated with this exception.
Database drivers typically provide error codes to assist in
the diagnosis of failing database operations. SQLState
codes are more consistent across database systems than
native error codes.

If the driver does not provide an SQLState value, the value
of cfcatch.SQLState is -1.

cfcatch.Sql The SQL statement sent to the data source.

cfcatch.queryError The error message as reported by the database driver.

cfcatch.where If the query uses the cfqueryparam tag, query parameter
name-value pairs.

Property variable Description

cfcatch.ErrNumber An internal expression error number, valid only when
type="Expression".

Property variable Description

cfcatch.lockName The name of the affected lock. This is set to "anonymous"
if the lock name is unknown.

cfcatch.lockOperation The operation that failed. This is set to "unknown" if the
failed operation is unknown.
Handling runtime exceptions with ColdFusion tags 303

Missing include exceptions

The following additional variable is available if the error is caused by a missing file
specified by a cfinclude tag:

Using cftry: an example
The following example shows the cftry and cfcatch tags. It uses the CompanyInfo data
source used in many of the examples in this book and a sample included file,
includeme.cfm.

If an exception occurs during the cfquery statement's execution, the application page
flow switches to the cfcatch type="Database" exception handler. It then resumes with the
next statement after the cftry block, once the cfcatch type="Database" handler
completes.

Similarly, the cfcatch type="MissingInclude" block handles exceptions raised by the
cfinclude tag.

<!--- Wrap code you want to check in a cftry block --->
<cfset EmpID=3>
<cfparam name="errorCaught" default="">
<cftry>

<cfquery name="test" datasource="CompanyInfo">
SELECT Dept_ID, FirstName, LastName
FROM Employee
WHERE Emp_ID=#EmpID#

</cfquery>

<html>
<head>
<title>Test cftry/cfcatch</title>
</head>
<body>
<cfinclude template="includeme.cfm">
<cfoutput query="test">

<p>Department: #Dept_ID#

Last Name: #LastName#

First Name: #FirstName#</p>

</cfoutput>

<!--- Use cfcatch to test for missing included files. --->
<!--- Print Message and Detail error messages. --->
<!--- Block executes only if a MissingInclude exception is thrown. --->

<cfcatch type="MissingInclude">
<h1>Missing Include File</h1>
<cfoutput>

Message: #cfcatch.Message#
Detail: #cfcatch.Detail#
File name: #cfcatch.MissingFileName#

Property variable Description

cfcatch.missingFileName The name of the missing file.
304 Chapter 14 Handling Errors

</cfoutput>
<cfset errorCaught = "MissingInclude">

</cfcatch>

<!--- Use cfcatch to test for database errors.--->
<!--- Print error messages. --->
<!--- Block executes only if a Database exception is thrown. --->

<cfcatch type="Database">
<h1>Database Error</h1>
<cfoutput>

Message: #cfcatch.Message#
Native error code: #cfcatch.NativeErrorCode#
SQLState: #cfcatch.SQLState#
Detail: #cfcatch.Detail#

</cfoutput>
<cfset errorCaught = "Database">

</cfcatch>

<!--- Use cfcatch with type="Any" --->
<!--- to find unexpected exceptions. --->

<cfcatch type="Any">
<cfoutput>

<hr>
<h1>Other Error: #cfcatch.Type#</h1>

Message: #cfcatch.Message#
Detail: #cfcatch.Detail#

</cfoutput>
<cfset errorCaught = "General Exception">

</cfcatch>

</body>
</html>
</cftry>

Testing the code

Use the following procedure to test the code:

1 Make sure there is no includeme.cfm file and display the page. The cfcatch
type="MissingInclude" block displays the error.

2 Create a nonempty includeme.cfm file and display the page. If your database is
configured properly, you should see an employee entry and not get any error.

3 In the cfquery tag, change the line:
FROM Employee

to:
FROM Employer

Display the page. This time the cfcatch type="Database" block displays an error
message.
Handling runtime exceptions with ColdFusion tags 305

4 Change Employer back to Employee.

Change the cfoutput line:
<p>Department: #Dept_ID#

to:
<p>Department: #DepartmentID#

Display the page. This time the cfcatch type="Any" block displays an error message
indicating an expression error.

5 Change DepartmentID back to Dept_ID and redisplay the page. The page displays
properly.

Open \CFusion\Log\MyAppPage.log in your text editor. You should see a header
line, an initialization line, and four detail lines, similar to the following:
"Severity","ThreadID","Date","Time","Application","Message"
"Information","web-0","11/20/01","16:27:08",,"C:\Neo\servers\default\logs\

MyAppPage.log initialized"
"Information","web-0","11/20/01","16:27:08",,"Page: /neo/MYStuff/NeoDocs/

cftryexample.cfm Error: MissingInclude"
"Information","web-1","11/20/01","16:27:32",,"Page: /neo/MYStuff/NeoDocs/

cftryexample.cfm Error: "
"Information","web-0","11/20/01","16:27:49",,"Page: /neo/MYStuff/NeoDocs/

cftryexample.cfm Error: Database"
"Information","web-1","11/20/01","16:28:21",,"Page: /neo/MYStuff/NeoDocs/

cftryexample.cfm Error: General Exception"
"Information","web-0","11/20/01","16:28:49",,"Page: /neo/MYStuff/NeoDocs/

cftryexample.cfm Error: "

Reviewing the code

The following table describes the code:

Code Description

<cfset EmpID=3>
<cfparam name="errorCaught" default="">

Initializes the employee ID to a valid value. An
application would get the value from a form or other
source.

Sets the default errorCaught variable value to the
empty string (to indicate no error was caught).

There is no need to put these lines in a cftry block.

<cftry>
<cfquery name="test"

datasource="CompanyInfo">
SELECT Dept_ID, FirstName, LastName
FROM Employee
WHERE Emp_ID=#EmpID#

</cfquery>

Starts the cftry block. Exceptions from here to the
end of the block can be caught by cfcatch tags.

Queries the CompanyInfo database to get the data
for the employee identified by the EmpID variable.
306 Chapter 14 Handling Errors

<html>
<head>
<title>Test cftry/cfcatch</title>
</head>
<body>
<cfinclude template="includeme.cfm">
<cfoutput query="test">

<p>Department: #Dept_ID#

Last Name: #LastName#

First Name: #FirstName#</p>

</cfoutput>

Begins the HTML page. This section contains all the
code that displays information if no errors occur.

Includes the includeme.cfm page.

Displays the user information record from the test
query.

<cfcatch type="MissingInclude">
<h1>Missing Include File</h1>
<cfoutput>

Message: #cfcatch.Message#
Detail: #cfcatch.Detail#
File name:

#cfcatch.MissingFilename#

</cfoutput>
<cfset errorCaught = "MissingInclude">

</cfcatch>

Handles exceptions thrown when a page specified by
the cfinclude tag cannot be found.

Displays cfcatch variables, including the ColdFusion
basic error message, detail message, and the name
of the file that could not be found.

Sets the errorCaught variable to indicate the error
type.

<cfcatch type="Database">
<h1>Database Error</h1>
<cfoutput>

Message: #cfcatch.Message#
Native error code:

#cfcatch.NativeErrorCode#
SQLState: #cfcatch.SQLState#
Detail: #cfcatch.Detail#

</cfoutput>
<cfset errorCaught = "Database">

</cfcatch>

Handles exceptions thrown when accessing a
database.

Displays cfcatch variables, including the ColdFusion
basic error message, the error code and SQL state
reported by the databases system, and the detailed
error message.

Sets the errorCaught variable to indicate the error
type.

<cfcatch type="Any">
<cfoutput>

<hr>
<h1>Other Error: #cfcatch.Type#</h1>

Message: #cfcatch.message#
Detail: #cfcatch.Detail#

</cfoutput>
<cfset errorCaught = "General Exception">

</cfcatch>

Handles any other exceptions generated in the cftry
block.

Since the error can occur after information has
displayed (in this case, the contents of the include
file), draws a line before writing the message text.

Displays the ColdFusion basic and detailed error
message.

Sets the errorCaught variable to indicate the error
type.

</body>
</html>
</cftry>

Ends the HTML page, then the cftry block.

Code Description
Handling runtime exceptions with ColdFusion tags 307

Using the cfthrow tag
You can use the cfthrow tag to raise your own, custom exceptions. When you use the
cfthrow tag, you specify any or all of the following information:

All of these values are optional. You access the attribute values in cfcatch blocks and
Exception type error pages by prefixing the attribute with either cfcatch or error, as in
cfcatch.extendedInfo. The default ColdFusion error handler displays the message and
detail values in the Message pane and the remaining values in the Error Diagnostic
Information pane.

Catching and displaying thrown errors

The cfcatch tag catches a custom exception when you use any of the following values for
the cfcatch type attribute:
• The custom exception type specified in the cfthrow tag.
• A custom exception type that hierarchically matches the initial portion of the type

specified in the cfthrow tag. For more information, see the next section, “Custom
error type name hierarchy”.

• Application, which matches an exception that is thrown with the Application type
attribute or with no type attribute.

• Any, which matches any exception that is not caught by a more specific cfcatch tag.

Similarly, if you specify any of these types in a cferror tag, the specified error page will
display information about the thrown error.

Because the cfthrow tag generates an exception, a Request error handler or the Site-wide
error handler can also display these errors.

Custom error type name hierarchy

You can name custom exception types using a method that is similar to Java class naming
conventions: domain name in reverse order, followed by project identifiers, as in the
following example:

<cfthrow
type="com.myCompany.myApp.Invalid_field.codeValue"
errorcode="Dodge14B">

Attribute Meaning

type The type of error. It can be a custom type that has meaning only to your
application, such as InvalidProductCode. You can also specify
Application, the default type. You cannot use any of the predefined
ColdFusion error types, such as Database or MissingTemplate.

message A brief text message indicating the error.

detail A more detailed text message describing the error.

errorCode An error code that is meaningful to the application. This field is useful if
the application uses numeric error codes.

extendedInfo Any additional information of use to the application.
308 Chapter 14 Handling Errors

This fully qualified naming method is not required; you can use shorter naming rules, for
example, just myApp.Invalid_field.codeValue, or even codeValue.

This naming method is not just a convention however. The ColdFusion Server uses the
naming hierarchy to select from a possible hierarchy of error handlers. For example,
assume you use the following cfthrow statement:

<cfthrow type="MyApp.BusinessRuleException.InvalidAccount">

Any of the following cfcatch error handlers would handle this error:

<cfcatch type="MyApp.BusinessRuleException.InvalidAccount">
<cfcatch type="MyApp.BusinessRuleException">
<cfcatch type="MyApp">

The handler that most exactly matches handles the error. Therefore, in this case, the
MyApp.BusinessRuleException.InvalidAccount handler gets invoked. However, if you used
the following cfthrow tag:

<cfthrow type="MyApp.BusinessRuleException.InvalidVendorCode

the MyApp.BusinessRuleException handler receives the error.

The type comparison is no case-sensitive.

When to use cfthrow

Use the cfthrow tag when your application can identify and handle application-specific
errors. One typical use for the cfthrow tag is in implementing custom data validation.
The cfthrow tag is also useful for throwing errors from a custom tag page to the calling
page.

For example, on a form action page or custom tag used to set a password, the application
can determine whether the password entered is a minimum length, or contains both
letters and number, and throw an error with a message that indicates the password rule
that was broken. The cfcatch block handles the error and tells the user how to correct the
problem.

Using the cfrethrow tag
The cfrethrow tag lets you create a hierarchy of error handlers. It tells ColdFusion to exit
the current cfcatch block and "rethrow" the exception to the next level of error handler.
Thus, if an error handler designed for a specific type of error cannot handle the error, it
can rethrow the error to a more general-purpose error handler. The rethrow tag can only
be used in a cfcatch tag body.

The cfrethrow tag syntax

The following pseudo-code shows how you can use the cfrethrow tag to create an
error-handling hierarchy:

<cftry>
<cftry>

Code that might throw a database error
<cfcatch Type="Database">

<cfif Error is of type I can Handle>
Handle it
Handling runtime exceptions with ColdFusion tags 309

<cfelse>
<cfrethrow>

</cfif
</cfcatch>

</cftry>
<cfcatch Type="Any">

General Error Handling code
</cfcatch>

</cftry>

Although this example uses a Database error as an example, you can use any cfcatch type
attribute in the innermost error type.

Follow these rules when you use the rethrow tag:
• Nest cftry tags, with one tag for each level of error handling hierarchy. Each level

contains the cfcatch tags for that level of error granularity.
• Place the most general error catching code in the outermost cftry block.
• Place the most specific error catching code in the innermost cftry block.
• Place the code that can cause an exception error at the top of the innermost cftry

block.
• End each cfcatch block except those in the outermost cftry block with a cfrethrow

tag.

Example: using nested tags, cfthrow, and cfrethrow
The following example shows many of the techniques discussed in this chapter, including
nested cftry blocks and the cfthrow and cfrethrow tags. The example includes a simple
calling page and a custom tag page:
• The calling page does little more than call the custom tag with a single attribute, a

name to be looked up in a database. It does show, however, how a calling page can
handle an exception thrown by the custom tag.

• The custom tag finds all records in the CompanyInfo database with a matching last
name, and returns the results in a Caller variable. If it fails to connect with the main
database, it tries a backup database.

The calling page

The calling page represents a section from a larger application page. To keep things
simple, the example hard-codes the name to be looked up.

<cftry>
<cf_getEmps EmpName="Jones">
<cfcatch type="myApp.getUser.noEmpName">

<h2>Oops</h2>
<cfoutput>#cfcatch.Message#</cfoutput>

</cfcatch>
</cftry>
<cfif isdefined("getEmpsResult")>

<cfdump var="#getEmpsResult#">
</cfif>
310 Chapter 14 Handling Errors

Reviewing the code

The following table describes the code:

The custom tag page

The custom tag page searches for the name in the database and returns any matching
records in a getEmpsResult variable in the calling page. It includes several nested cftry
blocks to handle error conditions. For a full description, see "Reviewing the code",
following the example:

Save the following code as getEmps.cfm in the same directory as the calling page.

<!--- If the tag didn’t pass an attribute, throw an error to be handled by
the calling page --->

<cfif NOT IsDefined("attributes.EmpName")>
<cfthrow Type="myApp.getUser.noEmpName"

message = "Last Name was not supplied to the cf_getEmps tag.">
<cfexit method = "exittag">

<!--- Have a name to look up --->
<cfelse>
<!--- Outermost Try Block --->

<cftry>

<!--- Inner Try Block --->
<cftry>

<!--- Try to query the main database and set a caller variable to the result --->
<cfquery Name = "getUser" DataSource="CompanyInfo">

SELECT *
FROM Employee
WHERE LastName = ’#attributes.EmpName#’

</cfquery>
<cfset caller.getEmpsResult = getuser>

<!--- If the query failed with a database error, check the error type
to see if the database was found --->
<cfcatch type= "Database">

<cfif (cfcatch.SQLState IS "S100") OR (cfcatch.SQLState IS
"IM002")>

<!--- If the database wasn't found, try the backup database --->
<!--- Use a third-level Try block --->

<cftry>
<cfquery Name = "getUser" DataSource="CompanyInfoBackup">

Code Description

<cftry>
<cf_getEmps EmpName="Jones">

In a cftry block, calls the cf_getEmps custom tag
(getEmps.cfm).

<cfcatch type="myApp.getUser.noEmpName">
<h2>Oops</h2>
<cfoutput>#cfcatch.Message#</cfoutput>

</cfcatch>
</cftry>

If the tag throws an exception indicating that it did not
receive a valid attribute, catches the exception and
displays a message, including the message variable
set by the cfthrow tag in the custom tag.

<cfif isdefined("getEmpsResult")>
<cfdump var="#getEmpsResult#">
</cfif>

If the tag returns a result, uses the cfdump tag to
display it. (A production application would not use
cfdump.)
Handling runtime exceptions with ColdFusion tags 311

SELECT *
FROM Employee
WHERE LastName = ’#attributes.EmpName#’

</cfquery>
 <cfset caller.getEmpsResult = getuser>

<!--- If still get a database error, just return to the calling page
without setting the caller variable. There is no cfcatch body.
This might not be appropriate in some cases.
The Calling page ends up handling this case as if a match was not
found --->

 <cfcatch type = "Database" />
<!--- Still in innermost try block. Rethrow any other errors to the next

try block level --->
<cfcatch type = "Any">

<cfrethrow>
</cfcatch>

</cftry>

<!--- Now in second level try block.
Throw all other types of Database exceptions to the next try

block level --->
<cfelse>

<cfrethrow>
</cfif>

</cfcatch>
<!--- Throw all other execptions to the next try block level --->

<cfcatch type = "Any">
<cfrethrow>

</cfcatch>
</cftry>

<!--- Now in Outermost try block.
 Handle all unhandled exceptions, including rethrown exceptions, by

displaying a message and exiting to the calling page.--->
<cfcatch Type = "Any">

<h2>Sorry</h2>
<p>An unexpected error happened in processing your user inquiry.

Please report the following to technical support:</p>
<cfoutput>

Type: #cfcatch.Type#
Message: #cfcatch.Message#

</cfoutput>
<cfexit method = "exittag">

</cfcatch>
</cftry>

</cfif>
312 Chapter 14 Handling Errors

Reviewing the code

The following table describes the code:

Code Description

<cfif NOT IsDefined("attributes.EmpName")>
 <cfthrow Type="myApp.getUser.noEmpName"
 message = "Last Name was not supplied to

the cf_getEmps tag.">
 <cfexit method = "exittag">

Makes sure the calling page specified an EmpName
attribute. If not, throws a custom error that indicates the
problem and exits the tag. The calling page handles the
thrown error.

<cfelse>
 <cftry>

If the tag has an EmpName attribute, does the remaining work
inside an outermost try block. The cfcatch block at its end
handles any otherwise- uncaught exceptions.

<cftry>
 <cfquery Name = "getUser"

DataSource="CompanyInfo">
 SELECT *
 FROM Employee
 WHERE LastName = '#attributes.EmpName#'
 </cfquery>
 <cfset caller.getEmpsResult = getuser>

Starts a second nested try block. This block catches
exceptions in the database query.

If there are no exceptions, sets the calling page’s
getEmpsResult variable with the query results.

<cfcatch type= "Database">
 <cfif (cfcatch.sqlstate IS "S100") OR

(cfcatch.sqlstate IS "IM002")>
 <cftry>
 <cfquery Name = "getUser" DataSource=

"CompanyInfoBackup"
SELECT *

 FROM Employee
 WHERE LastName = '#attributes.EmpName#'
 </cfquery>
 <cfset caller.getEmpsResult = getuser>

If the query threw a Database error, checks to see if the
error was caused by an inability to access the database
(indicated by an SQLState variable value of S100 or
IM002).

If the database was not found, starts a third nested try
block and tries accessing the backup database. This try
block catches exceptions in this second database access.

If the database inquiry succeeds, sets the calling page’s
getEmpsResult variable with the query results.

<cfcatch type = "Database" /> If the second database query failed with a database error,
gives up silently. Because the Database type cfcatch tag
does not have a body, the tag exits. The calling page does
not get a getEmpsResult variable. It cannot tell whether the
database had no match or an unrecoverable database
error occurred, but it does know that no match was found.

<cfcatch type = "Any">
<cfrethrow>

</cfcatch>
</cftry>

If the second database query failed for any other reason,
throws the error up to the next try block.

Ends the innermost try block

<cfelse>
<cfrethrow>

</cfif>
</cfcatch>

In the second try block, handles the case in which the first
database query failed for a reason other than a failure to
find the database.

Rethrows the error up to the next level, the outermost try
block.
Handling runtime exceptions with ColdFusion tags 313

Testing the code

To test the various ways errors can occur and be handled in this example, try the
following:
• In the calling page, change the attribute name to any other value; for example, My

Attrib. Then change it back.
• In the first cfquery tag, change the data source name to an invalid data source; for

example, NoDatabase.
• With an invalid first data source name, change the data source in the second cfquery

tag to CompanyInfo.
• Insert cfthrow tags throwing custom exculpations in various places in the code and

observe the effects.

<cfcatch type = "Any">
<cfrethrow>

</cfcatch>
</cftry>

In the second try block, catches any errors other
exceptions and rethrows them up to the outermost try
block.

Ends the second try block.

 <cfcatch Type = "Any">
 <h2>Sorry</h2>
 <p>An unexpected error happened in processing

your user inquiry.
 Please report the following to technical
support:</p>
 <cfoutput>
 Type: #cfcatch.Type#
 Message: #cfcatch.Message#
 </cfoutput>

<cfexit method = "exittag">
 </cfcatch>
 </cftry>
</cfif>

In the outermost try block, handles any exceptions by
displaying an error message that includes the exception
type and the exception’s error message. Because there
was no code to try that is not also in a nested try block, this
cfcatch tag handles only errors that are rethrown from the
nested blocks.

Exits the custom tag and returns to the calling page.

Ends the catch block, try block, and initial cfif block.

Code Description
314 Chapter 14 Handling Errors

CHAPTER 15

Using Persistent Data and Locking
ColdFusion MX provides several variable scopes in which data persists past the life of a
single request. These are the Client, Application, Session, and Server scopes. These
scopes let you save data over time and share data between pages and even applications.
(This chapter refers to these scopes as persistent scopes.) In particular, you can use the
Client and Session scopes to maintain information about a user across multiple requests.

ColdFusion MX lets you lock access to sections of code to ensure that ColdFusion does
not attempt to run the code, or access the data that it uses, simultaneously or in an
unpredictable order. This locking feature is important for ensuring the consistency of all
shared data, including data in external sources in addition to data in persistent scopes.

This chapter describes how to use persistent scopes to develop an application and how to
use locking to ensure data consistency.

Contents

• About persistent scope variables ... 316

• Managing the client state ... 318

• Configuring and using client variables ... 323

• Configuring and using session variables ... 328

• Configuring and using application variables .. 333

• Using server variables... 335

• Locking code with cflock ... 336

• Examples of cflock... 343
315

About persistent scope variables
ColdFusion MX provides four variable scopes, described in the following table, that let
you maintain data that must be available to multiple applications or users or must last
beyond the scope of the current request.

The following sections provide information that is common to all or several of these
variables. Later sections describe how to use the Client, Session, Application, and Server
scopes in your applications, and provide detailed information about locking code.

Variable scope Description

Client Contains variables that are available for a single client browser over
multiple browser sessions in an application. For information about
browser sessions, see, “What is a session?” on page 328.

Useful for client-specific information, such as client preferences, that
you want to store for a significant period of time.

Data is stored as cookies, database entries, or Registry values. client
variables can time out after an extended period.

Although do not have to use the Client scope prefix in the variable
name, code that uses the prefix is more efficient and easier to maintain.

Session Contains variables that are available for a single client browser for a
single browser session in an application.

Useful for client-specific information, such as shopping cart contents,
that you want to persist while the client is visiting your application.

Data is stored in memory and times out after a period of inactivity or
when the server shuts down.

ColdFusion MX Administrator lets you select between two kinds of
session management, Standard ColdFusion Session management and
J2EE session management. For information about types of session
management, see, “ColdFusion and J2EE session management” on
page 328

You must use the Session scope prefix in the variable name.

Application Contains variables that are available to all pages in an application for all
clients.

Useful for application-specific information, such as contact information,
that can vary over time and should be stored in a variable.

Data is stored in memory and times out after a period of inactivity or
when the server shuts down.

You must use the Application scope prefix in the variable name.

Server Contains variables that are available to all applications in a server and all
clients.

Useful for information that applies to all pages on the server, such as an
aggregate page-hit counter.

Data is stored in memory. The variables do not time out, but you can
delete variables you create, and all server variables are automatically
deleted when the server stops running.

You must use the Server scope prefix in the variable name.
316 Chapter 15 Using Persistent Data and Locking

ColdFusion persistent variables and ColdFusion structures
All persistent scopes are available as ColdFusion structures. As a result, you can use
ColdFusion structure functions to access and manipulate Client, Session, Application,
and Server scope contents. This chapter does not cover using these functions in detail,
but does mention features or limitations that apply to specific scopes.

Note: Although you can use the StructClear function to clear your data from the Server
scope, the function does not delete the names of the variables, only their values, and it does
not delete the contents of the Server.os and Server.ColdFusion structures. Using the
StructClear function to clear the Session, or Application scope clears the entire scope,
including the built-in variables. Using the StructClear function to clear the Client scope
clears the variables from the server memory, but does not delete the stored copies of the
variables.

ColdFusion persistent variable issues
Variables in the Session, Application, and Server scopes are kept in ColdFusion server
memory. This storage method has several implications:
• All variables in these scopes are lost if the server stops running.
• Variables in these scopes are not shared by servers in a cluster.
• To ensure data consistency, you must lock access to all code that changes variables in

these scopes and all code that reads variables in these scopes with values that can
change.

Additionally, you must be careful when using client variables in a server cluster, where an
applications can run on multiple servers.

Note: If you use J2EE session management and configure the J2EE server to retain
session data between server restarts, ColdFusion retains session variables between server
restarts.

Using variables in clustered systems

Because memory variables are stored in memory, they are not available to all servers in a
cluster. As a result, you generally do not use Session, Application, or Server scope
variables in clustered environment. However, you might use these scope variables in a
clustered system in the following circumstances:
• Many clustering systems, including ClusterCats support “sticky” sessions, in which

the clustering system ensures that each user session remains on a single server. In this
case, you can use session variables as you would on a single server.

• You can use Application and Server scope variables in a cluster for write-once
variables that are consistently set, for example, from a database.

To use client variables on a clustered system, store the variables as cookies or in a database
that is available to all servers. If you use database storage, select the Purge Data for Clients
that Remain Unvisited option in the ColdFusion MX Administrator Client Variables
Add/Edit Client Store page on one server only.

For more information on using client and session variables in clustered systems, see
“Managing client identity information in a clustered environment” on page 322.
About persistent scope variables 317

Locking memory variables

Because ColdFusion is a multithreaded system in which multiple requests can share
Session, Application, and Server scope variables, it is possible for two or more requests to
try to access and modify data at the same time. ColdFusion runs in a J2EE environment,
which prevents simultaneous data access, so multiple requests do not cause severe system
errors. However, such requests can result in inconsistent data values, particularly when a
page might change more than one variable.

To prevent data errors with session, application, and server variables, lock code that
writes and reads data in these scopes. For more information, see “Locking code with
cflock” on page 336.

Managing the client state
Because the web is a stateless system, each connection that a browser makes to a web
server is unique to the web server. However, many applications must keep track of users
as they move through the pages within the application. This is the definition of client
state management.

ColdFusion provides tools to maintain the client state by seamlessly tracking variables
associated with a browser as the user moves from page to page within the application. You
can use these variables in place of other methods for tracking client state, such as URL
parameters, hidden form fields, and HTTP cookies.
318 Chapter 15 Using Persistent Data and Locking

About client and session variables
ColdFusion provides two tools for managing the client state: client variables and session
variables. Both types of variables are associated with a specific client, but you manage and
use them differently, as described in the following table:

Session variables are normally better than client variables for values that need to exist for
only a single browser session. You should reserve client variables for client-specific data,
such as client preferences that you want available for multiple browser sessions.

Variable type Description

Client Data is saved as cookies, database entries, or Registry entries. Data is
saved between server restarts, but is initially accessed and saved more
slowly than data stored in memory.

Each type of data storage has its own time-out period. You can specify
the database and Registry data time-outs in ColdFusion MX
Administrator. ColdFusion sets Cookie client variables to expire after
approximately 10 years.

Data is stored on a per-user and per-application basis. For example, if
you store client variables as cookies, the user has a separate cookie for
each ColdFusion application provided by a server.

Client variables must be simple variables, such as numbers, dates, or
strings. They cannot be arrays, structures, query objects, or other
objects.

Client variable names can include periods. For example, My.ClientVar is
a valid name for a simple client variable. Avoid such names, however, to
ensure code clarity,

You do not have to prefix client variables with the scope name when you
reference them, However, if you do not use the Client prefix, you might
unintentionally refer to a variable with the same name in another scope.
Using the prefix also optimizes performance and increases program
clarity.

You do not lock code that uses client variables.

You can use client variables that are stored in cookies or a common
database in clustered systems.

Session Data is stored in memory so it is accessed quickly.

Data is lost when the client browser is inactive for a time-out period. You
specify the time-out in the ColdFusion Administrator and
Application.cfm.

As with client variables, data is available to a single client and
application only.

Variables can store any ColdFusion data type.

You must prefix all variable names with the Session scope name.

Lock code that uses session variables to ensure data integrity.

You can use session variables in clustered systems only if the systems
support “sticky” sessions, where a session is limited to a single server.
Managing the client state 319

Maintaining client identity
Because the web is a stateless system, client management requires some method for
maintaining knowledge of the client between requests. Normally you do this using
cookies, but you can also do it by passing information between application pages. The
following sections describe how ColdFusion maintains client identity in a variety of
configurations and environments, and discuss issues that can arise with client state
management.

About client identifiers

To use client and session variables, ColdFusion must be able to identify the client. It
normally does so by setting the following two cookie values on the client’s system:
• CFID A sequential client identifier
• CFToken A random-number client security token

These cookies uniquely identify the client to ColdFusion, which also maintains copies of
the variables as part of the Session and Client scopes. You can configure your application
so that it does not use client cookies, but in this case, you must pass these variables to all
the pages that your application calls. For more information about maintaining client and
session information without using cookies, see “Using client and session variables
without cookies” on page 320.

You can configure ColdFusion MX to use J2EE servlet session management instead of
ColdFusion session management for session variables. This method of session
management does not use CFID and CFToken values, but does use a client-side jsessionid
session management cookie. For more information on using J2EE session management,
see “ColdFusion and J2EE session management” on page 328.

Using client and session variables without cookies

Often, users disable cookies in their browsers. In this case, ColdFusion cannot maintain
the client state automatically. You can use client or session variables without using
cookies, by passing the client identification information between application pages.
However, this technique has significant limitations, as follows:
• Client variables are effectively the same as session variables, except that they leave

unusable data in the client data store.
Because the client’s system does not retain any identification information, the next
time the user logs on, ColdFusion cannot identify the user with the previous client
and must create a new client ID for the user. Any information about the user from a
previous session is not available, but remains in client data storage until ColdFusion
deletes it. If you clear the Purge Data for Clients that Remain Unvisited option in the
ColdFusion MX Administrator, ColdFusion never deletes this data.

Therefore, do not use client variables, if you do not require users to enable cookies.
To retain client information without cookies, require users to login with a unique ID.
You can then save user-specific information in a database with the user’s ID as a key.

• ColdFusion creates a new session each time the user requests a page directly in the
browser, because the new request contains no state information to indicate the session
or client.
320 Chapter 15 Using Persistent Data and Locking

Note: You can prevent ColdFusion from sending client information to the browser as
cookies by setting the setClientCookies attribute of the cfapplication tag to No.

To use ColdFusion client or session variables without using cookies, each page must pass
the CFID and CFToken values to any page that it calls as part of the request URL. If a page
contains any HTML href a= links, cflocation tags, form tags, or cfform tags the tags must
pass the CFID and CFToken values in the tag URL. To use J2EE session management, you
must pass the jsessionid value in page requests. To use ColdFusion client variables and
J2EE session variables, you must pass the CFID, CFToken, and jsessionid values in URLs.

ColdFusion provides the URLSessionFormat function, which does the following:
• If the client does not accept cookies, automatically appends all required client

identification information to a URL.
• If the client accepts cookies, does not append the information.

The URLSessionFormat function automatically determines which identifiers are required,
and sends only the required information. It also provides a more secure and robust
method for supporting client identification than manually encoding the information in
each URL, because it only sends the information that is required, when it is required, and
it is easier to code.

To use the URLSessionFormat function, enclose the request URL in the function. For
example, the following cfform tag posts a request to another page and sends the client
identification, if required:

<cfform method="Post" action="#URLSessionFormat("MyActionPage.cfm")#>

Tip: If you use the same page URL in multiple URLSessionFormat functions, you can gain a
small performance improvement and simplify your code if you assign the formatted page
URL to a variable, for example:

<cfset myEncodedURL=URLSessionFormat(MyActionPage.cfm)>
<cfform method="Post" action="#myEncodedURL#">

Client identifiers and security

The following client identifier issues can have security implications:
• Ensuring the uniqueness and complexity of the CFToken identifier
• Limiting the availability of Session identifiers

The next sections discuss these issues.

Ensuring CFToken uniqueness and security

By default, ColdFusion uses an eight-digit random number in the CFToken identifier. This
CFToken format provides a unique, secure identifier for users under most circumstances.
(In ColdFusion MX, the method for generating this number uses a
cryptographic-strength random number generator that is seeded only when the server
starts.)
Managing the client state 321

However, in the ColdFusion MX Administrator, you can enable the Settings page to
produce a more complex CFToken identifier. If you enable the Use UUID for cftoken
option, ColdFusion creates the CFToken value by prepending a 16-digit random
hexadecimal number to a ColdFusion UUID. The resulting CFToken identifier looks
similar to the following:

3ee6c307a7278c7b-5278BEA6-1030-C351-3E33390F2EAD02B9

Providing Session security

ColdFusion uses the same client identifiers for the Client scope and the standard Session
scope. Because the CFToken and CFID values are used to identify a client over a period of
time, they are normally saved as cookies on the user’s browser. These cookies persist until
the client’s browser deletes them, which can be a considerable length of time. As a result,
hackers could have more access to these variables than if ColdFusion used different user
identifiers for each session.

A hacker who has the user’s CFToken and CFID cookies could gain access to user data by
accessing a web page during the user’s session using the stolen CFToken and CFID cookies.
While this scenario is unlikely, it is theoretically possible.

You can remove this vulnerability by selecting the Use J2EE Session Variables option on
the ColdFusion Administrator Memory Variables page. The J2EE session management
mechanism creates a new session identifier for each session, and does not use either the
CFToken or the CFID cookie value.

Managing client identity information in a clustered environment

To maintain your application’s client identity information in a clustered server
environment, you must specify the cfapplication setdomaincookies attribute in your
Application.cfm page.

The setdomaincookies attribute specifies that the server-side copies of the CFID and
CFToken variables used to identify the client to ColdFusion are stored at the domain level
(for example, .macromedia.com). If CFID and CFToken variable combinations already exist
on each host in the cluster, ColdFusion migrates the host-level variables on each cluster
member to the single, common domain-level variable. Following the setting or migration
of host-level cookie variables to domain-level variables, ColdFusion creates a new cookie
variable (CFMagic) that tells ColdFusion that domain-level cookies have been set.

If you use client variables in a clustered system, you must also use a database or cookies to
store the variables.
322 Chapter 15 Using Persistent Data and Locking

Configuring and using client variables
Use client variables for data that is associated with a particular client and application and
that must be saved between user sessions. Use client variables for long-term information
such as user display or content preferences.

Enabling client variables
To enable client variables, you must set the cfapplication tag clientmanagement attribute
to Yes on every page. Because the Application.cfm file is included in all of the
application’s pages, you enable client management in the cfapplication tag, at the
beginning of the Application.cfm file. For example, to enable client variables in an
application named SearchApp, you use the following line in the application’s
Application.cfm page:

<cfapplication NAME="SearchApp" clientmanagement="Yes">

Choosing a client variable storage method

By default, Coldfusion stores client variables in the Registry. In most cases, however, it is
more appropriate to store the information as client cookies or in a SQL database.

The ColdFusion MX Administrator Client Variables page controls the default client
variable location. You can override the default location by specifying a clientStorage
attribute in the cfapplication tag.

You can specify the following values in the clientStorage attribute:
• Registry(default)
• Name of a data source configured in ColdFusion Administrator
• Cookie

Generally, it is most efficient to store client variables in a database. Although the Registry
option is the default, the Registry has significant limitations for client data storage. The
Registry cannot be used in clustered systems and its use for client variables on UNIX is
not supported in ColdFusion MX.

Using cookie storage

When you set the cfapplication tag clientstorage="Cookie" attribute, the cookie that
ColdFusion creates has the application's name. Storing client data in a cookie is scalable
to large numbers of clients, but this storage mechanism has some limitations. In
particular, if the client turns off cookies in the browser, client variables do not work.

Consider the following additional limitations before implementing cookie storage for
client variables:
• Some browsers allow only 20 cookies to be set from a particular host. ColdFusion

uses two of these cookies for the CFID and CFToken identifiers, and also creates a cookie
named cfglobals to hold global data about the client, such as HitCount, TimeCreated,
and LastVisit. This limits you to 17 unique applications per client-host pair.
Configuring and using client variables 323

• Some browsers set a size limit of 4K bytes per cookie. ColdFusion encodes non
alphanumeric data in cookies with a URL encoding scheme that expands at a 3-1
ratio, which means you should not store large amounts of data per client. ColdFusion
throws an error if you try to store more than 4,000 encoded bytes of data for a client.

Configuring database storage

When you specify a database for client variable storage, do not always have to manually
create the data tables that store the client variables.

If ColdFusion can identify that the database you are using supports SQL creation of
database tables, you only need to create the database in advance. When you click the Add
button on the Select Data Source to Add as Client Store box on the Memory Variables
page, the Administrator displays a Add/Edit Client Store page which contains a Create
Client Database Tables selection box. Select this option to have ColdFusion create the
necessary tables in your database. (The option does not appear if the database already has
the required tables.)

If your database does not support SQL creation of tables, or if you are using the ODBC
socket [Macromedia] driver to access your database, you must use your database tool to
create the client variable tables. Create the CDATA and CGLOBAL tables.

The CDATA table must have the following columns:

The CGLOBAL table must have the following columns:

Note: Different databases use different names for their data types. The names in the
preceding tables are common, but your database might use other names.

To improve performance, you should also create indexes when you create these tables. For
the CDATA table, index these cfid and app columns. For the CGLOBAL table, index the
cfid column.

Column Data type

cfid CHAR(64), TEXT, VARCHAR, or any data type capable of taking variable
length strings up to 64 characters

app CHAR(64), TEXT, VARCHAR, or any data type capable of taking variable
length strings up to 64 characters

data MEMO, LONGTEXT, LONG VARCHAR, or any data type capable of
taking long, indeterminate-length strings

Column Data type

cfid CHAR(64), TEXT, VARCHAR, or any data type capable of taking variable
length strings up to 64 characters

data MEMO, LONGTEXT, LONG VARCHAR, or any data type capable of
taking long, indeterminate-length strings

lvisit TIMESTAMP, DATETIME, DATE, or any data type that stores date and
time values
324 Chapter 15 Using Persistent Data and Locking

Specifying client variable storage in the Application.cfm file

The cfapplication tag clientStorage attribute lets you override the default client variable
storage application location. The following line tells ColdFusion to store the client
variables in the mydatasource data source:

<cfapplication name"SearchApp"
clientmanagement="Yes"
clientstorage="mydatasource">

Using client variables
When you enable client variables for an application, you can use them to keep track of
long-term information that is associated with a particular client.

Client variables must be simple data types: strings, numbers, lists, Booleans, or date and
time values. They cannot be arrays, record sets, XML objects, query objects, or other
objects. If you must store a complex data type as a client variable, you can use the cfwddx
tag to convert the data to WDDX format (which is represented as a string), store the
WDDX data, and use the cfwddx tag to convert the data back when you read it. For more
information on using WDDX, see “Using WDDX,” in Chapter 30.

Creating a client variable

To create a client variable and set its value, use the cfset or cfparam tag and use the Client
scope identifier as a variable prefix; for example:

<cfset Client.FavoriteColor="Red">

After you set a client variable this way, it is available for use within any page in your
application that is accessed by the client for whom the variable is set.

The following example shows how to use the cfparam tag to check for the existence of a
client parameter and set a default value if the parameter does not already exist:

<cfparam name="Client.FavoriteColor" default="Red">

Accessing and changing client variables

You use the same syntax to access a client variable as for other types of variables. You can
use client variables anywhere you use other ColdFusion variables.

To display the favorite color that has been set for a specific user, for example, use the
following code:

<cfoutput>
Your favorite color is #Client.FavoriteColor#.

</cfoutput>

To change the client’s favorite color, for example, use code such as the following:

<cfset Client.FavoriteColor = Form.FavoriteColor>
Configuring and using client variables 325

Standard client variables

The Client scope has the following built-in, read-only variables that your application can
use:

Note: ColdFusion lets you delete or change the values of the built-in client variables. As a
general rule, avoid doing so.

You use the Client.CFID, Client.CFToken, and Client.URLToken variables if your
application supports browsers that do not allow cookies. For more information on
supporting browsers that do not allow cookies, see “Using client and session variables
without cookies” on page 320.

You can use the Client.HitCount and time information variables to customize behavior
that depends on how often users visit your site and when they last visited. For example,
the following code shows the date of a user's last visit to your site:

<cfoutput>
Welcome back to the Web SuperShop. Your last
visit was on #DateFormat(Client.LastVisit)#.

</cfoutput>

Getting a list of client variables

To obtain a list of the custom client parameters associated with a particular client, use the
GetClientVariablesList function, as follows:

<cfoutput>#GetClientVariablesList()#</cfoutput>

The GetClientVariablesList function returns a comma-separated list of the names of the
client variables for the current application. The standard system-provided client variables
(CFID, CFToken, URLToken, HitCount, TimeCreated, and LastVisit) are not returned in the
list.

Variable Description

Client.CFID The client ID, normally stored on the client system as a cookie.

Client.CFToken The client security token, normally stored on the client system as a
cookie.

Client.URLToken A combination of the CFID and CFToken values, in the form
CFID=IDNum&CFTOKEN=tokenNum. This variable is useful if the client
does not support cookies and you must pass the CFID and CFToken
variables from page to page.

Client.HitCount The number of page requests made by the client.

Client.LastVisit The last time the client visited the application.

Client.TimeCreated The time the CFID and CFToken variables that identify the client to
ColdFusion were first created.
326 Chapter 15 Using Persistent Data and Locking

Deleting client variables

To delete a client variable, use the StructDelete function or the DeleteClientVariable
function. For example, the following lines are equivalent:

<cfset IsDeleteSuccessful=DeleteClientVariable("MyClientVariable")>

<cfset IsDeleteSuccessful=StructDelete(Client, "MyClientVariable")>

The Client Variables page of ColdFusion Administrator lets you set a time-out period of
inactivity after which ColdFusion removes client variables stored in either the Registry or
a data source. (The default value is 10 days for client variables stored in the Registry, and
90 days for client variables stored in a data source.)

Note: You cannot delete the system-provided client variables (CFID, CFToken, URLToken,
HitCount, TimeCreated, and LastVisit).

Using client variables with cflocation

If you use the cflocation tag to redirect ColdFusion to a path that ends with .dbm or
.cfm, the Client.URLToken variable is automatically appended to the URL. You can
prevent this behavior by adding the attribute addtoken="No" to the cflocation tag.

Caching client variable

When ColdFusion reads or writes client variables, it caches the variables in memory to
help decrease the overhead of accessing the client data. As a result, ColdFusion only
accesses the client data store when you read its value for the first time or, for values you
set, when the request ends. Additional references to the client variable use the cached
value in ColdFusion memory, thereby processing the page more quickly.

Exporting the client variable database

If your client variable database is stored in the Windows system Registry and you need to
move it to another machine, you can export the Registry key that stores your client
variables and take it to your new server. The system Registry lets you export and import
Registry entries.

To export your client variable database from the Registry in Windows:

1 Open the Registry editor.

2 Find and select the following key:
HKEY_LOCAL_MACHINE\SOFTWARE\Macromedia\ColdFusion\CurrentVersion\

Clients

3 On the Registry menu, click Export Registry File.

4 Enter a name for the Registry file.

After you create a Registry file, you can copy it to a new machine and import it by
clicking Import Registry File on the Registry editor Registry menu.

Note: On UNIX systems, the Registry entries are kept in /opt/coldfusion/registry/
cf.registry, a text file that you can copy and edit directly.
Configuring and using client variables 327

Configuring and using session variables
Use session variables when you need the variables for a single site visit or set of requests.
For example, you might use session variables to store a user's selections in a shopping cart
application. (Use client variables if you need a variable in multiple visits.)

Caution: To preserve data integrity, put code that uses session variables inside cflock
tags. For information on using cflock tags see “Locking code with cflock” on page 336.

What is a session?
A session refers to all the connections that a single client might make to a server in the
course of viewing any pages associated with a given application. Sessions are specific to
both the individual user and the application. As a result, every user of an application has
a separate session and has access to a separate set of session variables.

This logical view of a session begins with the first connection to an application by a client
and ends after that client's last connection. However, because of the stateless nature of the
web, it is not always possible to define a precise point at which a session ends. A session
should end when the user finishes using an application. In most cases, however, a web
application has no way of knowing if a user has finished or is just lingering over a page.

Therefore, sessions always terminate after a time-out period of inactivity. If the user does
not access a page of the application within this time-out period, ColdFusion interprets
this as the end of the session and clears any variables associated with that session.

The default time-out for session variables is 20 minutes. You can change the default
time-out on the Memory Variables page of ColdFusion Administrator Server tab.

You can also set the time-out period for session variables inside a specific application
(thereby overruling the Administrator default setting) by using the cfapplication tag
sessionTimeout attribute. However, you cannot use the cfapplication tag to set a
time-out value that is greater than the maximum session time-out value set on the
Administrator Memory Variables page.

Your application can also manually end a session, for example, when a user logs out.

ColdFusion and J2EE session management

The ColdFusion server can use either of the following types of session management:
• ColdFusion session management
• J2EE servlet session management

ColdFusion session management uses the same client identification method as
ColdFusion client management. When you use ColdFusion session management, session
variables are not available to JSP pages or Java servlets that you call from your
ColdFusion pages.
328 Chapter 15 Using Persistent Data and Locking

J2EE session management uses a session-specific session identifier, jsessionid, which is
created afresh at the start of each session. With J2EE session management, you can share
session variables between ColdFusion pages and JSP pages or Java servlets that you call
from the ColdFusion pages. Therefore, consider using J2EE session management in any
of the following cases:
• You want to maximize session security, particularly if you also use client variables
• You want to share session variables between ColdFusion pages and JSP pages or

servlets in a single application.
• You want to be able to manually terminate a session while maintaining the client

identification cookie for use by the Client scope.

Configuring and enabling session variables
To use session variables, you must enable them in both of the following places:
• ColdFusion MX Administrator
• The active cfapplication tag

ColdFusion Administrator and the cfapplication tag also provide facilities for
configuring session variable behavior, including the variable time-out.

Selecting and enabling session variables in ColdFusion MS Administrator

To use session variables, they must be enabled on the ColdFusion MX Administrator
Memory Variables page. (They are enabled by default.) You can also use the
Administrator Memory Variables page to do the following:
• Select to use ColdFusion session management (the default) or J2EE session

management.
• Change the default session time-out. The cfapplication tag can override this value.

The default value for this time-out is 20 minutes.
• Specify a maximum session time-out. The cfapplication tag cannot set a time-out

greater than this value. The default value for this time-out is two days.

Enabling session variables in your application

You must also enable session variables in the cfapplication tag in your Application.cfm
file. Do the following in the Application.cfm file to enable session variables:
• Set sessionManagement="Yes"
• Use the name attribute to specify the application's name.
• Optionally, use the sessionTimeout attribute to set an application-specific session

time-out value. Use the CreateTimeSpan function to specify the number of days,
hours, minutes, and seconds for the time-out.

The following sample code enables session management for the GetLeadApp application
and sets the session variables to time out after a 45-minute period of inactivity:

<cfapplication name="GetLeadApp"
sessionmanagement="Yes"
sessiontimeout=#CreateTimeSpan(0,0,45,0)#>
Configuring and using session variables 329

Storing session data in session variables
Session variables are designed to store session-level data. They are a convenient place to
store information that all pages of your application might need during a user session,
such as shopping cart contents or score counters.

Using session variables, an application can initialize itself with user-specific data the first
time a user accesses one of the application’s pages. This information can remain available
while that user continues to use that application. For example, you can retrieve
information about a specific user’s preferences from a database once, the first time a user
accesses any page of an application. This information remains available throughout that
user’s session, thereby avoiding the overhead of retrieving the preferences repeatedly.

Standard session variables
If you use ColdFusion session variables, the Session scope has four built-in, read-only
variables that your application can use. If you use J2EE session management, the Session
scope has two built-in variables. Generally, you use these variables in your ColdFusion
pages only if your application supports browsers that do not allow cookies. For more
information on supporting browsers that do not allow cookies, see “Using client and
session variables without cookies” on page 320. The following table describes the built-in
session variables.

Note: ColdFusion lets you delete or change the values of the built-in session variables. As a
general rule, avoid doing so.

If you enable client variables and ColdFusion session management, ColdFusion uses the
same values for the Client and Session scope CFID, CFToken, and URLtoken variables.
ColdFusion gets the values for these variables from the same source, the client’s CFID and
CFTOKEN cookies.

Variable Description

Session.CFID ColdFusion session management only: the client ID, normally
stored on the client system as a cookie.

Session.CFToken ColdFusion session management only: the client security token,
normally stored on the client system as a cookie.

Session.URLToken ColdFusion session management: a combination of the CFID and
CFToken values in the form CFID=IDNum&CFTOKEN=tokenNum. Use
this variable if the client does not support cookies and you must
pass the CFID and CFToken variables from page to page.

J2EE session management: the string jsessionid= followed by
the J2EE session ID.

Session.SessionID A unique identifier for the session.

ColdFusion session management: the application name and CFID
and CFToken values.

J2EE session management: the jsessionid value.
330 Chapter 15 Using Persistent Data and Locking

If you use J2EE session management, the Session scope does not include the
Session.CFID or Session.CFToken variables, but does include the Session.URLToken and
Session.SessionID variables. In this case, the Session.SessionID is the J2EE session ID
and Session.URLToken consists of the string jsessionid= followed by the J2EE session ID.

Getting a list of session variables
Use the StructKeyList function to get a list of session variables, as follows:

<cflock timeout=20 scope="Session" type="Readonly">
<cfoutput> #StructKeyList(Session)# </cfoutput>

</cflock>

Caution: Always put code that accesses session variables inside cflock tags.

Creating and deleting session variables
Use a standard assignment statement to create a new session variable, as follows:

<cflock timeout=20 scope="Session" type="Exclusive">
<cfset Session.ShoppingCartItems = 0>

</cflock>

Use the structdelete tag to delete a session variable; for example:

<cflock timeout=20 scope="Session" type="Exclusive">
<cfset StructDelete(Session, "ShoppingCartItems")>

</cflock>

Note: If you set session variables on a CFML template that uses the cflocation tag,
ColdFusion might not set the variables. For more information, see Macromedia TechNote
22712 at http://www.macromedia.com/v1/Handlers/index.cfm?ID=22712&Method=Full.

Accessing and changing session variables
You use the same syntax to access a session variable as for other types of variables.
However, you must lock any code that accesses or changes session variables.

For example, to display the number of items in a user’s shopping cart, use favorite color
that has been set for a specific user, for example, use the following code:

<cflock timeout=20 scope="Session" type="Exclusive">
<cfoutput>

Your shopping cart has #Session.ShoppingCartItems# items.
</cfoutput>

</cflock>

To change increase the number of items in the shopping cart, use the following code:

<cflock timeout=20 scope="Session" type="Exclusive">
<cfset Session.ShoppingCartItems = Session.ShoppingCartItems + 1>

</cflock>
Configuring and using session variables 331

Ending a session
If you use J2EE session management, the session and all session variables are deleted,
when the user closes the browser.

If you use ColdFusion session management and do not explicitly terminate a session, for
example when a user logs out, the session variables remain in ColdFusion server memory
until the session time-out period elapses. If you store sensitive data, such as personally
identifiable user information, in session variables, you should clear the data from the
Session structure when the user logs out.

You can expire a session by using the cfapplication tag and setting the sessiontimeout
attribute 0. The cfapplication tag must also reset all other attributes to the desired
settings, as follows:

<cfapplication
name="MyApp"
clientmanagement="Yes"
applicationtimeout="#CreateTimeSpan(0, 0, 0, 30)#"
sessionmanagement="Yes"
sessiontimeout=#CreateTimeSpan(0, 0, 0, 0)# >

To save processing time, ColdFusion deletes expired session variables every 10 seconds.
As a result, the session might continue to exist for up to 10 seconds after ColdFusion
executes your code.
332 Chapter 15 Using Persistent Data and Locking

Configuring and using application variables
Application variables are available to all pages within an application, that is, pages that
have the same application name. Because application variables are persistent, you easily
can pass values between pages. You can use application variables for information
including the application name, background color, data source names, or contact
information.

You set the application name in the cfapplication tag, normally on your application’s
Application.cfm page. The application name is stored in the
Application.applicationName variable.

Unlike client and session variables, application variables do not require that a client name
(client ID) be associated with them. They are available to any clients that use pages in the
application.

Caution: To preserve data integrity, put code that uses application variables inside cflock
tags. For information on using cflock tags see “Locking code with cflock” on page 336.

The following sections describe how to configure and use application variables.

Configuring and enabling application variables
To use application variables, do the following:
• Ensure that they are enabled in the ColdFusion MX Administrator. (They are

enabled by default.)
• Specify the application name in the cfapplication tag for the current page.

Note: ColdFusion supports unnamed applications for compatibility with J2EE
applications. For more information see “Unnamed ColdFusion Application and Session
scopes,” in Chapter 32.

The ColdFusion MX Administrator also lets you specify the following information:
• A default variable time-out. If all pages in an application are inactive for the time-out

period, ColdFusion deletes all the application variables. The cfapplication tag can
override this value for a specific application. The default value for this time-out is two
days.

• A maximum time-out. The cfapplication tag cannot set a time-out greater than this
value. The default value for this time-out is two days.

You can set the time-out period for application variables within a specific application by
using the applicationTimeout attribute of the cfapplication tag.

Storing application data in application variables
Application variables are a convenient place to store information that all pages of your
application might need, no matter which client is running that application. Using
application variables, an application could, for example, initialize itself when the first user
accesses any page of that application. This information can then remain available
indefinitely, thereby avoiding the overhead of repeated initialization.

Because the data stored in application variables is available to all pages of an application,
and remains available until a specific period of inactivity passes or the ColdFusion Server
shuts down, application variables are convenient for application-global, persistent data.
Configuring and using application variables 333

However, because all clients running an application see the same set of application
variables, these variables are not appropriate for client-specific or session-specific
information. To target variables for specific clients, use client or session variables.

Using application variables
Generally, application variables should hold information that you write infrequently. In
most cases, the values of these variables are set once, most often when an application first
starts. Then the values of these variables are referenced many times throughout the life of
the application or the course of a session.

To preserve data integrity, you must put all code that writes to Application scope
variables or reads Application scope variables with data that can change inside cflock
tags.

Because each Application scope variable is shared in memory by all requests in the
application, these variables can become bottlenecks if used inappropriately. Whenever a
request is reading or writing an Application scope variable, any other requests that use the
variable must wait until the code accessing the variable completes. This problem is
increased by the processing time required for locking. If many users access the application
simultaneously and you use Application scope variables extensively, your application
performance might degrade. If your application uses many application variables, consider
whether the variables must be in the Application scope or whether they can be Session or
Request scope variables.

The application scope has one built-in variable, Application.applicationName, which
contains the application name you specify in the cfapplication tag.

You access and manipulate application variables the same way you use session variables,
except that you use the variable prefix Application, not Session, and specify Session as the
lock scope. For examples of using session variables see “Creating and deleting session
variables” on page 331 and “Accessing and changing session variables” on page 331.

For information on locking write-once read-many application variables efficiently, see
“Locking application variables efficiently” on page 342
334 Chapter 15 Using Persistent Data and Locking

Using server variables
Server variables are associated with a single ColdFusion Server. They are available to all
applications that run on the server. Use server variables for data that must be accessed
across clients and applications, such as global server hit counts.

Server variables do not time out, but they are lost when the server shuts down. You can
delete server variables.

Server variables are stored on a single server. As a result, you should not use server
variables if you use ColdFusion on a server cluster.

You access and manipulate server variables the same way use Session and application
variables, except you use the variable prefix Server.

Caution: To preserve data integrity, put code that uses server variables inside cflock tags.
You do not have to lock access to built-in server variables.

ColdFusion provides the following standard built-in read-only server variables:

Variable Description

Server.ColdFusion.AppServer The name of the J2EE application server
ColdFusion is using. For ColdFusion MX Server
editions, which have an integrated application
server, the name is JRun4.

Server.ColdFusion.Expiration The date, in ODBC date format, on which the
ColdFusion Server license expires. (A null string in
all but trial versions of ColdFusion.)

Server.ColdFusion.ProductLevel The server product level, such as Enterprise.

Server.ColdFusion.ProductName The name of the product (ColdFusion Server).

Server.ColdFusion.ProductVersion The version number for the server that is running,
such as 6,0,0.

Server.ColdFusion.Rootdir Directory under which ColdFusion is installed, such
as C:\cfusion.

Server.ColdFusion.SerialNumber The serial number assigned to this server
installation.

Server.ColdFusion.SupportedLocales The locales, such as English (US) and Spanish
(Standard), supported by the server.

Server.OS.AdditionalInformation Additional information provided by the operating
system, such as the Service Pack number.

Server.OS.arch The processor architecture, such as x86 for Intel
Pentium processors.

Server.OS.BuildNumber The specific operating system build, such as 1381

Server.OS.Name The name of the operating system, such as
Windows NT.

Server.OS.Version The version number of the operating system, such
as 4.0.
Using server variables 335

Locking code with cflock
The cflock tag controls simultaneous access to ColdFusion code. The cflock tag lets you
do the following:
• Protect sections of code that access and manipulate shared data in the Session,

Application, and Server scopes.
• Ensure that file updates do not fail because files are open for writing by other

applications or ColdFusion tags.
• Ensure that applications do not try to simultaneously access ColdFusion extension

tags written using the CFX API that are not thread-safe. This is particularly
important for CFX tags that use shared (global) data structures without protecting
them from simultaneous access (not thread-safe). However, Java CFX tags can also
access shared resources that could become inconsistent if the CFX tag access is not
locked.

• Ensure that applications do not try to simultaneously access databases that are not
thread-safe. (This is not necessary for most database systems.)

ColdFusion Server is a multithreaded web application server that can process multiple
page requests at a time. As a result, the server can attempt to access the same information
or resources simultaneously, as the result of two or more requests.

While the ColdFusion Server is thread-safe and does not try to modify a variable
simultaneously, it does not ensure the correct order of access to information. If multiple
pages, or multiple invocations of a page, attempt to write data simultaneously, or read
and write it at the same time, the resulting data can be inconsistent, as shown in the
following “Sample locking scenarios”section.

Similarly, the ColdFusion Server cannot automatically ensure that two sections of code
do not attempt to access external resources such as files, databases, or CFX tags that
cannot properly handle simultaneous requests. Nor can the ColdFusion Server ensure
that the order of access to these shared resources is consistent and results in valid data.

By locking code that accesses such resources so that only one thread can access the
resource at a time, you ensure data integrity.

Sample locking scenarios
The following examples present scenarios in which you need to lock ColdFusion code.
These scenarios show only two of the circumstances where locking is vital.

Reading and writing a shared variable

If you have an application-wide value, such as a counter of the total number of tickets
sold, you might have code such as the following on a login page:

<cfset Application.totalTicketsSold = Application.totalTicketsSold + ticketOrder>

When ColdFusion executes this code, it performs the following operations:

1 Retrieves the current value of Application.totalTicketsSold from temporary storage.

2 Increments this value.

3 Stores the result back in the Application scope.
336 Chapter 15 Using Persistent Data and Locking

Suppose that ColdFusion processes two ticket orders at approximately the same time, and
that the value of Application.totalTicketsSold is initially 160. The following sequence
might happen:

1 Order 1 reads the total tickets sold as 160.

2 Order 2 reads the total tickets sold as 160.

3 Order 1 adds an order of 5 tickets to 160 to get 165.

4 Order 2 adds an order of 3 tickets to 160 to get 163.

5 Order 1 saves the value 165 to Application.totalTicketsSold

6 Order 2 saves the value 163 to Application.totalTicketsSold

The application now has an inaccurate count of the tickets sold, and is in danger of
selling more tickets than the auditorium can hold.

To prevent this from happening, lock the code that increments the counter, as follows:

<cflock scope="Application" timeout="10" type="Exclusive">
<cfset Application.totalTicketsSold = Application.totalTicketsSold +

ticketOrder>
</cflock>

The cflock tag ensures that while ColdFusion performs the processing in the tag body,
no other threads can access the Application scope. As a result, the second transaction is
not processed until the first one completes. The processing sequence looks something like
the following:

1 Order 1 reaches the lock tag, which gets an Application scope lock.

2 Order 1 reads the total tickets sold as 160.

3 Order 2 reaches the lock tag. Because there is an active Application scope lock,
ColdFusion waits for the lock to free.

4 Order 1 adds an order of 5 tickets to 160 to get 165.

5 Order 1 saves the value 165 to Application.totalTicketsSold.

6 Order 1 exits the lock tag. The Application scope lock is now free.

7 Order 2 gets the Application scope lock and can begin processing.

8 Order 2 reads the total tickets sold as 165.

9 Order 2 adds an order of 3 tickets to 165 to get 168.

10 Order 2 saves the value 168 to Application.totalTicketsSold.

11 Order 2 exits the lock tag, which frees the Application scope lock. ColdFusion can
process another order.

The resulting Application.totalTickesSold value is now correct.

Ensuring consistency of multiple variables

Often an application sets multiple shared scope variables at one time, such as a number of
values submitted by a user on a form. If the user submits the form, clicks the back
button, and then resubmits the form with different data, the application might end up
Locking code with cflock 337

with a mixture of data from the two submissions, in much the same manner as shown in
the previous section.

For example, an application might store information about order items in a Session scope
shopping cart. If the user submits an item selection page with data specifying sage green
size 36 shorts, and then resubmits the item specifying sea blue size 34 shorts, the
application might end up with a mixture of information from the two orders, such as
sage green size 34 shorts.

By putting the code that sets all of the related session variables in a single cflock tag, you
ensure that all the variables get set together. In other words, setting all of the variables
becomes an atomic, or single, operation. It is similar to a database transaction, where
everything in the transaction happens, or nothing happens. In this example, the order
details for the first order all get set, and then they are replaced with the details from the
second order.

For more examples of using locking in applications, see “Examples of cflock” on page
343.

Using the cflock tag with write-once variables
You do not need to use cflock when you read a variable or call a user-defined function
name in the Session, Application, or Server scope if it is set in only one place in the
application, and is only read (or called, for a UDF) everywhere else. Such data is called
write-once. If you set an Application or Session scope variable in Application.cfm and
never set it on any other pages, you must lock the code that sets the variable, but do not
have to lock code on other pages that reads the variable’s value.

However, although leaving code that uses write-once data unlocked can improve
application performance, it also has risks. You must make sure that the variables are truly
written only once. For example, you must make sure that the variable is not rewritten if
the user refreshes the browser or clicks a back button. Also, it can be difficult to ensure
that you, or future developers, do not later set the variable in more than one place in the
application.

Using the cflock tag
The cflock tag ensures that concurrently executing requests do not run the same section
of code simultaneously and thus manipulate shared data structures, files, or CFX tags
inconsistently. It is important to remember that cflock protects code sections that access
or set data, not the variables themselves.

You protect access to code by surrounding it in a cflock tag; for example:

<cflock scope="Application" timeout="10" type="Exclusive">
<cfif not IsDefined("Application.number")>

<cfset Application.number = 1>
</cfif>

</cflock>
338 Chapter 15 Using Persistent Data and Locking

Lock types

The cflock tag offers two modes of locking, specified by the type attribute:
• Exclusive locks (the default lock type) Allow only one request to process the locked

code. No other requests can run code inside the tag while a request has an exclusive
lock.
Enclose all code that creates or modifies session,application, or server variables in
exclusive cflock tags.

• Read-only locks Allow multiple requests to execute concurrently if no exclusive
locks with the same scope or name are executing. No requests can run code inside the
tag while a request has an exclusive lock.
Enclose code that only reads or tests session, application, or server variables in
read-only cflock tags. You specify a read-only lock by setting the type="readOnly"
attribute in the cflock tag, for example:
<cflock scope="Application" timeout="10" type="readOnly">

<cfif IsDefined("Application.dailyMessage")>
<cfoutput>#Application.dailyMessage#
</cfoutput>

</cfif>
</cflock>

Although ColdFusion does not prevent you from setting shared variables inside
read-only lock tag, doing so loses the advantages of locking. As a result, you must be
careful not to set any session, application, or server variables inside a read-only cflock
tag body.

Lock scopes and names

The cflock tag prevents simultaneous access to sections of code, not to variables. If you
have two sections of code that access the same variable, they must be synchronized to
prevent them from running simultaneously. You do this by identifying the locks with the
same scope or name attributes.

Note: ColdFusion does not require you to identify exclusive locks. If you omit the identifier,
the lock is anonymous and you cannot synchronize the code in the cflock tag block with any
other code. Anonymous locks do not cause errors when they protect a resource that is used
in a single code block, but they are bad programming practice. You must always identify
read-only locks.

Controlling access to data with the scope attribute

When the code that you are locking accesses session, application, or server variables,
synchronize access by using the cflock scope attribute.

You can set the attribute to any of the following values:

Scope Meaning

Server All code sections with this attribute on the server share a single lock.

Application All code sections with this attribute in the same application share a single
lock.

Session All code sections with this attribute that run in the same session of an
application share a single lock.
Locking code with cflock 339

If multiple code sections share a lock, the following rules apply:
• When code is running in a cflock tag block with the type attribute set to Exclusive,

code in cflock tag blocks with the same scope attribute is not allowed to run. They
wait until the code with the exclusive lock completes.

• When code in a cflock tag block with the type readOnly is running, code in other
cflock tag blocks with the same scope attribute and the readOnly type attribute can
run, but any blocks with the same scope attribute and an Exclusive type cannot run
and must wait until all code with the read-only lock completes. However, if a
read-only lock is active and code with an exclusive lock with the same scope or name
is waiting to execute, read-only requests using the same scope or name that are made
after the exclusive request is queued must wait until code with the exclusive lock
executes and completes.

Controlling locking access to files and CFX tags with the name attribute

The cflock name attribute provides a second way to identify locks. Use this attribute when
you use locks to protect code that manges file access or calls non-thread-safe CFX code.

When you use the name attribute, specify the same name for each section of code that
accesses a specific file or a specific CFX tag.

Controlling and minimizing lock time-outs

You must include a timeout attribute in your cflock tag. The timeout attribute specifies
the maximum time, in seconds, to wait to obtain the lock if it is not available. By default,
if the lock does not become available within the time-out period, ColdFusion generates a
Lock type exception error, which you can handle using cftry and cfcatch tags.

If you set the cflock throwOnTimeout attribute to No, processing continues after the
time-out at the line after the </cflock> end tag. Code in the cflock tag body does not run
if the time-out occurs before ColdFusion can acquire the lock. Therefore, never use the
throwOnTimeout attribute for CFML that must run.

Normally, it does not take more than a few seconds to obtain a lock. Very large time-outs
can block request threads for long periods of time and radically decrease throughput.
Always use the smallest time-out value that does not result in a significant number of
time-outs.

To prevent unnecessary time-outs, lock the minimum amount of code possible.
Whenever possible, lock only code that sets or reads variables, not business logic or
database queries. One useful technique is to do the following:

1 Perform a time-consuming activity outside of a cflock tag

2 Assign the result to a Variables scope variable

3 Assign the Variables scope variable’s value to a shared scope variable inside a cflock
block.
340 Chapter 15 Using Persistent Data and Locking

For example, if you want to assign the results of a query to a session variable, first get the
query results using a Variables scope variable in unlocked code. Then, assign the query
results to a session variable inside a locked code section. The following code shows this
technique:

<cfquery name="Variables.qUser" datasource="#request.dsn#">
SELECT FirstName, LastName
FROM Users
WHERE UserID = #request.UserID#

</cfquery>
<cflock scope="Session" timeout="5" type="exclusive">

<cfset Session.qUser = Variables.qUser>
</cflock>

Considering lock granularity
When you design your locking strategy, consider whether you should have multiple locks
containing small amounts of code or few locks with larger blocks of code. There is no
simple rule for making such a decision, and you might do performance testing with
different options to help make your decision. However, you must consider the following
issues:
• If the code block is larger, ColdFusion will spend more time inside the block, which

might increase the number of times an application waits for the lock to released.
• Each lock requires processor time. The more locks you have, the more processor time

is spent on locking code.

Nesting locks and avoiding deadlocks
Inconsistent nesting of cflock tags and inconsistent naming of locks can cause deadlocks
(blocked code). If you are nesting locks, you must consistently nest cflock tags in the
same order and use consistent lock scopes (or names).

A deadlock is a state in which no request can execute the locked section of the page. All
requests to the protected section of the page are blocked until there is a time-out. The
following table shows one scenario that would cause a deadlock:

Neither user’s request can proceed, because it is waiting for the other to complete. The
two are deadlocked.

Once a deadlock occurs, neither of the users can do anything to break the deadlock,
because the execution of their requests is blocked until the deadlock is resolved by a lock
time-out.

You can also cause deadlocks if you nest locks of different types. An example of this is
nesting an exclusive lock inside a read-only lock of the same scope or same name.

User 1 User 2

Locks the Session scope. Locks the Application scope.

Tries to lock the Application scope, but the
Application scope is already locked by User
2.

Tries to lock the Session scope, but the
Session scope is already locked by User 1.
Locking code with cflock 341

In order to avoid a deadlock, lock code sections in a well-specified order, and name the
locks consistently. In particular, if you need to lock access to the Server, Application, and
Session scopes, you must do so in the following order.

1 Lock the Session scope. In the cflock tag, specify scope="Session".

2 Lock the Application scope. In the cflock tag, specify scope="Application".

3 Lock the Server scope. In the cflock tag, specify scope="Server".

4 Unlock the Server scope.

5 Unlock the Application scope.

6 Unlock the Session scope.

Note: You can skip any pair of lock and unlock steps in the preceding list if you do not need
to lock a particular scope. For example, you can omit steps 3 and 4 if you do not need to lock
the Server scope.

Copying shared variables into the Request scope

You can avoid locking some shared-scope variables multiple times during a request by
doing the following:

1 Copy the shared-scope variables into the Request scope in code with an exclusive lock
the Application.cfm page.

2 Use the Request scope variables on your ColdFusion pages for the duration of the
request.

3 Copy the variables back to the shared scope in code with an exclusive lock on the
OnRequestEnd.cfm page.

With this technique the “last request wins.” For example, if two requests run
simultaneously, and both requests change the values of data that was copied from the
shared scope, the data from the last request to finish is saved in the shared scope, and the
data from the previous request is not saved.

Locking application variables efficiently

The need to lock application variables can reduce server performance, because all requests
that use Application scope variables must wait on a single lock. This issue is a problem
even for write-once read-many variables, because you still must ensure the variable exists,
and possibly set the value before you can read it.

You can minimize this problem by using a technique such as the following to test for the
existence of application variables and set them if they do not exist.

1 Use an Application scope flag variable to indicate if the variable or variables are
initialized. In a read-only lock, check for the existence of the flag, and assign the
result to a local variable.

2 Outside the cflock bock, test the value of the local variable

3 If it the local variable indicates that the application variables are not initialized, get an
exclusive Application scope lock.
342 Chapter 15 Using Persistent Data and Locking

4 Inside the lock, again test the Application scope flag, to make sure another page has
not set the variables between step one and step four.

5 If the variables are still not set, set them and set the Application scope flag to true.

6 Release the exclusive lock.

The following code shows this technique:

<!--- Initilialize local flag to false --->
<cfset app_is_initialized = False>
<!--- Get a readonly lock --->
<cflock scope="application" type="readonly">

<!--- read init flag and store it in local variable --->
<cfset app_is_initialized = IsDefined("APPLICATION.initialized")>

</cflock>
<!--- Check the local flag --->
<cfif not app_is_initialized >
<!--- Not initialized yet, get exclusive lock to write scope --->

<cflock scope="application" type="exclusive">
<!--- Check nonlocal flag since multiple requests could get to the

exclusive lock --->
<cfif not IsDefined("APPLICATION.initialized") >

<!--- Do initializations --->
<cfset APPLICATION.varible1 = someValue >
 ...
<!--- Set the Application scope initialization flag --->
<cfset APPLICATION.initialized = "yes">

</cfif>
</cflock>

</cfif>

Examples of cflock
The following examples show how to use cflock blocks in a variety of situations.

Example with application, server, and session variables

This example shows how you can use cflock to guarantee the consistency of data updates
to variables in the Application, Server, and Session scopes.

This example does not handle exceptions that arise if a lock times out. As a result, users
see the default exception error page on lock time-outs.

The following sample code might be part of the Application.cfm file:

<cfapplication name="ETurtle"
sessiontimeout=#createtimespan(0,1,30,0)#
sessionmanagement="yes">

<!--- Initialize the Session and Application
variables that will be used by E-Turtleneck. Use
the Session lock scope for the session variables. --->

<cflock scope="Session"
timeout="10" type ="Exclusive">
<cfif not IsDefined("session.size")>

<cfset session.size = "">
Examples of cflock 343

</cfif>
<cfif not IsDefined("session.color")>

<cfset session.color = "">
</cfif>

</cflock>

<!--- Use the Application scope lock for the Application.number variable.
This variable keeps track of the total number of turtlenecks sold.
The following code implements the scheme shown in the Locking Application
variables effectively section --->

<cfset app_is_initialized = "no">
<cflock scope="Application" type="readonly">

<cfset app_is_initialized = IsDefined("Application.initialized")>
</cflock>
<cfif not app_is_initialized >

<cflock scope="application" timeout="10" type="exclusive">
<cfif not IsDefined("Application.initialized") >

<cfset Application.number = 1>
<cfset Application.initialized = "yes">

</cfif>
</cflock>

</cfif>

<!--- Always display the number of turtlenecks sold --->

<cflock scope="Application"
timeout="10"
type ="ReadOnly">
<cfoutput>
E-Turtleneck is proud to say that we have sold
#Application.number# turtlenecks to date.
</cfoutput>

</cflock>

The remaining sample code could appear inside the application page where customers
place orders:

<html>
<head>
<title>cflock Example</title>
</head>

<body>
<h3>cflock Example</h3>

<cfif IsDefined("Form.submit")>

<!--- Lock session variables --->
<!--- Note that we use the automatically generated Session

ID as the order ID --->
<cflock scope="Session"

timeout="10" type="ReadOnly">
<cfoutput>Thank you for shopping E-Turtleneck.
Today you have chosen a turtleneck in size
#form.size# and in the color #form.color#.
344 Chapter 15 Using Persistent Data and Locking

Your order ID is #Session.sessionID#.
</cfoutput>

</cflock>

<!--- Lock session variables to assign form values to them. --->

<cflock scope="Session"
timeout="10"
type="Exclusive">
<cfparam name=Session.size default=#form.size#>
<cfparam name=Session.color default=#form.color#>

</cflock>
<
!--- Lock the Application scope variable application.number to
update the total number of turtlenecks sold. --->

<cflock scope="Application"
timeout="30" type="Exclusive">
<cfset application.number=application.number + 1>

</cflock>

<!--- Show the form only if it has not been submitted. --->
<cfelse>
<form action="cflock.cfm" method="Post">

<p> Congratulations! You have just selected
the longest-wearing, most comfortable turtleneck
in the world. Please indicate the color and size
you want to buy.</p>

<table cellspacing="2" cellpadding="2" border="0">
<tr>
<td>Select a color.</td>
<td><select type="Text" name="color">

<option>red
<option>white
<option>blue
<option>turquoise
<option>black
<option>forest green
</select>

</td>
</tr>
<tr>

<td>Select a size.</td>
<td><select type="Text" name="size">

<option>small
<option>medium
<option>large
<option>xlarge
</select>

</td>
</tr>
<tr>

<td></td>
<td><input type="Submit" name="submit" value="Submit">
Examples of cflock 345

</td>
</tr>
</table>
</form>
</cfif>

</body>
</html>

Note: In this simple example, the Application.cfm page displays the Application.number
variable value. Because the Application.cfm file is processed before any code on each
ColdFusion page, the number that displays after you click the submit button does not include
the new order. One way you can resolve this problem is by using the OnRequestEnd.cfm
page to display the value at the bottom of each page in the application.

Example of synchronizing access to a file system

The following example shows how to use a cflock block to synchronize access to a file
system. The cflock tag protects a cffile tag from attempting to append data to a file
already open for writing by the same tag executing on another request.

If an append operation takes more than 30 seconds, a request waiting to obtain an
exclusive lock to this code might time out. Also, this example uses a dynamic value for
the name attribute so that a different lock controls access to each file. As a result, locking
access to one file does not delay access to any other file.

<cflock name=#filename# timeout=30 type="Exclusive">
<cffile action="Append"

file=#fileName#
output=#textToAppend#>

</cflock>

Example of protecting ColdFusion extensions

The following example shows how you can build a custom tag wrapper around a CFX tag
that is not thread-safe. The wrapper forwards attributes to the non-thread-safe CFX tag
that is used inside a cflock tag.

<cfparam name="Attributes.AttributeOne" default="">
<cfparam name="Attributes.AttributeTwo" default="">
<cfparam name="Attributes.AttributeThree" default="">

<cflock timeout=5
type="Exclusive"
name="cfx_not_thread_safe">

<cfx_not_thread_safe attributeone=#attributes.attributeone#
attributetwo=#attributes.attributetwo#
attributethree=#attributes.attributethree#>

</cflock>
346 Chapter 15 Using Persistent Data and Locking

CHAPTER 16

Securing Applications
ColdFusion MX has two major security features: resource (file and directory-based)
security and user (programmatic) security. This chapter provides an overview of
ColdFusion security. It briefly describes how you use the ColdFusion MX Administrator
to configure resource security, and discusses structuring an application to take advantage
of resource security. It explains in detail how to implement user security in ColdFusion
applications.

Other chapters discuss specific security issues as part of the context of their topics. For
example, the chapter on LDAP discusses secure access to LDAP directories. Similarly, the
section “Enhancing security with cfqueryparam,” in Chapter 20 describes a method for
preventing inappropriate access to SQL databases. See the Security entries in the Index
for a complete listing of such sections.

For detailed information on using Administrator-controlled security features, see
Administering ColdFusion MX.

This chapter does not discuss general or web server security concepts and issues. For
example, it does not discuss web server security management issues, such as enabling
HTTPS protocol support. For information on enabling web server security features, see
your web server documentation. Many books and other resources are available on web
and application security.

Contents

• ColdFusion security features .. 348

• About resource security.. 349

• About user security .. 351

• Implementing user security.. 360
347

ColdFusion security features
ColdFusion provides scalable, granular security for building and deploying your
ColdFusion applications. ColdFusion provides following types of security resources:
• Development ColdFusion MX Administrator is protected by a password.

Additionally, you can specify a password for access to data sources from Macromedia
Dreamweaver MX. For more information on configuring Administrator security
passwords, see the ColdFusion MX Administrator online Help. This chapter does not
these passwords. For more information see the Administrator Help.

• Resource The ColdFusion MX Administrator can limit access to ColdFusion
resources, including selected tags and functions, data sources, files, and host
addresses, based on the location of your ColdFusion pages. You can confine
applications to secure areas, thereby flexibly restricting the access that the application
has to resources.

• User ColdFusion applications can require users to log in to use application pages.
You can assign users to roles (sometimes called groups); ColdFusion pages can
determine the logged-in user’s role or ID and selectively determine what to do based
on this information.

Note: You can also use the cfencode utility, located in the cf_root/bin directory, to obfuscate
ColdFusion pages that you distribute. Although this technique cannot prevent determined
hackers from determining the contents of your pages, it does prevent inspection of the
pages.
348 Chapter 16 Securing Applications

About resource security
Resource security lets you secure access to ColdFusion resources based on the ColdFusion
page location, by applying a set of access rules to all ColdFusion pages in a directory. The
directory or directories to which a set of rules apply is called a sandbox, and resource
security is also called sandbox security. The ColdFusion Administrator Security Settings
page enables resource security; the Sandbox Security page configures access to resources.
Resource security controls access to the following resources:

By default, resource security rules apply to the specified directory and all its
subdirectories. If you create a set of rules for a subdirectory of another sandbox, the
subdirectory’s rules override the parent directory’s rules.

Resource security lets you apply different sets of rules to different directory structures.
You can use it to partition a shared hosting environment, so that a number of
applications with different purposes, and possibly different owners, run securely on a
single server. When multiple applications share a host, you set up a separate directory
structure for each application, and apply rules that allow each application to access only
its own data sources and files.

Resource Description

Data Sources Enables access to specified data sources.

CF Tags Prevents pages from using CFML tags that access external
resources. You can prevent pages in the directory from using any
or all of the following tags:

cfcollection, cfcontent, cfcookie, cfdirectory, cfexecute,
cffile, cfftp, cfgridupdate, cfhttp, cfhttpparam, cfindex,
cfinsert, cfinvoke, cfldap, cflog, cfmail, cfobject,
cfobjectcache, cfquery, cfregistry, cfschedule, cfsearch,
cfstoredproc, cftransaction, cfupdate

CF Functions Prevents pages from using CFML functions that access external
resources. You can prevent pages from using any or all of the
following functions:

CreateObject, DirectoryExists. ExpandPath, FileExists,
GetBaseTemplatePath, GetDirectoryFromPath, GetFileFromPath,
GetProfileString, GetTempDirectory, GetTemplatePath,
SetProfileString

Files/Directories Sets read, write, execute, and delete access to specified
directories, directory trees, or files.

Server/Ports Controls access to IP addresses and port numbers. You can
specify host names or numeric addresses, and you can specify
individual ports and port ranges.
About resource security 349

Resource security also lets you to structure and partition an application to reflect the
access rights that are appropriate to different functional components. For example, if
your application has both user functions and administrator functions, you could
structure the application as follows:
• Administrator pages go in one directory with access rules that enable most activities.
• User pages go in another directory whose rules limit the files they can modify and the

tags they can use.
• Pages required for both administrative and user functions go in a third directory with

appropriate access rules.

For more information on configuring resource security, see Administering ColdFusion
MX.
350 Chapter 16 Securing Applications

About user security
User security lets your application use security rules to determine what it displays. It has
two elements:
• Authentication
• Authorization

Authentication ensures that a valid user is logged in, based on an ID and password
provided by the user. ColdFusion maintains the user ID information while the user is
logged in.

Authorization ensures that the logged-in user is allowed to use a page or perform an
operation. Authorization is typically based on one or more roles (sometimes called
groups) to which the user belongs. For example, in an employee database, all users could
be members of either the employee role or the contractor role. They could also be
members of roles that identify their department, position in the corporate hierarchy, or
job description. For example, someone could be a member of some or all of the following
roles:
• Employees
• Human Resources
• Benefits
• Managers

Roles enable you to control access in your application resources without requiring the
application to maintain knowledge about individual users. For example, suppose you use
ColdFusion for your company’s intranet. The Human Resources department maintains a
page on the intranet on which all employees can access timely information about the
company, such as the latest company policies, upcoming events, and job postings. You
want everyone to be able to read the information, but you want only certain authorized
Human Resources employees to be able to add, update, or delete information.

Your application gets the user’s roles from the user information data store at log in, and
then enables access to specific pages or features based on the roles. Typically, you store
user information in a database, LDAP directory, or other secure information store.

You can also use the user ID for authorization. For example, you might want to let
employees view customized information about their salaries, job levels, and performance
reviews. You certainly would not want one employee to view sensitive information about
another employee, but you would want managers to be able to see, and possibly update,
information about their direct reports. By employing both user IDs and roles, you can
ensure that only the appropriate people can access or work with sensitive data.

The following figure shows a typical flow of control for user authentication and
authorization. Following sections expand on this diagram to describe how you
implement user security in ColdFusion.
About user security 351

352 Chapter 16 Securing Applications

Security tags and functions
ColdFusion provides the following tags and functions for user security:

About web server authentication and application authentication
ColdFusion supports two forms of user authentication:
• Web server basic authentication
• Application authentication

About web server basic authentication

All major web servers support basic authentication, also known as basic HTTP
authentication. The web server requires the user to log in to access pages in a particular
directory, as follows:

1 When the user first request a page in the secured directory, the web server presents the
user with a login page

2 The user fills in the login page and submits it

3 The web server checks the user’s login ID and password using its own user
authentication mechanism.

Tag or function Purpose

cflogin A container for user authentication and login code. The body of the
tag runs only if there is no logged-in user. When using
application-based security, you put code in the body of the cflogin
to check the user-provided ID and password against a data
source, LDAP directory, or other repository of login identification.
The body includes a cfloginuser tag (or a ColdFusion page that
contains a cfloginuser tag) to establish the authenticated user’s
identity in ColdFusion.

cfloginuser Identifies the authenticated user to ColdFusion. Specifies the
user’s ID, password, and roles. Typically used inside cflogin tags.

The cfloginuser tag requires three attributes, name, password, and
roles, and does not have a body. The roles attribute is a comma-
delimited list of role identifiers to which the logged-in user belongs.
All spaces in the list are treated as part of the role names, so you
should not follow commas with spaces.

cflogout Logs out the current user. Removes knowledge of the user ID and
roles from the server. If you do not use this tag, the user is
automatically logged out when the session ends.

The cflogout tag does not take any attributes, and does not have a
body.

cffunction Used only in cfcomponent tags. If you include a roles attribute, the
function executes only when there is a logged in user who belongs
to one of the specified roles.

IsUserInRole Returns True if the current user is a member of the specified role.

GetAuthUser Returns the ID of the current logged in user.
About user security 353

4 If the user logs in successfully, the browser caches the authentication information and
sends it with every subsequent page request from the user.

5 The web server processes the requested page and all future page requests from the
browser that contain the cached login information, if it is valid for the requested
page.

The application can perform additional authorization checks based on the information
provided by the browser with each request. For example, the application can determine
the user’s roles based on the login ID and check the roles against specific roles required to
access pages or sections of code within pages.

You can use basic web server authentication without using any ColdFusion security
features. In this case, you only perform directory-based user authentication, and you
configure all user security through the web server’s interfaces. You do not use any of the
ColdFusion security features, and typically do not perform role-based authorization.

You can also use basic web server authentication with ColdFusion security tags and
functions to enforce user authorization. In this case you rely on the web server for user
authentication, and your application does not have to display a login page. You then use
the web server authentication information with the cflogin and cfloginuser tags to log
the user into the ColdFusion user security system and use the IsUserInRole and
GetUserName functions to ensure user authorization. For more information on this form of
security, see “A basic authentication security scenario” on page 356.

About application authentication

With application authentication, you do not rely on the web server to enforce application
security. The application performs all user authentication and authorization. The
application displays a login page, checks the user’s identity and login against its own
authorization store, such as an LDAP directory or database, and logs the user into
ColdFusion using the cfloginuser tag. The application can then use the IsUserInRole
and GetUserName functions to check the user’s roles or identity before running a
ColdFusion page or specific code on a page. For more information on application
authentication, see “An application authentication security scenario” on page 357.

Controlling ColdFusion login behavior
When you use the cfloginuser tag within a cflogin tag, ColdFusion stores a login token
in a memory-only browser cookie. Therefore, to use the cflogin tag to check for an
authenticated user, the user must enable memory-only cookies in the browser. The login
cookie does not lasts after the user closes the browser.

You can use the cfloginuser tag without user cookies, but the login information remains
in effect for only the current page. For more information on user logins without cookies,
see “Using ColdFusion security without cookies” on page 356.
354 Chapter 16 Securing Applications

The cflogin tag has three optional arguments that control the characteristics of a
ColdFusion login, as follows:

Logging a user out

After a user logs in, the ColdFusion user authorization and authentication information
remains valid until any of the following happens:
• The login times out. This happens if the user does not request a new page for the

idleTimeout period.
• The application uses a cflogout tag to log out the user, usually in response to the user

clicking a logout link or button.
• The user closes the browser.

Specifying an applicationToken value

The login identification created by cflogin tag is valid only for pages within the directory
that contains the cflogin tag and any of its subdirectories. Therefore, if a user requests a
page in another directory tree, the current login credentials are not valid for accessing
those pages. This security limitation lets you use the same user names and passwords for
different sections of your application (for example, a UserFunctions tree and a
SecurityFunctions tree) and enforce different roles to the users depending on the section.

ColdFusion uses the applicationToken value to generate a unique identifier that enforces
this rule. The default applicationToken value is the current application name, as specified
by a cfapplication tag. In normal usage, there you do not need to specify a
applicationToken value in the cflogin tag.

Limiting the valid internet domain

Use the cookieDomain attribute to limit the log-in capabilities to users from a specific
domain or even a specific system. For example, to ensure that only users located in the
macromedia.com domain can log in to your application, specify
cookieDomain=".macromedia.com". To specify a domain name, you start the name with a
period.

Attribute Use

idleTimeout If no page requests occur during the idleTiemout period, the
ColdFusion logs the user out. The default is 1800 seconds (30
minutes).

applicationToken Limits the login validity to a specific application as specified by a
ColdFusion page’s cfapplication tag. The default value is the
current application name.

cookieDomain The Internet domain for which the ColdFusion security cookie is
valid. By default, there are no domain limitations.
About user security 355

The cflogin structure
The cflogin tag has a built-in cflogin structure that contains two variables: cflogin.name
and cflogin.password. These variables contain the user ID and password in either of the
following cases:
• The cflogin tag body is executing in response to a user logging in on the browser’s

basic login page.
• The cflogin tag body is executing in response to a user logging in on an application

login form that contains input fields with the names j_username and j_password.

Therefore, the cflogin structure provides a consistent interface for determining the user’s
login ID and password independent of the technique you use for displaying the login
form.

Using ColdFusion security without cookies
You can implement a limited-lifetime form of ColdFusion security if the user’s browser
does not support cookies. In this case you do not use the cflogin tag, only the
cfloginuser tag. It is the only time you should use the cfloginuser tag outside a cflogin
tag.

Without browser cookies, the effect of the cfloginuser tag is limited to a single HTTP
request. You must provide your own authentication mechanism and call cfloginuser on
each page where you use ColdFusion login identification.

A basic authentication security scenario
An application that uses basic web server authentication might work as follows. The
example in “Basic authentication user security example” on page 360 implements this
scenario.

1 When the user requests a page from a particular directory on the server for the first
time after starting the browser, the web server displays a login page and logs the user
in. The web server handles all user authentication.

2 Because the user requested a ColdFusion page, the web server hands the request to
ColdFusion

3 When ColdFusion receives a request for a ColdFusion page, it runs the contents of
the Application.cfm page before it runs the requested page. The Application.cfm page
contains a cflogin tag. ColdFusion executes the cflogin tag body if the user is not
logged into ColdFusion. The user is logged in if the cfloginuser tag has run
successfully for this application and the user has not been logged out by a cflogout
tag or the login has not timed out from inactivity.

4 Code in the cflogin tag body uses the user ID and password from browser login,
contained in the cflogin.name and cflogin.password variables, as follows:

a First it checks the user’s name against information it maintains about users and
roles. In a simple case, the application might have two roles, one for users and one
for administrators. The CFML assigns the Admin role to any user logged on with
the user ID "Admin" and assigns the User role to all other users.
356 Chapter 16 Securing Applications

b The cflogin tag body code calls the cfloginuser tag with the user’s ID, password,
and roles to identify the user to ColdFusion.

5 Application.cfm completes processing and ColdFusion processes the requested
application page.

6 The application pages use the IsUserInRole function to check whether the user
belongs to a role before they run protected code that must be available only to users
in that role. For example, administrative pages

The application can use the GetAuthUser function to determine the user ID; for
example, to display the ID for personalization. It can also use the ID as a database key
to get user-specific data.

An application authentication security scenario
An application that does its own authentication might work as follows. The example in
“Application-based user security example” on page 362 implements this scenario.

1 Whenever ColdFusion receives a request for a ColdFusion page, it runs the contents
of the Application.cfm page before it runs the requested page. The Application.cfm
page contains a cflogin tag. ColdFusion executes the cflogin tag body if the user is
not logged in. A user is logged in if the cfloginuser tag has run during the current
session and the user had not been logged out by a cflogout tag.

2 Code in the cflogin tag body checks to see if it has received a user ID and password,
normally from a login form.

3 If there is no user ID or password, the code in cflogin tag body displays a login form
that asks for the user’s ID and password.

The form posts the login information back to the originally-requested page, and the
login tag in Application.cfm runs again. This time, the cflogin tag body code checks
the user name and password against a database, LDAP directory, or other policy store
to ensure that the user is valid and get the user’s roles.

4 If the user name and password are valid, the cflogin tag body code calls the
cfloginuser tag with the user’s ID and roles to identify the user to ColdFusion.

5 When the user is logged in, application pages use the IsUserInRole function to check
whether the user belongs to a role before they run protected code that must be
available only to users in that role.

The application can use the GetAuthUser function to determine the user ID; for
example, to display the ID for personalization. It can also use the ID as a database key
to get user-specific data.

6 Each application page displays a link to a log-out form that uses the cflogout tag to
log out the user. Typically, the logout link is in a page header that appears in all pages.
The logout form can also be on the Application.cfm page.

Note: A log-out option is not always required, as the user is automatically logged out when
the browser closes or is inactive for the time-out period. However, you can enhance security
in cases where a system might be shared by providing a log-out facility. You must explicitly
log out a user before a new user can log in using the same browser session.
About user security 357

While this scenario shows one method for implementing user security, it is only an
example. For example, your application could require users to log in for only some pages,
such a pages in folder containing administrative functions. When you design your user
security implementation, remember the following:
• Code in the cflogin tag body executes only if there is no user logged in.
• You must write the code that gets the identification from the user and tests this

information against the a secure credential store.
• After you have authenticated the user, you use the cfloginuser to log the user into the

ColdFusion session.

The following figure shows this flow of control. For simplicity, it omits the logout
button.
358 Chapter 16 Securing Applications

About user security 359

Implementing user security
The following section provide several examples of ways to implement security using basic
authentication and application authentication

Basic authentication user security example
The example in this section shows how you might implement user security using
web-server basic authentication and two roles, user and administrator.

This example has two ColdFusion pages:
• The Application.cfm page logs the user into the ColdFusion security system and

assigns the user to specific roles based on the user’s ID.
This page also includes the one-button form and logic for logging out a user, which
appears at the top of each page.

• The securitytest.cfm page is a sample application page. It displays the logged-in user’s
roles.

You can test the security behavior by adding your own pages to the same directory as the
Application.cfm page.

Example: Application.cfm

The Application.cfm page consists of the following:

<cfapplication name="Orders">
<cflogin>

<cfif IsDefined("cflogin")>
<cfif cflogin.name eq "admin">

<cfset roles = "user,admin">
<cfelse>

<cfset roles = "user">
</cfif>

<cfloginuser name = "#cflogin.name#" password = "#cflogin.password#"
roles = "#roles#" />

<cfelse>
<!--- this should never happen --->
<h4>Authentication data is missing.</h4>

Try to reload the page or contact the site administrator.
<cfabort>
</cfif>

</cflogin>

Reviewing the code

The Application.cfm page executes before the code in each ColdFusion page in an
application. For more information on the Application.cfm page and when it is executed,
see Chapter 13, “Designing and Optimizing a ColdFusion Application” on page 261.
360 Chapter 16 Securing Applications

The following table describes the CFML code in Application.cfm and its function:

Example: securitytest.cfm

The securitytest.cfm page shows how any application page can use ColdFusion user
authorization features. The web server ensures the existence of an authenticated user, and
the Application.cfm page ensures that the user is assigned to roles the page content
appears. The securitytest.cfm page uses the IsUserInRole and GetAuthUser functions to
control the information that is displayed.

The securitytest.cfm page consists of the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>

<title>Basic authentication security test page</title>
</head>

<body>
<cfoutput>

<h2>Welcome #GetAuthUser()#!</h2>
</cfoutput>

ALL Logged-in Users see this message.

<cfscript>

if (IsUserInRole("admin"))
WriteOutput("users in the admin role see this message.

");

Code Description

<cfapplication name="Orders" Identifies the application. The login
information on this page only applies to this
application.

<cflogin>
<cfif IsDefined("cflogin")>

<cfif cflogin.name eq "admin">
<cfset roles = "user,admin">

<cfelse>
<cfset roles = "user">

</cfif>

Executes if there is no logged-in user.

Makes sure the user is correctly logged in by
the web-server. (Otherwise there would be no
cflogin variable.)

Sets a roles variable based on the user’s ID.
assigns users named "admin" to the admin
role. Assigns all other users to the users role.

<cfloginuser name = "#cflogin.name#"
password = "#cflogin.password#"
roles = "#roles#" />

Logs the user into the ColdFusion security
system and specifies the user’s password,
name and roles. Gets the password and name
directly from the cflogin structure.

<cfelse>
<!--- this should never happen --->
<h4>Authentication data is missing.</h4>

Try to reload the page or contact the
site administrator.

<cfabort>

This code should never run, but if the user
somehow got to this page without logging in
to the web server, this message would display
and ColdFusion would stop processing the
request.

</cfif>
</cflogin>

Ends if/else block.

Ends the cflogin tag body.
Implementing user security 361

if (IsUserInRole("user"))
WriteOutput("Everyone in the user role sees this message.

");

</cfscript>

</body>
</html>

Reviewing the code

The following table describes the securitytest.cfm page CFML code and its function:

Application-based user security example
The example in this section shows how you might implement user security by
authenticating users and then allowing users to see or use only the resources that they are
authorized to access.

This example has three ColdFusion pages:
• The Application.cfm page contains the authentication logic that checks whether a

user is logged in, requests the login page if the user is not logged in, and authenticates
the data from the login page. If the user is authenticated, it logs the user in.
This page also includes the one-button form and logic for logging out a user, which
appears at the top of each page.

• The loginform.cfm page displays the login form. The code on this page could also be
included in Application.cfm.

• The securitytest.cfm page is a sample application page. It displays the logged-in user’s
roles.

You can test the security behavior by adding your own pages to the same directory as the
Application.cfm page.

Code Description

<cfoutput>
<h2>Welcome #GetAuthUser()#!</h2>
</cfoutput>

Displays a welcome message that includes the
user’s login ID.

ALL Logged-in Users see this message.

Displays this message in all cases. The page
does not display until a user is logged in.

<cfscript>
if (IsUserInRole("admin"))

WriteOutput("users in the admin role
see this message.

");

if (IsUserInRole("user"))
WriteOutput("Everyone in the user role

sees this message.

");
</cfscript>

Tests whether the user belongs to each of the
valid roles. If the user is in a role, displays a
message with the role name.

The user sees one message per role to which
he or she belongs.
362 Chapter 16 Securing Applications

The example gets user information from the LoginInfo table of the CompanyInfo
database that is installed with ColdFusion. You can replace this database with any
database containing UserID, Password, and Roles fields. The sample database contains
the following data:

Because spaces are meaningful in roles strings, you should not follow the comma
separators in the Roles fields with spaces.

The following sections contain listings and descriptions of each of the pages.

Example: Application.cfm

The Application.cfm page consists of the following:

<cfapplication name="Orders" sessionmanagement="Yes">

<cfif IsDefined("Form.logout")>
<cflogout>

</cfif>

<cflogin>
<cfif NOT IsDefined("cflogin")>

<cfinclude template="loginform.cfm">
<cfabort>

<cfelse>
<cfif cflogin.name IS "" OR cflogin.password IS "">

<cfoutput>
<H2>You must enter text in both the User Name and Password fields</H2>

</cfoutput>
<cfinclude template="loginform.cfm">
<cfabort>

<cfelse>
<cfquery name="loginQuery" dataSource="CompanyInfo">
SELECT UserID, Roles
FROM LoginInfo
WHERE

UserID = '#cflogin.name#'
AND Password = '#cflogin.password#'

</cfquery>
<cfif loginQuery.Roles NEQ "">

<cfloginuser name="#cflogin.name#" Password = "#cflogin.password#"
roles="#loginQuery.Roles#">

<cfelse>
<cfoutput>

<H2>Your login information is not valid.

Please Try again</H2>

</cfoutput>
<cfinclude template="loginform.cfm">

UserID Password Roles

BobZ Ads10 Employee,Sales

JaniceF Qwer12 Contractor,Documentation

RandalQ ImMe Employee,Human Resources,Manager
Implementing user security 363

<cfabort>
</cfif>

</cfif>
</cfif>

</cflogin>

<cfif GetAuthUser() NEQ "">
<cfoutput>

 <form action=MyApp/index.cfm" method="Post">
<input type="submit" Name="Logout" value="Logout">

</form>
</cfoutput>

</cfif>

Reviewing the code

The Application.cfm page executes before the code in each ColdFusion page in an
application. For more information on the Application.cfm page and when it is executed,
see Chapter 13, “Designing and Optimizing a ColdFusion Application” on page 261.
The following table describes the CFML code in Application.cfm and its function:.

Code Description

<cfapplication name="Orders"
sessionmanagement="Yes">

Identifies the application and enables Session
scope variables.

<cfif IsDefined("Form.logout")>
<cflogout>

</cfif>

If the user just submitted the logout form, logs
out the user. The following cflogin tag runs as
a result.

<cflogin>
<cfif NOT IsDefined("cflogin")>

<cfinclude template="loginform.cfm">
<cfabort>

Executes if there is no logged-in user.

Tests to see if the user has submitted a login
form. If not, uses cfinclude to display the form.
Uses the built-in cflogin variable that contains
the user name and password if it was
submitted by the login form.

The cfabort tag prevents processing of any
code that follows on this page.

<cfelse>
<cfif cflogin.name IS "" OR

cflogin.password IS "">
<cfoutput>
<H2>You must enter text in both the
User Name and Password fields</H2>

</cfoutput>
<cfinclude template="loginform.cfm">
<cfabort>

Executes if the user submitted a login form.

Tests to make sure both name and password
have data. If either variable is empty, displays a
message, followed by the login form.

The cfabort tag prevents processing of any
code that follows on this page.
364 Chapter 16 Securing Applications

Example: loginform.cfm

The loginform.cfm page consists of the following:

<cfset url="http://" & "#CGI.server_name#" & ":" &"#CGI.server_port#" &
 "#CGI.script_name#">

<cfif CGI.query_string IS NOT "">
<cfset url=url & "?#CGI.query_string#">

</cfif>
<H2>Please Log In</H2>
<cfoutput>

<form action="#url#" method="Post">
<table>

<tr>
<td>username:</td>
<td><input type="text" name="j_username"></td>

</tr>

<cfelse>
<cfquery name="loginQuery"

dataSource="CompanyInfo">
SELECT UserID, Roles
FROM LoginInfo
WHERE

UserID = '#cflogin.name#'
AND Password = '#cflogin.password#'

</cfquery>

Executes if the user submitted a login form
and both fields contain data.

Uses the cflogin structure’s name and
password entries to find the user record in the
database and get the user’s roles.

<cfif loginQuery.Roles NEQ "">
<cfloginuser name="#cflogin.name#"

Password = "#cflogin.password#"
roles="#loginQuery.Roles#">

If the query returns data in the Roles field, logs
in the user using the UserID and Roles fields
from the database. In this application, every
user must be in some role.

<cfelse>
<cfoutput>

<H2>Your login information is not
valid.

Please Try again</H2>
</cfoutput>
<cfinclude template="loginform.cfm">
<cfabort>

Executes if the query did not return a role. If
the database is valid, this means there was no
entry matching the user ID and password.
Displays a message, followed by the login
form.

The cfabort tag prevents processing of any
code that follows on this page.

</cfif>
</cfif>

</cfif>
</cflogin>

Ends loginquery.Roles test code.

Ends form entry empty value test.

Ends form entry existence test.

Ends cflogin tag body.

<cfif GetAuthUser() NEQ "">
<cfoutput>

<form action=MyApp/index.cfm"
method="Post">

<input type="submit" Name="Logout"
value="Logout">

</form>
</cfoutput>

</cfif>

If a user is logged in, displays the Logout
button.

If the user clicks the button, posts the form to
the application’s (theoretical) entry page,
index.cfm.

Application.cfm then logs out the user and
displays the login form. If the user logs in
again, ColdFusion displays index.cfm.

Code Description
Implementing user security 365

<tr>
<td>password:</td>
<td><input type="password" name="j_password"></td>

</tr>
</table>

<input type="submit" value="Log In">

</form>
</cfoutput>

Reviewing the code

The following table describes the loginform.cfm page CFML code and its function:

Code Description

<cfset url="http://" &
"#CGI.server_name#" & ":" &
"#CGI.server_port#" &
"#CGI.script_name#">

<cfif CGI.query_string IS NOT "">
<cfset url=url &

"?#CGI.query_string#">
</cfif>

Constructs the URL to use in the form’s
action attribute from CGI variables. The
CGI.script_name variable identifies the
originally requested page, because that page’s
invocation of Application.cfm causes the login
form to be displayed.

Appends any URL query string used in
requesting the page so the page can process
the request.

A more secure application would use the
HTTPS protocol to encrypt the user name and
password. To use HTTPS, you must obtain a
security certificate and enable the protocol in
your web server.

<H2>Please Log In</H2>
<cfoutput>

<form action="#url#" method="Post">
<table>

<tr>
<td>username:</td>
<td><input type="text"

name="j_username"></td>
</tr>
<tr>

<td>password:</td>
<td><input type="password"

name="j_password"></td>
</tr>

</table>

<input type="submit" value="Login">

</form>
</cfoutput>

Displays the login form. The form requests a
user ID and password and posts the user’s
input to the page specified by the url variable.

Uses the field names j_username and
j_password. ColdFusion automatically puts
form fields with these values in the
cflogin.name and cflogin.password variables
inside the cflogin tag.
366 Chapter 16 Securing Applications

Example: securitytest.cfm

The securitytest.cfm page shows how any application page can use ColdFusion user
authorization features. Application.cfm ensures the existence of an authenticated user
before the page content appears. The securitytest.cfm page uses the IsUserInRole and
GetAuthUser functions to control the information that is displayed.

The securitytest.cfm page consists of the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>

<title>Security test page</title>
</head>

<body>
<cfoutput>

<h2>Welcome #GetAuthUser()#!</h2>
</cfoutput>

ALL Logged-in Users see this message.

<cfscript>

if (IsUserInRole("Human Resources"))
WriteOutput("Human Resources members see this message.

");

if (IsUserInRole("Documentation"))
WriteOutput("Documentation members see this message.

");

if (IsUserInRole("Sales"))
WriteOutput("Sales members see this message.

");

if (IsUserInRole("Manager"))
WriteOutput("Managers see this message.

");

if (IsUserInRole("Employee"))
WriteOutput("Employees see this message.

");

if (IsUserInRole("Contractor"))
WriteOutput("Contractors see this message.

");

</cfscript>

</body>
</html>
Implementing user security 367

Reviewing the code

The following table describes the securitytest.cfm page CFML code and its function:

Using application-based security with a browser’s login dialog
You do not have to create a login page to display a user login form; you can rely on the
browser to display its standard login page. To do so, your cflogin tag body returns an
HTTP status 401 to the browser if the user is not logged in or if the login fails. The
browser then displays its login page and returns the information to the cflogin tag’s
cflogin structure when the user clicks the login button.

For example, the following code tells the browser to display a login form if the user has
not logged in, or if the user does not provide a name “user” and password “p1”, or a name
“admin” and password “p2”:

<cflogin>
<cfif IsDefined("cflogin")>

<cfif cflogin.name eq "admin" and cflogin.password eq "p1">
<cfset roles = "user,admin">

<cfelseif cflogin.name eq "user" and cflogin.password eq "p2">
<cfset roles = "user">

</cfif>
</cfif>

<cfif IsDefined("roles")>
<cfloginuser name="#cflogin.name#" password="#cflogin.password#"

roles="#roles#">
<cfelse>

Code Description

<cfoutput>
<h2>Welcome #GetAuthUser()#!</h2>
</cfoutput>

Displays a welcome message that includes the
user’s login ID.

ALL Logged-in Users see this message.

Displays this message in all cases. The page
does not display until a user is logged in.

<cfscript>
if (IsUserInRole("Human Resources"))

WriteOutput("Human Resources members
see this message.

");

if (IsUserInRole("Documentation"))
WriteOutput("Documentation members see
this message.

");

if (IsUserInRole("Sales"))
WriteOutput("Sales members see this
message.

");

if (IsUserInRole("Manager"))
WriteOutput("Managers see this
message.

");

if (IsUserInRole("Employee"))
WriteOutput("Employees see this
message.

");

if (IsUserInRole("Contractor"))
WriteOutput("Contractors see this
message.

");

</cfscript>

Tests whether the user belongs to each of the
valid roles. If the user is in a role, displays a
message with the role name.

The user sees one message per role to which
he or she belongs.
368 Chapter 16 Securing Applications

<!--- User has not logged in or authentication failed - send 401 --->
<cfsetting enablecfoutputonly="yes" showdebugoutput="no">
<cfheader statuscode="401">
<cfheader name="WWW-Authenticate" value="Basic realm=""MySecurity""">
<cfoutput>Not authorized</cfoutput>
<cfabort>

</cfif>
</cflogin>

Using an LDAP Directory for security information
LDAP directories are often used to store security information. The following example
cflogin tag checks an LDAP directory to authenticate the user and retrieve the users
roles.

The most important thing to note in this example is that it queries the directory twice,
first as the directory manager, then with the user’s identity:
• The first query uses the identity of the directory manager as the username attribute.

This query gets the distinguished name that corresponds to the user-supplied user
ID. Using the directory manager’s identity ensures that there will be a valid response
for any user ID in the directory.

• The second query accesses the directory with the distinguished name from the first
query as the username attribute, and the user-supplied password as the password
attribute. This query succeeds, and thereby authenticates the user, only if the user’s
password allows that user to access the directory. In other words, the application uses
the user’s LDAP directory password as its own password.

The “Reviewing the code” section that follows describes the code’s function in detail. For
more information on using LDAP directories with ColdFusion, see Chapter 23,
“Managing LDAP Directories” on page 489.

<cflogin>
<!--- setting basic attributes --->
<cfset root = "o=macromedia.com">
<cfset server="ldap.macromedia.com">
<cfset port="389">

<!--- These attributes are used in the first search. --->
<!--- This filter will look in the objectclass for the user's ID. --->
<cfset filter = "(&(objectclass=*)(uid=#Form.UserID#))">
<!--- Need directory manager's cn and password to get the user's

password from the directory --->
<cfset LDAP_username = "cn=directory manager">
<cfset LDAP_password = "password">

<!--- Search for the user's dn information. This is used later to
authenticate the user.

 NOTE: Do this as the Directory Manager to ensure access to the
information --->

<cftry>
<cfldap action="QUERY"

name="userSearch"
attributes="uid,dn"
Implementing user security 369

start="#root#"
scope="SUBTREE"
server="#server#"
port="#port#"
filter="#filter#"
username="#LDAP_username#"
password="#LDAP_password#"

>
<cfcatch type="Any">

<cfset UserSearchFailed = true>
</cfcatch>

</cftry>
<!--- If user search failed or returns 0 rows abort --->
<cfif NOT userSearch.recordcount OR UserSearchFailed>

<cfoutput>
<script> alert("UID for #uid# not found"); </script>

 </cfoutput>
 <cfabort>
</cfif>

<!--- pass the user's DN and password to see if the user authenticates
and get the user’s roles>

<cftry>
<cfldap

action="QUERY"
name="auth"
attributes="dn,roles"
start="#root#"
scope="SUBTREE"
server="#server#"
port="#port#"
filter="#filter#"
username="#userSearch.dn#"
password="#Form.password#"

>

<cfcatch type="any">
<cfif FindNoCase("Invalid credentials", cfcatch.detail)>

<cfoutput><script>alert("User ID or Password invalid for user:
#Form.userID#")</script>

</cfoutput>
<cfabort>

<cfelse>
<cfoutput><script>alert("Unknown error for user: #Form.userID#
#cfcatch.detail#")</script>

</cfoutput>
<cfabort>

</cfif>
</cfcatch>

</cftry>
370 Chapter 16 Securing Applications

<!--- If the LDAP query returned a record, the user is valid. --->
<cfif auth.recordcount>

<cfloginuser name="#Form.userID#" password="#Form.password#"
roles="#auth.roles#">

</cfif>
</cflogin>

Reviewing the code

The following table describes the code and its function:

Code Description

<cflogin>
<cfset root = "o=macromedia.com">
<cfset server="ldap.macromedia.com">
<cfset port="389">
<cfset filter = "(&(objectclass=*)

(uid=#Form.UserID#))">
<cfset LDAP_username =

"cn=directory manager">
<cfset LDAP_password = "password">

Starts cflogin tag body. Sets several of
the values used as attributes in the cfldap
tags as variables. This ensures that the
same value is used in both tags, and
makes it easier to change the settings if
needed.

Sets the directory manager’s user name
and password for the first query.

<cftry>
<cfldap action="QUERY"

name="userSearch"
attributes="uid,dn"
start="#root#"
scope="SUBTREE"
server="#server#"
port="#port#"
filter="#filter#"
username="#LDAP_username#"
password="#LDAP_password#"

>

In a cftry block, uses the directory
manager’s identity to get the distinguished
name (dn) for the user. If the user ID is not
in the directory, returns an empty record
set.

<cfcatch type="Any">
<cfset UserSearchFailed = true>

</cfcatch>
</cftry>

Catches any exception. Sets a
UserSearchFailed flag to True.

Ends the cftry block.

<cfif NOT userSearch.recordcount OR
UserSearchFailed>

<cfoutput>
<script>

alert("UID for #uid# not found");
</script>

 </cfoutput>
 <cfabort>
</cfif>

If the LDAP lookup did not return any
results or the UserSearchFailed flag is
True, displays an error message and ends
processing of the page

<cftry>
<cfldap

action="QUERY"
name="auth"
attributes="dn,roles"
start="#root#"
scope="SUBTREE"
server="#server#"
port="#port#"
filter="#filter#"
username="#userSearch.dn#"
password="#Form.password#">

In a try block, uses the distinguished name
from the previous query and the
user-supplied password to access the
directory and get the user’s roles. If either
the dn or password is invalid, the cfldap
tag throws an error, which is caught in the
cfcatch block.
Implementing user security 371

<cfcatch type="any">
<cfif FindNoCase("Invalid credentials",
 cfcatch.detail)>

<cfoutput><script>alert("User ID or
Password invalid for user:
#Form.userID#")</script>

</cfoutput>
<cfabort>

<cfelse>
<cfoutput><script>alert("Unknown error for

user: #Form.userID# #cfcatch.detail#")
</script></cfoutput>

 <cfabort>
</cfif>

</cfcatch>
</cftry>

Catches any exceptions.

Tests to see if the error information
includes the string "invalid credentials",
which indicates that either the dn or
password is invalid. If so, displays an error
message indicating the problem.
Otherwise, displays a general error
message.

If an error is caught, the cfabort tag ends
processing of the request after displaying
the error description.

<cfif auth.recordcount>
<cfloginuser name="#Form.userID#"

password="#Form.password#"
roles="#auth.roles#">

</cfif>
</cflogin>

If the second query returned a valid record,
logs in the user and sets the roles to the
values returned by the query.

Ends the cflogin tag body.

Code Description
372 Chapter 16 Securing Applications

CHAPTER 17

Developing Globalized Applications
ColdFusion lets you develop dynamic applications for the Internet. Many ColdFusion
applications are accessed by users from different countries and geographical areas. One
design detail that you must consider is the globalization of your application so that you
can best serve customers in different areas.

This chapter contains information that you can use to develop applications that can be
accessible to many different users.

Contents

• Introduction to globalization ... 374

• About character encodings... 377

• Locales... 378

• Processing a request in ColdFusion .. 379

• Tags and functions for globalizing.. 382

• Handling data in ColdFusion .. 385
373

Introduction to globalization
Globalization lets you create application for all of your customers in all the languages that
your support. In some cases, globalization can let you accept data input using a different
character set than the one you used to implement your application. For example, you can
create a website in English that lets customers submit form data in Japanese. Or, you can
allow a request URL to contain parameter values entered in Korean.

Your application also can process data containing numeric values, dates, currencies, and
times. Each of these types of data can be formatted differently for different countries and
regions.

You can also develop applications in language other than English. For example, you can
develop your application in Japanese so that the default character set is Shift-JIS, your
ColdFusion pages contain Japanese characters, and your interface displays in Japanese.

Globalizing your application requires that you perform one or more of the following
actions:
• Accept input in more than one language.
• Process dates, times, currencies, and numbers formatted for multiple locales.
• Process data from a form, database, HTTP connection, e-mail message, or other

input formatted in multiple character sets.
• Create ColdFusion pages containing text in languages other than English.

Defining globalization
You will probably find several different definitions for globalization. For this chapter,
globalization is defined as an architectural process where you put as much application
functionality as possible into a foundation that can be shared among multiple languages.

Globalization is composed of the following two parts:
• Internationalization Developing language-neutral application functionality that

can recognize, process, and respond to data regardless of its representation. That is,
whatever the application can do in one language, it can also do in another. For
example, think of copying and pasting text. A copy and paste should not be
concerned with the language of the text it operates on. For a ColdFusion application,
you might have processing logic that performs numeric calculations, queries a
database, or performs other operations independent of language.

• Localization Taking shared, language-neutral functionality, and applying a
locale-specific interface to it. Sometimes this interface is referred to as a skin. For
example, you can develop a set of menus, buttons, and dialog boxes for a specific
language, such as Japanese, that represent the language-specific interface. You then
combine this interface with the language-neutral functionality of the underlying
application. As part of localization, you create the functionality to handle input from
customers in a language-specific manner and output appropriate responses for that
language.
374 Chapter 17 Developing Globalized Applications

Importance of globalization ColdFusion applications
The Internet has no country boundaries. Customers can access websites from anywhere
in the world, at any time, or on any date. Unless you want to lock your customers into
using a single language, such as English, to access your site, you should consider
globalization issues.

One reason to globalize your applications is to avoid errors and confusion for your
customers. For example, a date in the form 1/2/2002 is interpreted as January 2, 2002 in
the United States, but as February 1, 2002 in European countries.

Another reason is to display currencies in the correct format. Think of how your
customers would feel when they find out the correct price for an item is 15,000 American
dollars, not 15,000 Mexican Pesos (about 1600 American dollars).

Your website can also accept customer feedback or some other form of text input. You
might want to support that feedback in multiple languages using a variety of character
sets.

How ColdFusion supports globalization
ColdFusion is implemented in Java. As a Java application, ColdFusion can leverage many
of the inherent globalization features to be an effective web application server. For
example, ColdFusion stores all strings internally using the Unicode character encoding.
Because it uses Unicode, ColdFusion can represent any text data from any language.

In addition, ColdFusion includes many tags and functions designed to support
globalizing your applications. You can use these tags and functions to set locales, convert
date and currency formats, control the output encoding of ColdFusion pages, and
perform other actions.

Character sets and locales
When you discuss globalization issues, two topics that you must consider are the
character sets recognized by the application and the locales for which the application
must format data.

A character set is a collection of characters. For example, the Latin alphabet is the
character set that you use to write English, and it includes all of the lower- and upper-case
letters from A to Z. A character set for French includes the character set used by English,
plus special characters such as “é,” “à,” and “ç.”

The Japanese language uses three alphabets: Hiragana, Katakana, and Kanji. Hiragana
and Katakana are phonetic alphabets that each contain 46 characters plus two accents.
Kanji contains Chinese ideographs adapted to the Japanese language. The Japanese
language uses a much larger character set than English because Japanese supports more
than 10,000 different characters.

In order for a ColdFusion application to process text, the application must recognize the
character set used by the text. For more information on character sets, see “About
character encodings” on page 377.
Introduction to globalization 375

A locale identifies the exact language and cultural settings for a user. The locale controls
how dates and currencies are formatted, how to display time, and how to display numeric
data. For example, the locale English (US) determines that a currency value displays as:

$100,000.00

while a locale of Portuguese (Brazilian) displays the currency as:

R$ 100.000

In order to correctly display date, time, currency, and numeric data to your customers,
you must know the customer’s locale. For more information on locales, see “Locales” on
page 378.
376 Chapter 17 Developing Globalized Applications

About character encodings
An encoding maps each character in a character set to a numeric value that can be
represented by a computer. These numbers can be represented by a single bytes or
multiple bytes. For example, the ASCII encoding uses seven bits to represent the Latin
alphabet, punctuation, and control characters.

You use Japanese encodings, such as Shift-JIS, EUC-JP, and ISO-2022-JP, to represent
Japanese text. These encodings can vary slightly, but they include a common set of
approximately 10,000 characters used in Japanese.

The following terms that apply to character encodings:
• SBCS single-byte character set such as ASCII
• DBCS double-byte character set such as Shift-JIS
• MBCS multiple-byte character set

The following table lists some common character encodings, however, there are many
additional character encodings that browsers and web servers support:

The World Wide Web Consortium maintains a list of all character encodings supported
by the Internet. You can find this information at the following URL:

http://www.w3.org/International/O-charset.html

The Unicode character encoding
ColdFusion uses the Java Unicode Standard for representing character data internally.
The Unicode Standard Character encoding can represent many major languages,
including ASCII, Latin-1, Shift-JIS, and others. Therefore, ColdFusion can input, store,
process, and output text from all languages supported by Unicode.

By default, ColdFusion uses UTF-8 to represent text data sent to a browser. UTF-8
converts characters into a variable-length encoding. Most data is sent as a single byte, for
ASCII, or as three bytes, for most other languages. One advantages of UTF-8 is that it
can be recognized by systems designed to process single-byte ASCII character while being
flexible enough to handle multiple-byte character representations.

While the default format of text data output by ColdFusion is UTF-8. you can set the
output type of a ColdFusion page to any character set. For example, you can output text
using the Japanese language Shift-JIS character set. For more information, see
“Determining the character set of server output” on page 380.

Encoding Type Description

ASCII SBCS 7-bit encoding used by English and Indonesian Bahasa languages

Latin-1 SBCS 8-bit encoding used by many Western European languages

Shift-JIS DBCS 16-bit Japanese encoding

EUC-KR DBCS 16-bit Korean encoding

UCS-2 DBCS Two-byte Unicode encoding

UTF-8 MBCS ASCII is 7-bit, European characters with diacriticals are two-byte and
Asian characters are three-byte
About character encodings 377

Locales
A locale identifies the exact language and cultural settings to use for a user. The locale
controls how dates and currencies are formatted, how to display time, and how to display
numeric data.

In ColdFusion, a locale is identified by one or more of the elements shown in the
following table:

Setting the locale
By default, the ColdFusion locale defaults to the locale of the JVM, which typically
defaults to that of the operating system. However, when processing information for a
different locale, you must change this default. You can set the locale in the JVM at
startup time, or you can use the SetLocale() function within a ColdFusion page.

The SetLocale() function determines the default display format of date, time, number,
and currency values. ColdFusion supports 26 locales. For the complete list, see CFML
Reference. You use the GetLocale() function to determine the current locale setting of
ColdFusion. If you have not made a call to SetLocale(), GetLocale() returns the locale of
the JVM.

Note: In previous versions of ColdFusion, the default locale was always English, not the
operating system’s locale. For the Japanese version of ColdFusion, the default was
Japanese.

The following example code uses the LSCurrencyFormat() function to output the value
100,000 in monetary units for all the ColdFusion-supported locales. You can run this
code to see how the locale affects the data returned to a browser.
<p>LSCurrencyFormat returns a currency value using the locale convention.
<!--- loop through list of locales; show currency values for 100,000 units --->
<cfloop LIST = "#Server.Coldfusion.SupportedLocales#"

index = "locale" delimiters = ",">
<cfset oldlocale = SetLocale(locale)>

<cfoutput><p><I>#locale#</I>

Local: #LSCurrencyFormat(100000, "local")#

International: #LSCurrencyFormat(100000, "international")#

None: #LSCurrencyFormat(100000, "none")#

<hr noshade>

</cfoutput>
</cfloop>

This example uses the ColdFusion variable Server.Coldfusion.SupportedLocales, which
contains a list of all supported ColdFusion locales.

Element Description

language This is the basic locale identifier, such as English. This is identified by an
ISO 639 two-letter language code.

regional variation A country code: for example the (US) in English (US). This is identified
by an ISO 3166 two-letter country code.

variant Not commonly used, variants create special locales with additional
requirements. A common variant example is the euro variant used by
European countries that have adopted the Euro as the currency.
378 Chapter 17 Developing Globalized Applications

Processing a request in ColdFusion
When ColdFusion receives an HTTP request for a ColdFusion page, ColdFusion
resolves the request URL to a physical file and reads its contents to parse it. A ColdFusion
page can be encoded in a variety of ways, using different character sets and formats.

The following figure shows an example of a client making a request to ColdFusion:

The content of the ColdFusion page on the server can be static data (typically HTML
and plain text not processed by ColdFusion), and dynamic content written in CFML.
Static content is written directly to the response to the browser and the dynamic content
is processed by ColdFusion.

The default language of a website might be different than from that of the person
connecting to it. For example, you could connect to an English website from a French
computer. When ColdFusion generates a response, the response must be formatted in the
way expected by the customer. This includes both the character set of the response and
the locale.

This section describes how ColdFusion determines the character set of the files that it
processes, and how it determines the character set and locale of its response to the client.

Determining the character set of a ColdFusion page
When a request for a ColdFusion page occurs, the ColdFusion server opens the page,
processes the static (HTML) content, processes the dynamic content (CFML), and
returns the results back to the browser of the requestor. In order to process the
ColdFusion page, though, ColdFusion has to interpret the page content.

One piece of information used by ColdFusion is the Byte Order Mark (BOM) in a
ColdFusion page. The BOM is special a character at the beginning of a text stream that
specifies the byte order (big/little endian) used by the page. The following table lists the
common BOM values:

Encoding BOM Signature

UTF-8 EE BB BF

UTF-16 Big Endian FE FF

UTF-16 Little Endian FF FE
Processing a request in ColdFusion 379

To insert a BOM mark in a file, your editor must support BOM marks. Many IDEs
support insertion of these character, including Macromedia Dreamweaver MX, however,
ColdFusion Studio does not.

If your file does not contain a BOM, or if your IDE does not let you set one, you can use
the cfprocessingdirective tag to set the character encoding of the page. However, if you
insert the cfprocessingdirective tag on a page that has a BOM, the information
specified by the cfprocessingdirective tag must be the same as for the BOM; otherwise
ColdFusion issues an error.

The following procedure describes how ColdFusion recognizes the encoding format of a
ColdFusion page.

To ColdFusion determines the page encoding:

1 Use the BOM if specified.

Macromedia recommends that you use BOM marks in your files.

2 Default to the JVM system encoding.

Typically, the JVM uses the same encoding as the operating system but you can
override it.

3 Use the pageEncoding attribute of the cfprocessingdirective tag if specified.

If a BOM is detected in the file, it throws an error if cfprocessingdirective specifies
an encoding different from the BOM.

If there are multiple occurrences of the cfprocessingdirective tag in the same
ColdFusion page, the pageEncoding attribute must specify the same setting or else
ColdFusion throws an error.

If you use the cfprocessingdirective tag, insert it as close to the top of the page as
possible; for example, immediately after any cfsetting or cfsilent tag, but before any
other logic.

The cfprocessingdirective tag specifies information to the ColdFusion compiler and
is evaluated when ColdFusion compiles the page, not when it executes the page.
Therefore, you cannot embed the cfprocessingdirective tag within conditional
logic. For example, the following code will not have any effect at execution time since
the cfprocessingdirective tag will already have been evaluated:
<cfif dynEncoding is not "dynamic encoding is not possible">

<cfprocessingdirective pageencoding=#dynEncoding# />
</cfif>

Determining the character set of server output
As part of servicing an HTTP request, ColdFusion must determine the character set of
the data returned in the HTTP response. By default, ColdFusion returns character data
using the Unicode UTF-8 format.

However, within a ColdFusion page you can override the default character encoding of
the response using the cfcontent tag. Use the type attribute of cfcontent to specify the
MIME type of the page output, including the character set, as follows:

<cfcontent type="text/html charset=EUC-JP">
380 Chapter 17 Developing Globalized Applications

ColdFusion pages (meaning .cfm pages) default to using the Unicode UTF-8 format for
the response even if you include the HTML meta tag in the page. Therefore, the
following code will not modify the character set of the response:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>Untitled Document</title>
<meta http-equiv="Content-Type"

content="text/html;
charset="Shift-JIS">

</head>
...

In this example, the response will still use the UTF-8 character set. Use the cfcontent tag
to set the output character set.
Processing a request in ColdFusion 381

Tags and functions for globalizing
ColdFusion supplies many tags and functions that you can use to develop globalized
applications. This section describes these tags and functions.

Using tags for globalizing applications
The following table shows the tags that you use most often to globalize an application:

Using functions for globalizing applications
ColdFusion contains functions that you use when globalizing an application. These
functions include string functions as well as date, time, currency, and numeric functions.

String functions

ColdFusion provides the following functions to process string data:

Tag Attributes Use

cfprocessingdirective pageencoding Specify the encoding of a ColdFusion page
so ColdFusion can parse it. For an example,
see “Determining the character set of a
ColdFusion page” on page 379.

cfcontent type

encoding

Specify the encoding of the results
returned to the client browser. For an
example, see “Determining the character
set of server output” on page 380.

cffile encoding Specify how to encode data written to or
read from a file. For an example, see
“Reading and writing file data” on page
387.

Asc Insert LSParseNumber REReplace

Chr JavaCast LTrim REReplaceNoCase

CJustify JSStringFormat Mid Reverse

Compare LCase MonthAsString Right

CompareNoCase Left ParseDateTime RJustify

DayOfWeekAsString Len REFind RTrim

Encrypt LJustify REFindNoCase SpanExcluding

FormatBaseN ListValueCount RemoveChars SpanIncluding

Find ListValueCountNoCase RepeatString ToBase64

FindNoCase LSParseCurrency Replace Trim

FindOneOf LSParseDateTime ReplaceList UCase

GetToken LSParseEuroCurrency ReplaceNoCase Val

Hash
382 Chapter 17 Developing Globalized Applications

These functions recognize the Unicode encodings so they operate correctly for all single
and double-byte character sets.

Note: Applications developed for previous versions of ColdFusion that assumed that the
character length of a string was the same as the byte length might produce errors in
ColdFusion MX.

Date, time, currency, and numeric functions

CFML defines versions of the date, time, currency, and numeric functions that support
different locales. The names of these functions are prefixed by LS. The following table
lists the LS functions and several other functions used with date, time, currency, and
numeric data:

You must precede calls to the LS functions with a call to the SetLocale() function in order
to set the locale. If you do not, these functions default to using the locale defined by the
JVM, which typically is the locale of the operating system.

The following example uses the LSDateFormat() function to display the current date in
the formats for each locale supported by ColdFusion:

<!--- This example shows LSDateFormat --->
<html>
<head>
<title>LSDateFormat Example</title>
</head>
<body>
<h3>LSDateFormat Example</h3>
<p>Format the date part of a date/time value using the locale convention.
<!--- loop through a list of locales; show date values for Now()--->
<cfloop list = "#Server.Coldfusion.SupportedLocales#"

index = "locale" delimiters = ",">
<cfset oldlocale = SetLocale(locale)>

<cfoutput><p><I>#locale#</I>

#LSDateFormat(Now(), "mmm-dd-yyyy")#

#LSDateFormat(Now(), "mmmm d, yyyy")#

#LSDateFormat(Now(), "mm/dd/yyyy")#

#LSDateFormat(Now(), "d-mmm-yyyy")#

Function Function

DateConvert LSIsNumeric

GetHttpTimeString LSNumberFormat

GetLocale LSParseCurrency

GetTimeZoneInfo LSParseDateTime

LSCurrencyFormat LSParseEuroCurrency

LSDateFormat LSParseNumber

LSEuroCurrencyFormat LSTimeFormat

LSIsCurrency SetLocale

LSIsDate
Tags and functions for globalizing 383

#LSDateFormat(Now(), "ddd, mmmm dd, yyyy")#

#LSDateFormat(Now(), "d/m/yy")#

#LSDateFormat(Now())#

<hr noshade>

</cfoutput>
</cfloop>
</body>
</html>
384 Chapter 17 Developing Globalized Applications

Handling data in ColdFusion
Many of the issues involved with globalizing applications deal with processing data from
the various sources supported by ColdFusion, including the following:
• URL strings
• Forms
• Files
• Databases
• E-mail
• HTTP
• LDAP
• WDDX
• COM
• CORBA

This section describes how to handle data from each of these sources.

Input data from URLs and HTML forms
A web application server receives character data from request URL parameters or as form
data.

The HTTP 1.1 standard only allows US-ASCII characters (0-127) for the URL
specification and for message headers. This requires a browser to encode the non-ASCII
characters in the URL, both address and parameters, by escaping (URL encoding) the
characters using the “%xx” hexadecimal format. URL encoding, however, does not
determine how the URL is used in a web document. It only specifies how to encode the
URL.

Form data uses the message headers to specify the encoding used by the request (Content
headers) and the encoding used in the response (Accept headers). So content negotiation
between the client and server uses this information.

This section contains suggestions on how you can handle both URL and form data
entered in different character sets.

Handling URL strings

URL requests to a server often contain name/value pairs as part of the request. For
example, the following URL contains name/value pairs as part of the URL:

http://company.com/prod_page.cfm?name=Stephen;ID=7645

As noted in the previous section, URL characters entered in using any character set other
than US-ASCII are URL encoded in a hexadecimal format. However, by default, a web
server assumes that the characters of a URL string are single byte characters.

One common method used to support different character sets within a URL is to include
a name/value pair within the URL that defines the character set of the URL. For
example, the following URL uses a parameter called "encoding to define the character set
of the URL parameters:

http://company.com/prod_page.cfm?name=Stephen;ID=7645;encoding=Latin-1
Handling data in ColdFusion 385

Within the product_name.cfm page, you can check the value of the encoding parameter
before processing any of the other name/value pairs. This guarantees that you will handle
the parameters correctly.

You can also use the setEncoding() function to specify the character set of URL
parameters. The setEncoding() function takes two parameters; the first specifies a
variable scope and the second specifies the character set used by the scope. Since
ColdFusion writes URL parameters to the URL scope, you specify "URL" as the scope
parameter to the function.

For example, if the URL parameters were passed using Shift-JIS, you could access them
as follows:

<cfscript>
setEncoding("URL", "Shift_JIS");
writeoutput(URL.name);
writeoutput(URL.ID);

</cfscript>

Handling form data

The HTML form tag and the ColdFusion cfform tag allows users to enter text on a page,
then submit that text to the server. The form tags are designed to work only with single
byte character data though. Since ColdFusion uses two bytes per character when it stores
strings, ColdFusion converts each byte of the form input into a two-byte representation.

However, if a user enters double-byte text into the form, the form interprets each byte as
a single character, rather than recognize that each character is two bytes. This will corrupt
the input text, as the following example shows:

1 A customer enters three double-byte characters in a form, represented by 6 bytes.

2 The form returns the 6 bytes to ColdFusion as six characters. ColdFusion converts
them to a representation using 2 bytes per input byte for a total of 12 bytes.

3 Outputting these characters results in corrupt information displayed to the user.

To work around this issue, ColdFusion supplies the setEncoding() function that you use
when working with forms. You use this tag to specify the character set of input form text.
The setEncoding() function takes two parameters; the first specifies the variable scope
and the second specifies the character set used by the scope. Since ColdFusion writes
form parameters to the Form scope, you specify "Form" as the scope parameter to the
function. If the input text is double byte, ColdFusion preserves the two-byte
representation of the text.

For example, the following code specifies that the form data contains Korean characters:

<cfscript>
setEncoding("FORM", "EUC-KR");

</cfscript>
<h1> Form Test Result </h1>
Form Values :

<cfset text = "String = #form.input1# , Length = #len(Trim(form.input1))#">
<cfoutput>#text#</cfoutput>
386 Chapter 17 Developing Globalized Applications

Reading and writing file data
You use the cffile tag to write to and read from text files. By default, the cffile tag
assumes that you are reading single byte character data. This causes a problem if you read
a file that contains double-byte characters, whether it is a file you created using cffile to
write to the file, or any file containing double-byte characters.

On a read, the cffile tag converts each byte into a two-byte representation. If the data is
a single-byte representation, the read works fine. If the file contains double-byte
characters, the read interprets each byte as a single character and corrupts the data.

To enable the cffile tag to correctly read and write double-bye characters, you can pass
the charset attribute to it. Specify as a value the character encoding of the data to read or
write, as the following example shows:

<cffile action="read"
charset="EUC-KR"
file = "c:\web\message.txt"
variable = "Message" >

Databases
ColdFusion applications access databases using drivers for each of the supported database
types. The conversion of client native language data types to SQL data types is
transparent and is done by the driver managers, database client, or server. For example,
the character data (SQL CHAR, VARCHAR) you use with JDBC API is represented
Unicode encoded strings.

Database administrators configure data sources and usually are required to specify the
character encodings for character column data. Many of the major vendors, such as
Oracle, Sybase, and Informix, support storing character data in many character
encodings including the Unicode’s UTF-8 and UTF-16 (UCS-2).

The database drivers supplied with ColdFusion correctly handle data conversions from
the database native format to the ColdFusion Unicode format. You should not have to
perform any additional processing to access databases. However, you should always check
with your database administrator to determine how your database supports different
character encodings.

E-mail
ColdFusion supports e-mail using the tags cfmail and cfmailparam. Because ColdFusion
uses the Java mail package, which supports Unicode, you do not have to perform any
special processing to handle e-mail.

HTTP
ColdFusion supports HTTP communication using the cfhttp and cfhttpparam tags and
the GetHttpRequestData functions.

The cfhttp tag supports making HTTP requests using GET and POST. By default, the
cfhttp tag uses the Unicode UTF-8 encoding for passing data. However, you can also
insert the cfhttpparam tag to specify a MIME type.
Handling data in ColdFusion 387

LDAP
ColdFusion supports LDAP through the cfldap tag. LDAP uses the UTF-8 encoding
format, so you can mix all retrieved data with other data and safely manipulated it. No
extra processing is required to support LDAP.

WDDX
ColdFusion supports cfwddx tag. ColdFusion stores WDDX data as UTF-8 encoding so
it automatically supports double-byte character sets. You do not have to perform any
special processing to handle double-byte characters with WDDX.

COM
ColdFusion supports COM through the cfobject type="com" tag. All strings data used in
COM interfaces are constructed using wide characters (wchars) which support
double-byte characters. You do not have to perform any special processing for interfacing
with COM objects.

CORBA
ColdFusion supports CORBA through the cfobject type="corba" tag. The CORBA 2.0
interface definition language (IDL) basic type “String” used the Latin-1 character set
which used the full 8-bits (256) to represent characters.

As long as you are using CORBA later than version 2.0, which includes support for the
IDL types wchar and wstring which map to Java types char and string respectively, you
do not have to do anything to support double-byte characters.

However, if you are using a version of CORBA that does not support wchar and wstring,
the server uses char and string data types which assume a single byte representation of
text.

Searching and indexing
ColdFusion supports Verity search through the cfindex, cfcollection, and cfsearch tags.
To support multilingual searching, the ColdFusion MX product CD-ROM includes the
Verity language packs that you install to support different languages.
388 Chapter 17 Developing Globalized Applications

CHAPTER 18

Debugging and Troubleshooting

Applications
ColdFusion MX provides detailed debugging information to help you resolve problems
with your application. This chapter describes how you configure ColdFusion MX to
provide debugging information, how to understand the information it provides, and how
to use the cftrace tag to provide detailed information on code execution. It also provides
additional information on tools for validating your code before you run it and techniques
for troubleshooting particular problems.

Note: Macromedia Dreamweaver MX provides integrated tools for displaying and using
ColdFusion debugging output. For information on using these tools, see the Dreamweaver
MX Help.

Contents

• Configuring debugging in the ColdFusion MX Administrator 390

• Using debugging information from browser pages ... 393

• Controlling debugging information in CFML ... 402

• Using the cftrace tag to trace execution .. 404

• Using the Code Compatibility Analyzer .. 409

• Troubleshooting common problems .. 410
389

Configuring debugging in the ColdFusion MX
Administrator

ColdFusion can provide important debugging information for every application page
requested by a browser. The ColdFusion MX Administrator lets you specify which
debugging information to make available and how to display it. The following sections
briefly describe the Administrator settings. For more information, see the online Help for
the Debugging pages.

Debugging Settings page
In the Administrator, the following options on the Debugging Settings page determine
the information that ColdFusion displays in debugging output:

Option Description

Enable
Debugging

Enables debugging output. When this option is cleared, no debugging
information is displayed, including all output of cftrace calls. (Cleared
by default.)

You should disable debugging output on production servers. Doing so
increases security by ensuring that users cannot see debugging
information. It also improves server response times. You can also limit
debugging output to specific IP addresses; for more information, see
“Debugging IP addresses page” on page 392.

Select
Debugging
Output Format

Determines how to display debugging output:

• The classic.cfm template (the default) displays information as plain
HTML text at the bottom of the page.

• The dockable.cfm template uses DHTML to display the debugging
information using an expanding tree format in a separate window.
This window can be either a floating pane or docked to the browser
window. For more information on the dockable output format, see
“Using the dockable.cfm output format” on page 400.

Report Execution
Times

Lists ColdFusion pages that run as the result of an HTTP request and
displays execution times, ColdFusion also highlights in red pages with
processing times greater than the specified value, and you can select
between a summary display or a more detailed, tree structured, display.

Database Activity Displays debugging information about access to SQL data sources and
stored procedures. (Selected by default.)

Exception
information

Lists all ColdFusion exceptions raised in processing the request.
(Selected by default.)

Tracing
information

Displays an entry for each cftrace tag. When this option is cleared, the
debugging output does not include tracing information, but the output
page does include information for cftrace tags that specify
inline="Yes". (Selected by default.)

For more information on using the cftrace tag, see“Using the cftrace
tag to trace execution” on page 404.
390 Chapter 18 Debugging and Troubleshooting Applications

Variables Enables the display of ColdFusion variable values. When this option is
cleared, disables display of all ColdFusion variables in the debugging
output. (Selected by default.)

When enabled, ColdFusion displays the values of variables in the
selected scopes. You can select to display the contents of any of the
ColdFusion scopes except Variables, Attributes, Caller, and ThisTag. To
enhance security, Application, Server, and Request variable display is
disabled by default,

Enable Robust
Exception
Information

Enables the display of the following information when ColdFusion
displays the exception error page:

• Path and URL of the page that caused the error

• Line number and short snippet of the code where the error was
identified

• Any SQL statement and data source

• Java stack trace

Enable
Performance
Monitoring

Allows the standard NT Performance Monitor application to display
information about a running ColdFusion Application Server.

Enable CFSTAT Enables you to use of the cfstat command line utility to monitor
real-time performance. This utility displays the same information that
ColdFusion writes to the NT System Monitor, without using the System
Monitor application. For information on the cfstat utility, see
Administering ColdFusion MX.

Option Description
Configuring debugging in the ColdFusion MX Administrator 391

The following figure shows a sample debugging output using the classic output format:

Debugging IP addresses page
By default, when you enable debugging output, the output is visible only to local users
(that is, via IP address 127.0.0.1). You can specify additional IP addresses whose users
can see debugging output, or even disable output to local users. In the Administrator, use
the Debugging IPs page to specify the addresses that can receive debugging messages.

Note: If you must enable debugging on a production server, for example to help locate the
cause of a difficult problem, use the Debugging IP Addresses page to limit the output to your
development systems and prevent clients from seeing the debugging information.
392 Chapter 18 Debugging and Troubleshooting Applications

Using debugging information from browser pages
The ColdFusion debugging output that you configure in the Administrator displays
whenever an HTML request completes. It represents the server conditions at the end of
the request. For information on displaying debugging information while a request is
processed, see “Using the cftrace tag to trace execution” on page 404.

The following figure shows a sample collapsed debugging output using the dockable.cfm
debugging output format. The next sections show each of the debugging sections and
describe how you can use the information they display.
Using debugging information from browser pages 393

General debugging information
ColdFusion displays general debugging information. In the classic.cfm output format,
the information is at the top of the debugging output. In the dockable.cfm output
format, it looks like the following figure:

(In the classic.cfm output format, the section is first in the debugging output and has no
heading.)

The general debugging information includes the following values. The table lists the
names used in the classic output template view.

Name Description

ColdFusion The ColdFusion Server version.

Template The requested template. (In the dockable.cfm format, this appears in
the Page Overview section and is called Page.)

TimeStamp The time the request was completed. (In the dockable.cfm format, this
appears in the Page Overview section and is called Date.)

Locale The locality and language that determines how information is
processed, particularly the message language.

User Agent The identity of the browser that made the HTTP request.

Remote IP The IP address of the client system that made the HTTP request.

Host Name The name of the host running the ColdFusion server that executed the
request.
394 Chapter 18 Debugging and Troubleshooting Applications

Execution Time
The Execution Time section displays the time required to process the request. It displays
information about the time required to process all pages required for the request,
including the Application.cfm and OnRequestEnd.cfm pages, if used, and any CFML
custom tags, pages included by the cfinclude tag, and any ColdFusion component
(CFC) pages. You can display the execution time in two formats:
• Summary
• Tree

Note: Execution tine decreases substantially between the first and second time you use a
page after creating it or changing it. The first time ColdFusion uses a page it compiles the
page into Java bytecode, which the server saves and loads into memory. Subsequent uses
of unmodified pages do not require recompilation of the code, and therefore are substantially
faster.

Summary execution time format

The summary format displays one entry for each ColdFusion page processed during the
request. If a page is processed multiple times it appears only once in the summary. For
example, if a custom tag gets called three time in a request, it appears only once in the
output. In the classic.cfm output format, the summary format looks like the following
figure:

The following table describes the display fields:

The page icon indicates the requested page.

Column Description

Total Time The total time required to process all instances of the page and all pages
that it uses. For example, if a request causes a page to be processed two
times, and the page includes another page, the total time includes the time
required to process both pages twice.

Avg Time The average time for processing each instance of this page and the pages
that it uses. The Avg Time multiplied by the Count equals the Total Time.

Count The number of times the page is processed for the request.

Template The path name of the page.
Using debugging information from browser pages 395

Any page with an average processing time that exceeds the highlight value that you set in
the ColdFusion Administrator Debugging Settings page appears in red.

The last line of the output displays the time that ColdFusion required total time field
describe the total time ColdFusion took to parse, compile, and load pages, and to start
and end page processing. This figure is not included in the individual page execution
times.

Tree execution time format

The tree execution time format is a hierarchical, detailed view of how ColdFusion
processes each page. If a page includes or calls second page, the second page appears
below and indented relative to the page that uses it. Each page appears once for each time
it is used. Therefore, if a page gets called three times in processing a request, it appears
three times in the tree. Therefore the tree view displays both processing times and an
indication of the order of page processing.

The tree format looks as follows in the dockable.cfm output format:

As in the summary view, the execution times (in parentheses) show the times to process
the listed page and all pages required to process the page, that is, all pages indented below
the page in the tree.

By looking at this output in this figure you can determine the following information:
• ColdFusion took 10 ms to process an Application.cfm page as part of the request.
• The requested page was tryinclude.cfm. It took 1502 ms to process this page and all

pages required to execute it. The other pages took about 1330 (430 + 711 + 191) ms
to process, so the code on tryincludme.cfm took about 170 ms.

• The tryinclude.cfm directly called or included three pages, mytag1.cfm,
includeme.cfm, and mytag2.cfm.

• The includeme.cfm page directly called or included one page, mytag1.cfm.
396 Chapter 18 Debugging and Troubleshooting Applications

• The mytag1.cfm page directly called or included one page, mytag2.cfm
• The mytag2.cfm page takes about 200 ms to process.
• The mytag1.cfm page took about 450 ms to process. This time included the 200 ms

for mytag2.cfm, so the code on mytag1.cfm took about 250 ms to process.
• The includeme.cfm page took about 700 ms to process. This time included about

480 ms for processing other pages, so the code on this page took about 220 ms.
• ColdFusion took 70 ms for processing that was not associated with a specific page.
• The total processing time was 1582 (10 + 1502 + 70) milliseconds.

Database Activity
In the Administrator, when Database Activity is selected on the Debugging Settings page,
the debugging output includes information about database access.

SQL Queries

The SQL Queries section provides information about tags that generate SQL queries or
result in retrieving a cached database query: cfquery, cfinsert, cfgridupdate, and cfupdate.
The section looks like the following figure in the dockable.cfm output format:

The output displays the following information:
• Page on which the query is located.
• The time when the query was made.
• Query name.
• An indicator if the result came from a cached query.
• SQL statement, including the results of processing any dynamic elements such as

CFML variables and cfqueryparam tags. This information is particularly useful
because it shows the results of all ColdFusion processing of the SQL statement.

• Datasource name.
• Number of records returned; 0 indicates no match to the query.
Using debugging information from browser pages 397

• Query execution time.
• Any query parameters values from cfqueryparam tags.

Stored Procedures

The stored procedures section displays information about the results of using the
cfstoredproc tag to execute a stored procedure in a database management system.

The Stored Procedures section looks as follows in the classic.cfm output format:

The output displays the following information:
• Stored procedure name
• Data source name
• Query execution time
• Page on which the query is located.
• The time when the query was made.
• A table displaying the procedure parameters sent and received, as specified in the

cfprocparam tags, including the ctype, CFSQLType, value variable, and dbVarName
attributes. The variable information for OUT and INOUT parameters includes the
returned value.

• A table listing the procedure result sets returned, as specified in the cfprocresult tag.
398 Chapter 18 Debugging and Troubleshooting Applications

Exceptions
In the Administrator, when Exception Information is selected on the Debugging Settings
page, the debugging output includes a list of all ColdFusion exceptions raised in
processing the application page. This section looks like the following figure when
displaying information about an exception thrown by the cfthrow tag using the
dockable.cfm output format:

The exception information includes information about any application exceptions that
are caught and handled by your application code or by the ColdFusion Server.

Exceptions represent events that disrupt the normal flow of an application. You should
catch and, whenever possible, recover from forseeable exceptions in your application, as
described in Chapter 14, “Handling Errors” on page 281. However, you might also want
to be alerted to caught exceptions when you are debugging your application. For
example, if a file is missing, your application can catch the cffile exception and use a
backup or default file instead. If you enable exception information in the debugging
output, you can immediately see when this happens.

Trace points
In the Administrator, when Tracing Information is selected on the Debugging Settings
page, the debugging output includes the results of all cftrace tags, including all tags that
display their results in-line. Therefore, the debugging output contains a historical record
of all trace points encountered in processing the request. This section looks like the
following figure when you use the classic.cfm output format:

For more information on using the cftrace tag, see “Using the cftrace tag to trace
execution” on page 404.
Using debugging information from browser pages 399

Scope variables
In the Administrator, when the Variables option and one or more variable scopes are
selected on the Debugging Settings page, the debugging output displays the values of all
variables in the selected scopes. The debugging output displays the values that result after
all processing of the current page

By displaying selected scope variables you can determine the effects of processing on
persistent scope variables, such as application variables. This can help you locate
problems that do not generate exceptions.

The Form, URL, and CGI scopes are useful for inspecting the state of a request. They let
you inspect parameters that affect page behavior, as follows:
• URL variables Identify the HTTP request parameters.
• Form variables Identify the form fields posted to an action page.
• CGI variables Provide a view of the server environment following the request.

Similarly, the Client, Session, Application, and Server scope variables show the global
state of the application, and can be useful in tracing how each page affects the state of the
ColdFusion persistent variables.

Using the dockable.cfm output format
The dockable.cfm output format has several features that are not included in the
classic.cfm debugging display, as shown in the following figure of a docked debug pane:
400 Chapter 18 Debugging and Troubleshooting Applications

Application page selections

ColdFusion displays two buttons at the bottom of each page, as described in the
following table:

Debug pane features

The debug pane has the following features:
• You can expand and collapse each debugging information category, such as

Exceptions, by clicking on the plus or minus sign (+ or -) in front of each category
heading. You can also expand and collapse each scope data type display in the Scoped
Variables section.

• The top of the debug pane displays the URL of the application page being debugged
(as identified by the cgi.script_name variable). Click this link to refresh the page and
display the debugging information that results. (You can also refresh the page and
debugging information by using your browser’s Refresh button or key.)

• The debug pane also displays a box where you can enter a page pathname or URL.
When you click the Go button, ColdFusion processes the page and the debug pane is
updated with the debugging information for the new page.

Button Description

Debug This page Tells ColdFusion to display the debugging information for the selected
frame. Refreshes the debug pane if you select it for the current frame (or
the application does not use frames).

Floating/Docked
debug pane

Toggles the display between a floating window and a pane docked to
the left of the selected frame.
Using debugging information from browser pages 401

Controlling debugging information in CFML
The following sections describe how you can use CFML tags and functions to display or
hide debugging and tracing information.

Generating debugging information for an individual query
In the Administrator, the cfquery tag debug attribute overrides the Database Activity
setting on the Debugging Settings page. The debug attribute has an effect only when
debugging output is enabled on the Debugging Settings page, as follows:
• If Database Activity is selected in the Administrator, specify debug="No" to prevent

ColdFusion from displaying the query’s SQL and statistics in the debugging output.
• If Database Activity is not selected in the Administrator, specify debug="Yes" or debug

to have ColdFusion display the query’s SQL and statistics in the debugging output.

For example, if Database Activity is not selected in the Administrator, you can use the
following code to show the query execution time, number of records returned,
ColdFusion page, timestamp, and the SQL statement sent to the data source for this
query only:

<cfquery name="TestQuery" datasource="CompanyInfo" debug>
SELECT * FROM TestTable

</cfquery>

The debug attribute can be useful to disable query debugging information generated by
queries in custom tags that you call frequently, so that you only see the debugging
information for queries in pages that call the tags.

You can also view stored procedure-specific debugging information by specifying the
debug attribute in the cfstoredproc tag.

Controlling debugging output with the cfsetting tag
Use the cfsetting tag showDebugOutput attribute to turn off debugging output for a
specific page. In the Administrator, the attribute controls debugging output only if the
Debugging Settings page enables debugging output. The attribute’s default value is Yes.
The following tag suppresses all debugging output for the current page:

<cfsetting showDebugOutput="No">

You can put this tag on your Application.cfm page to suppress all debugging output for
an application, and override it on specific pages by setting showDebugOutput="Yes" in
cfsetting tags on those pages. Conversely, you can leave debugging on for the
application, and use the cfsetting showDebugOutput="No" tag to suppress debugging on
individual pages where the output could cause errors or confusion.

You can also use the showDebugOutput attribute to control debugging output if you do not
have access to the ColdFusion Administrator, but only if the Administrator enables
debugging.
402 Chapter 18 Debugging and Troubleshooting Applications

Using the IsDebugMode function to run code selectively
The IsDebugMode function returns True if debugging is enabled. You can use this function
in a cfif tag condition to selectively run code only when debugging output is enabled.
The IsDebugMode function lets you tell ColdFusion to run any code in debug mode, so it
provides more flexibility than the cftrace tag for processing and displaying information.

You can use the IsDebugMode function to selectively log information only when debugging
is enabled. Because you control the log output, you have the flexibility of silently logging
information without displaying trace information in the browser. For example, the
following code logs the application page, the current time, and the values of two variables
to the log file MyAppSilentTrace.log when debugging is enabled:

<cfquery name="MyDBQuery" datasource="CompanyInfo">
SELECT *
FROM Employee

</cfquery>
<cfif IsDebugMode()>

<cflog file="MyAppSilentTrace" text="Page: #cgi.script_name#,
completed query MyDBQuery; Query Execution time:
#cfquery.ExecutionTime# Status: #Application.status#">

</cfif>

Tip: If you use cfdump tags frequently for debugging, put them in <cfif IsDebugMode()>
tags; for example <cfif IsDebugMode()><cfdump var=#myVar#></cfif>. This way you ensure
that if you leave any cfdump tags in production code, they are not displayed when you disable
debugging output.
Controlling debugging information in CFML 403

Using the cftrace tag to trace execution
The cftrace tag displays and logs debugging data about the state of your application at
the time the cftace tag executes. You use it to provide “snapshots” of specific information
as your application runs.

About the cftrace tag
The cftrace tag provides the following information:
• A severity identifier specified by the cftrace tag type attribute
• A timestamp indicating when the cftrace tag executed
• The time elapsed between the start of processing the request and when the current

cftrace tag executes.
• The time between any previous cftrace tag in the request and the current one. If this

is the first cftrace tag processed for the request, the output indicates “1st trace”.
ColdFusion does not display this information in inline trace output, only the log and
in the standard debugging output.

• The name of the page that called the cftrace tag
• The line on the page where the cftrace call is located
• A trace category specified by the category attribute
• A message specified by the text attribute
• The name and value, at the time the cftrace call executes, of a single variable

specified by the var attribute

A typical cftrace tag might look like the following:

<cftrace category="UDF End" inline = "True" var = "MyStatus"
text = "GetRecords UDF call has completed">

You can display the cftrace tag output in either or both of the following ways:
• As a section in the debugging output To display the trace information in the

debugging output, in the Administrator, select Tracing Information on the
Debugging Settings page.

• In-line in your application page When you specify the inline attribute in a cftrace
tag, ColdFusion displays the trace output on the page at the cftrace tag location.
(An inline cftrace tag does not display any output if it is inside a cfsilent tag block.)

The cftrace tag executes only if you select Enable Debugging on the ColdFusion
Administrator Debugging Settings page. To display the trace results in the debugging
output, you must also specify Tracing Information on the Debugging Settings page;
otherwise, the trace information is logged and inline traces are displayed, but no trace
information appears in the debugging output.

Note: When you use in-line trace tags, ColdFusion sends the page to the browser after all
page processing is completed, but before it displays the debugging output from the debug
template. As a result, if an error occurs after a trace tag but before the end of the page,
ColdFusion might not display the trace for that tag.
404 Chapter 18 Debugging and Troubleshooting Applications

An in-line trace messages look like the following:

The following table lists the displayed information:

ColdFusion logs all cftrace output to the file logs\cftrace.log in your ColdFusion
installation directory.

A log file entry looks like the following:

"Information","web-29","04/01/02","13:21:11","MyApp","[501 ms (1st trace)]
[C:\CFusionMX\wwwroot\MYStuff\NeoDocs\tractest.cfm @ line: 14] - [UDF
End] [MyStatus = Success] GetRecords UDF call has completed "

This entry is in standard ColdFusion log format, with comma-delimited fields inside
double-quote characters. The information displayed in the trace output is in the last,
message, field.

The following table lists the contents of the trace message and the log entries. For more
information on the log file format, see “Logging errors with the cflog tag,” in Chapter 14.

Entry Meaning

Trace type (severity) specified in the cftrace call; in
this case, Information.

[CFTRACE 13:21:11.011] Time when the cftrace tag executed.

[501 ms] Time taken for processing the current request to the
point of the cftrace tag.

[C:\CusionMX\wwwroot\MYStuff\
NeoDocs\tractest.cfm]

Path in the web server of the page that contains the
cftrace tag.

@ line:14 The line number of the cftrace tag.

[UDF End] Value of the cftrace tag category attribute.

GetRecords UDF call has completed The cftrace tag text attribute with any variables
replaced with their values.

MyStatus Success Name and value of the variable specified by the
cftrace tag var attribute.

Entry Meaning

Information The Severity specified in the cftrace call.

web-29 Server thread that executed the code.

04/01/02 Date the trace was logged.

13:21:11 Time the trace was logged.

MyApp The application name, as specified in a cfapplication tag.
Using the cftrace tag to trace execution 405

Using tracing
As its name indicates, the cftrace tag is designed to help you trace the execution of your
application. It can help you do any of several things:
• You can time the execution of a tag or code section. This capability is particularly

useful for tags and operations that can take substantial processing time. Typical
candidates include all ColdFusion tags that access external resources, including
cfquery, cfldap, cfftp, cffile, and so on. To time execution of any tag or code block,
call the cftrace tag before and after the code you want to time.

• You can display the values of internal variables, including data structures. For
example, you can display the raw results of a database query.

• You can display an intermediate value of a variable. For example, you could use this
tag to display the contents of a raw string value before you use string functions to
select a substring or format it.

• You can display and log processing progress. For example, you can put a cftrace call
at the head of pages in your application or before critical tags or calls to critical
functions. (Doing this could result in massive log files in a complex application, so
you should use this technique with care.)

• If a page has many nested cfif and cfelseif tags you can put cftrace tags in each
conditional block to trace the execution flow. When you do this, you should use the
condition variable in the message or var attribute.

• If you find that the ColdFusion Server is hanging, and you suspect a particular block
of code (or call to a cfx tag, COM object, or other third-party component), you can
put a cftrace tag before and after the suspect code, to log entry and exit.

501 ms (1st
trace)]

The time ColdFusion took to process the current request up to the
cftrace tag, This is the first cftrace tag processed in this request. If
there had been a previous cftrace tag, the parentheses would contain
the number of milliseconds between when the previous cftrace tag ran
and when this tag ran.

[C:\CFusionMX\wwwr
oot\MYStuff\NeoDoc
s\tractest.cfm @
line: 14]

Path of the page on which the trace tag is located and the line number
of the cftrace tag on the page.

[UDF End] Value of the cftrace tag category attribute.

[MyStatus =
Success]

Name and value of the variable specified by the cftrace tag var
attribute. If the variable is a complex data type, such as an array or
structure, the log contains the variable value and the number of entries
at the top level of the variable, such as the number of top-level structure
keys.

GetRecords UDF
call has completed

The cftrace tag text attribute with any variables replaced with their
values.

Entry Meaning
406 Chapter 18 Debugging and Troubleshooting Applications

Calling the cftrace tag
The cftrace tag takes the following attributes. All attributes are optional.

Attribute Purpose

abort A Boolean value. If you specify True, ColdFusion stops processing the
current request immediately after the tag. This attribute is the equivalent
of placing a cfabort tag immediately after the cftrace tag. The default is
False.If this attribute is True, the output of the cftrace call appears only
in the cftrace.log file. The line in the file includes the text “[ABORTED]”.

category A text string specifying a user-defined trace type category. This
attribute lets you identify or process multiple trace lines by categories.
For example, you could sort entries in a log according to the category.

The category attribute is designed to identify the general purpose of the
trace point. For example, you might identify the point where a custom
tag returns processing to the calling page with a “Custom Tag End”
category. You can also use finer categories; for example, by identifying
the specific custom tag name in the category.

You can include simple ColdFusion variables, but not arrays, structures,
or objects, in the category text by enclosing the variable name in pound
signs (#).

inline A Boolean value. If you specify True, ColdFusion displays trace output
in-line in the page. The default is False.

The inline attribute lets you display the trace results at the place that
the cftrace call is processed. This provides a visual cue directly in the
ColdFusion page display.

Trace output also appears in a section in the debugging information
display.

text A text message describing this trace point. You can include simple
ColdFusion variables, but not arrays, structures, or objects, in the text
output by enclosing the variable name in pound signs (#).

type A ColdFusion logging severity type. The inline trace display and
dockable.cfm output format show a symbol for each type. The default
debugging output shows the type name, which is also used in the log
file. The type name must be one of the following:

Information (default)

Warning

Error

Fatal Information
Using the cftrace tag to trace execution 407

Note: If you specify inline trace output, and a cftrace tag is inside a cfsilent tag block,
ColdFusion does not display the trace information in line, but does include it in the standard
debugging display.

The following cftrace tag displays the information shown in the example output and log
entry in the “About the cftrace tag”section:

<cftrace abort="False" category="UDF End" inline = "True" text = "GetRecords UDF
call has completed" var = "MyStatus">

var The name of a single variable that you want displayed. This attribute can
specify a simple variable, such as a string, or a complex variable, such as
a structure name. Do not surround the variable name in pound signs.

Complex variables are displayed in inline output in cfdump format; the
debugging display and log file report the number of elements in the
complex variable, instead of any values.

You can use this attribute to display an internal variable that the page
does not normally show, or an intermediate value of a variable before
the page processes it further.

To display a function return value, put the function inside the message.
Do not use the function in the var attribute, because the attribute
cannot evaluate functions.

Attribute Purpose
408 Chapter 18 Debugging and Troubleshooting Applications

Using the Code Compatibility Analyzer
The Code Compatibility Analyzer has two purposes:
• It can validate your application’s CFML syntax. To do so, the analyzer runs the

ColdFusion compiler on your pages, but does not execute the compiled code. It
reports errors that the compiler encounters.

• It can identify places where ColdFusion MX might behave differently than previous
versions. The analyzer identifies the following kinds of features:

− No longer supported Their use results in errors. For example, ColdFusion now
generates an error if you use the cflog tag with the thread="Yes" attribute.

− Deprecated They are still available, but their use is not recommended and the
they might not be available in future releases. Deprecated features might also
behave differently now than in previous releases. For example, the cfservlet tag is
deprecated.

− Modified behavior They might behave differently than in previous versions.
For example, the StructKeyList function no longer lists the structure key names
in alphabetical order.

The analyzer provides information about the incompatibility and its severity, and
suggests a remedy where one is required.

You can run the Code Compatibility Analyzer from the ColdFusion MX Administrator.
Select Code Analyzer from the list of Debugging & Logging pages.

Note: The CFML analyzer does not execute the pages that it checks. Therefore, it cannot
detect invalid attribute combinations if the attribute values are provided dynamically at
runtime.

For more information on using the Code Compatibility Analyzer, see Migrating
ColdFusion 5 Applications.
Using the Code Compatibility Analyzer 409

Troubleshooting common problems
This section describes a few common problems that you might encounter and ways to
resolve them.

For more information on troubleshooting ColdFusion, see the Macromedia ColdFusion
Support Center Testing and Troubleshooting page at http://www.macromedia.com/
support/coldfusion/troubleshoot.html. For common tuning and precautionary
measurements that can help you prevent technical problems and improve application
performance, see the ColdFusion tech tips article, TechNote number 13810. A link to
the article is located near the top of the Testing and Troubleshooting page.

CFML syntax errors
Problem: You get an error message such as the following:

Encountered "function or tag name" at line 12, column 1.

Encountered "\"" at line 37, column 20.

Encountered "," at line 24, column 61.

Unable to scan the character '\"' which follows "" at line 38, column 53.

These errors typically indicate that you have unbalanced <, ", or # characters. One of the
most common coding errors is to forget to close quoted code, pound sign-delimited
variable names, or opening tags. Make sure the code in the identified line and previous
lines do not have missing characters.

The line number in the error message often does not identify the line that causes the
error. Instead, it identifies the first line where the ColdFusion compiler encountered code
that it could not handle as a result of the error.

Problem: You get an error message you do not understand.

Make sure all your CFML tags have matching end tags where appropriate. It is a
common error to omit the end tag for the cfquery, cfoutput, cftable, or cfif tag.

As with the previous problem, the line number in the error message often does not
identify the line that causes the error, but the first line where the ColdFusion compiler
encounters code that it could not handle as a result of the error. Whenever you have an
error message that does not appear to report a line with an error, check the code that
precedes it for missing text.

Problem: Invalid attribute or value.

If you use an invalid attribute or attribute values, ColdFusion returns an error message.
To prevent such syntax errors, use the CFML Code Analyzer. Also see “Using the cftrace
tag to trace execution” on page 404.

Problem: You suspect that there are problems with the structure or contents of a complex
data variable, such as a structure, array, query object, or WDDX-encoded variable.

Use the cfdump tag to generate a table-formatted display of the variable’s structure and
contents. For example, to dump a structure named relatives, use the following line. You
must surround the variable name with pound signs (#).

<cfdump var=#relatives#>
410 Chapter 18 Debugging and Troubleshooting Applications

Data source access and queries
Problem: You cannot make a connection to the database.

You must create the data source before you can connect. Connection errors can include
problems with the location of files, network connections, and database client library
configuration.

Create data sources before you refer to them in your application source files. Verify that
you can connect to the database by clicking the Verify button on the Data Sources page
of the ColdFusion Administrator. If you are unable to make a simple connection from
that page, you might need to consult your database administrator to help solve the
problem.

Also, check the spelling of the data source name.

Problem: Queries take too long.

Copy and paste the query from the Queries section of the debugging output into your
database's query analysis tool. Then retrieve and analyze the execution plan generated by
the database server's query optimizer. (The method for doing this varies from dbms to
dbms.) The most common cause of slow queries is the lack of a useful index to optimize
the data retrieval. In general, avoid table scans (or "clustered index" scans) whenever
possible.

HTTP/URL
Problem: ColdFusion cannot correctly decode the contents of your form submission.

The method attribute in forms sent to the ColdFusion Server must be Post, for example:

<form action="test.cfm" method="Post">

Problem: The browser complains or does not send the full URL string when you include
spaces in URL parameters.

Some browsers automatically replace spaces in URL parameters with the %20 escape
sequence, but others might display an error or just send the URL string up to the first
character (as does Netscape 4.7).

URL strings cannot have embedded spaces. Use a plus sign (+) or the standard HTTP
space character escape sequence, (%20) wherever you want to include a space.
ColdFusion correctly translates these elements into a space.

A common scenario in which this error occurs is when you dynamically generate your
URL from database text fields that have embedded spaces. To avoid this problem, include
only numeric values in the dynamically generated portion of URLs.

Or, you can use the URLEncodedFormat function, which automatically replaces spaces with
%20 escape sequences. For more information on the URLEncodedFormat function, see
CFML Reference.
Troubleshooting common problems 411

412 Chapter 18 Debugging and Troubleshooting Applications

PART IV

Accessing and Using Data
This part describes how to access and use sources of data, including SQL
(Structured Query Language) databases, LDAP (Lightweight Directory
Access Protocol) directories, and Verity document collections. It provides
an introduction to the SQL language, describes how to query and update
SQL data sources, and how to use record sets and the ColdFusion query
of queries mechanism to manipulate record sets. It also describes how to
access and use LDAP directories, and how to index and search
collections of documents and data sources using the Verity search
engine.

The following chapters are included:

Introduction to Databases and SQL ... 415

Accessing and Retrieving Data.. 433

Updating Your Database ... 445

Using Query of Queries ... 461

Managing LDAP Directories .. 489

Building a Search Interface.. 521

Using Verity Search Expressions .. 553

CHAPTER 19

Introduction to Databases and SQL
ColdFusion allows you to create dynamic applications to access and modify data stored
in a database. You do not need a thorough knowledge of databases to develop
ColdFusion applications, but you must know some basic concepts and techniques. This
chapter contains an overview of many important database and SQL concepts.

This chapter does not contain a complete description of database theory and SQL syntax.
Each database server (such as SQL Server, Oracle, or DB2) has unique capabilities and
properties. For more information, see the documentation that ships with your database
server.

Contents

• What is a database? .. 416

• Using SQL .. 420

• Writing queries using an editor .. 428
415

What is a database?
A database defines a structure for storing information. Databases are typically organized
into tables, which are collections of related items. You can think of a table as a grid of
columns and rows. ColdFusion works primarily with relational databases, such as Oracle,
DB2, and SQL Server.

The following figure shows the basic layout of a database table:

A column defines one piece of data stored in all rows of the table. A row contains one
item from each column in the table.

For example, a table might contain the ID, name, title, and other information for
individuals employed by a company. Each row, called a data record, corresponds to one
employee. The value of a column within a record is referred to as a record field.

The following figure shows an example table, named employees, containing information
about company employees:

The record for employee 4 contains the following field values:
• LastName field is "Smith"
• FirstName field is "John"
• Title field is "Engineer"

row

column

employees table
416 Chapter 19 Introduction to Databases and SQL

This example uses the EmpID field as the table’s primary key field. The primary key
contains a unique identifier to maintain each record's unique identity. Primary keys field
can include an employee ID, part number, or customer number. Typically, you specify
which column contains the primary key when you create a database table.

To access the table to read or modify table data, you use the SQL programming language.
For example, the following SQL statement returns all rows from the table where the
department ID is 3:

SELECT * FROM employees WHERE DEPTID=3

Note: In this chapter, SQL keywords and syntax are always represented by uppercase
letters. Table and column names used mixed uppercase and lowercase letters.

Using multiple database tables
In many database designs, information is distributed to multiple tables. The following
figure shows two tables, one for employee information and one for employee addresses:

In this example, each table contains a column named EmpID. This column associates a
row of the employees table with a row in the addresses table.

For example, to obtain all information about an employee, you request a row from the
employees table and the row from the addresses table with the same value for EmpID.

employees table

addresses table
What is a database? 417

One advantage of using multiple tables is that you can add tables containing new
information without modifying the structure of your existing tables. For example, to add
payroll information, you add a new table to the database where the first column contains
the employee’s ID and the columns contain current salary, previous salary, bonus
payment, and 401(k) percent.

Also, an access to a small table is more efficient than an access to a large table. Therefore,
if you update the street address of an employee, you update only the addresses table,
without having to access any other table in the database.

Database permissions
In many database environments, a database administrator defines the access privileges for
users accessing the database, usually through username and password. When a person
attempts to connect to a database, the database ensures that the username and password
are valid and then imposes access requirements on the user.

Privileges can restrict user access so that a user can do the following:
• Read data.
• Read data and add rows .
• Read data, add rows, modify existing tables.

In ColdFusion, you use the ColdFusion administrator to define database connections,
called data sources. As part of defining these connections, you specify the username and
password used by ColdFusion to connect to the database. The database can then control
access based on this username and password.

For more information on creating a data source, see Administering ColdFusion MX.

Commits, rollbacks, and transactions
Before you access data stored in a database, it is important to understand several database
concepts, including:
• Commit
• Rollback
• Transactions

A database commit occurs when you make a permanent change to a database. For
example, when you write a new row to a database, the write does not occur until the
database commits the change.

Rollback is the process of undoing a change to a database. For example, if you write a
new row to a table, you can rollback the write up to the point where you commit the
write. After the commit, you can no longer rollback the write.

Most databases support transactions where a transaction consists of one or more SQL
statements. Within a transaction, your SQL statements can read, modify, and write a
database. You end a transaction by either committing all your changes within the
transaction or rolling back all of them.
418 Chapter 19 Introduction to Databases and SQL

Transactions can be useful when you have multiple writes to a database and want to
make sure all writes occurred without error before committing them. In this case, you
wrap all writes within a single transaction and check for errors after each write. If any
write causes an error, you rollback all of them. If all writes occur successfully, you commit
the transaction.

A bank might use a transaction to encapsulate a transfer from one account to another.
For example, if you transfer money from your savings account to your checking account,
you do not want the bank to debit the balance of your savings account unless it also
credits your checking account. If the update to the checking account fails, the bank can
rollback the debit of the savings account as part of the transaction.

ColdFusion includes the cftransaction tag that allows you to implement database
transactions for controlling rollback and commit. For more information, see CFML
Reference.

Database design guidelines
From this basic description, the following database design rules emerge:
• Each record should contain a unique identifier as the primary key such as an

employee ID, a part number, or a customer number. The primary key is typically the
column used to maintain each record's unique identity among the tables in a
relational database. Databases allow you to use multiple columns for the primary key.

• When you define a column, you define a SQL data type for the column, such as
allowing only numeric values to be entered in the salary column.

• Assessing user needs and incorporating those needs in the database design is essential
to a successful implementation. A well-designed database accommodates the
changing data needs within an organization.

The best way to familiarize yourself with the capabilities of your database product or
database management system (DBMS) is to review the product documentation.
What is a database? 419

Using SQL
This section introduces SQL, describes basic SQL syntax, and contains examples of SQL
statements. It provides enough information for you to begin using ColdFusion. However,
this section does not contain an exhaustive description of the entire SQL programming
language. For complete SQL information, see the SQL reference that ships with your
database.

A query is a request to a database. The query can ask for information from the database,
write new data to the database, update existing information in the database, or delete
records from the database.

The Structured Query Language (SQL) is an ANSI/ISO standard programming language
for writing database queries. All databases supported by ColdFusion support SQL and all
ColdFusion tags that access a database allow you to pass SQL statements to the tag.

SQL example
The most commonly used SQL statement in ColdFusion is the SELECT statement. The
SELECT statement reads data from a database and returns it to ColdFusion. For
example, the following SQL statement reads all the records from the employees table:

SELECT * FROM employees

You interpret this statement as "Select all rows from the table employees" where the
wildcard symbol * corresponds to all rows.

Tip: If you are using Dreamweaver MX, ColdFusion Studio, or HomeSite+ you can use the
built-in query builder to build SQL statements graphically by selecting the tables and records
to retrieve. For more information, see “Writing queries using an editor” on page 428.

In many cases, you do not want all rows from a table, but only a subset of rows. The next
example returns all rows from the employees table, where the value of the DeptID
column for the row is 3:

SELECT * FROM employees WHERE DeptID=3

You interpret this statement as "Select all rows from the table employees where the
DeptID is 3".

SQL also lets you specify the table columns to return. For example, instead of returning
all columns in the table, you can return a subset of columns:

SELECT LastName, FirstName FROM employees WHERE DeptID=3

You interpret this statement as "Select the columns FirstName and LastName from the
table employees where the DeptID is 3".

In addition to with reading data from a table, you can write data to a table using the SQL
INSERT statement. The following statement adds a new row to the employees table:

INSERT INTO employees(EmpID, LastName, Firstname)
VALUES(51, 'Doe', 'John')
420 Chapter 19 Introduction to Databases and SQL

Basic SQL syntax elements
The following sections briefly describes the main SQL command elements.

Statements

A SQL statement always begins with a SQL verb. The following keywords identify
commonly used SQL verbs:

Statement clauses

Use the following keywords to refine SQL statements:

Operators

The following basic operators specify conditions and perform logical and numeric
functions:

Keyword Description

SELECT Retrieves the specified records.

INSERT Adds a new row.

UPDATE Changes values in the specified rows.

DELETE Removes the specified rows.

Keyword Description

FROM Names the data tables for the operation.

WHERE Sets one or more conditions for the operation.

ORDER BY Sorts the result set in the specified order.

GROUP BY Groups the result set by the specified select list items.

Operator Description

AND Both conditions must be met

OR At least one condition must be met

NOT Exclude the condition following

LIKE Matches with a pattern

IN Matches with a list of values

BETWEEN Matches with a range of values

= Equal to

<> Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to
Using SQL 421

Case sensitivity with databases

ColdFusion is a case-insensitive programming environment. Case insensitivity means the
following statements are equivalent:

<cfset foo="bar">
<CFSET FOO="BAR">
<CfSet FOO="bar">

However, many databases, especially UNIX databases, are case sensitive. Case sensitivity
means that you must match exactly the case of all column and table names in SQL
queries.

For example, the following queries are not equivalent on a case-sensitive database:

SELECT LastName FROM EMPLOYEES
SELECT LASTNAME FROM employees

In a case-sensitive database, employees and EMPLOYEES are two different tables.

For information on how your database handles case, see the product documentation.

SQL notes and considerations

When writing SQL in ColdFusion, keep the following guidelines in mind:
• There is a lot more to SQL than what is covered here. It is a good idea to purchase

one or several SQL guides for reference.
• The data source, columns, and tables that you reference must exist in order to

perform a successful query.
• Some DBMS vendors use nonstandard SQL syntax (known as a dialect) in their

products. ColdFusion does not validate the SQL; it is passed on to the database for
validation, so you are free to use any syntax that is supported by your database. Check
your DBMS documentation for nonstandard SQL usage.

Reading data from a database
You use the SQL SELECT statement to read data from a database. The SQL statement
has the following general syntax:

SELECT column_names
FROM table_names
[WHERE search_condition]
[GROUP BY group_expression] [HAVING condition]
[ORDER BY order_condition [ASC | DESC]]

The statements in square brackets are optional.

+ Addition

- Subtraction

/ Division

* Multiplication

Operator Description
422 Chapter 19 Introduction to Databases and SQL

Note: There are additional options to SELECT depending on your database. For a
complete syntax description for SELECT, see the product documentation.

This section describes options to the SELECT statement.

Results of a SELECT statement

When the database processes a SELECT statement, it returns a record set containing the
requested data. The format of a record set is a table with rows and columns. For example,
if you write the following query:

SELECT * FROM employees WHERE DeptID=3

The query returns the following table:

Since the data returned to ColdFusion by a SELECT statement is in the form of a
database table, ColdFusion lets you write a SQL query on the returned results. This
functionality is called query of queries. For more information on query of queries, see
Chapter 20, “Accessing and Retrieving Data” on page 433.

The next example uses a SELECT statement to return only a specific set of columns from
a table:

SELECT LastName, FirstName FROM employees WHERE DeptID=3

The query returns the following table:

Filtering results

The SELECT statement lets you filter the results of a query to return only those records
that meet specific criteria. For example, if you want to access all database records for
employees in department 3, you use the following query:

SELECT * FROM employees WHERE DeptID=3
Using SQL 423

You can combine multiple conditions using the WHERE clause. For example, the
following example uses two conditions:

SELECT * FROM employees WHERE DeptID=3 AND Title='Engineer'

Sorting results

By default, a database does not sort the records returned from a SQL query. In fact, you
cannot guarantee that the records returned from the same query are returned in the same
order each time you run the query.

However, if you require records in a specific order, you can write your SQL statement to
sort the records returned from the database. To do so, you include an ORDER BY clause
in the SQL statement.

For example, the following SQL statement returns the records of the table ordered by the
LastName column:

SELECT * FROM employees ORDER BY LastName

You can combine multiple fields in the ORDER BY clause to perform additional sorting:

SELECT * FROM employees ORDER BY DepartmentID, LastName

This statement returns row ordered by department, then by last name within the
department.

Returning a subset of columns

You might want only a subset of columns returned from a database table, as in the
following example, which returns only the FirstName, LastName, and Phone columns.
This example is useful if you are building a web page that shows the phone numbers for
all employees.

SELECT FirstName, LastName, Phone FROM employees

However, this query does not to return the table rows in alphabetical order. You can
include an ORDER clause in the SQL, as follows:

SELECT the FirstName, LastName, Phone
FROM employees
ORDER BY LastName, FirstName

Using column aliases

You might have column names that you do not want to retain in the results of your SQL
statement. For example, your database is set up with a column that uses a reserved word
in ColdFusion, such as EQ. In this case, you can rename the column as part of the query,
as follows:

SELECT EmpID, LastName, EQ as MyEQ FROM employees

The results returned by this query contains columns named EmpID, LastName, and
MyEQ.
424 Chapter 19 Introduction to Databases and SQL

Accessing multiple tables

In a database, you can have multiple tables containing related information. You can
extract information from multiple tables as part of a query. In this case, you specify
multiple table names in the SELECT statement, as follows:

SELECT LastName, FirstName, Street, City, State, Zip
FROM employees, addresses
WHERE employees.EmpID = addresses.EmpID
ORDER BY LastName, FirstName

This SELECT statement uses the EmpID field to connect the two tables. This query
prefixes the EmpID column with the table name. This is necessary because each table has
a column named EmpID. You must prefix a column name with its table name if the
column name appears in multiple tables.

In this case, you extract LastName and FirstName information from the employees table
and Street, City, State, and Zip information from the addresses table. You can use output
such as this is to generate mailing addresses for an employee newsletter.

The results of a SELECT statement that references multiple tables is a single result table
containing a join of the information from corresponding rows. A join means information
from two or more rows is combined to form a single row of the result. In this case, the
resultant record set has the following structure:

What is interesting in this result is that even though you used the EmpID field to
combine information from the two tables, you did not include that field in the output.

Modifying a database
You can use SQL to modify a database in the following ways:
• Inserting data into a database
• Updating data in a database
• Deleting data from a database
• Updating multiple tables

The following sections describe these modifications.
Using SQL 425

Inserting data into a database

You use SQL INSERT statement to write information to a database. A write adds a new
row to a database table. The basic syntax of an INSERT statement is as follows:

INSERT INTO table_name(column_names)
VALUES(value_list)

where:
• column_names specifies a comma-separated list of columns.
• value_list specifies a comma-separated list of values. The order of values has to

correspond to the order that you specified column names.

Note: There are additional options to INSERT depending on your database. For a complete
syntax description for INSERT, see the product documentation.

For example, the following SQL statement adds a new row to the employees table:

INSERT INTO employees(EmpID, LastName, Firstname)
VALUES(51, 'Smith', 'John')

This statement creates a new row in the employees table and sets the values of the
EmpID, LastName, and FirstName fields of the row. The remaining fields in the row are
set to Null. Null means the field does not contain a value.

When you, or your database administrator, creates a table, you can set properties on the
table and the columns of the table. One of the properties you can set for a column is
whether the field supports Null values. If a field supports Nulls, you can omit the field
from the INSERT statement. The database automatically sets the field to Null when you
insert a new row.

However, if the field does not support Nulls, you must specify a value for the field as part
of the INSERT statement; otherwise, the database issues an error.

The LastName and FirstName values in the query are contained within single quotes.
This is necessary because the table columns are defined to contain character strings.
Numeric data does not require the quotes.

Updating data in a database

Use the UPDATE statement in SQL to update the values of a table row. Update lets you
update the fields of a specific row or all rows in the table. The UPDATE statement has
the following syntax:

UPDATE table_name
SET column_name1=value1, ... , column_nameN=valueN
[WHERE search_condition]

Note: There are additional options to UPDATE depending on your database. For a
complete syntax description for UPDATE, see the product documentation.

You should not attempt to update a record’s primary key field. Your database typically
enforces this restriction.

The UPDATE statement uses the optional WHERE clause, much like the SELECT
statement, to determine which table rows to modify. The following UPDATE statement
updates the e-mail address of John Smith:

UPDATE employees SET Email='jsmith@mycompany.com' WHERE EmpID = 51
426 Chapter 19 Introduction to Databases and SQL

Be careful using UPDATE. If you omit the WHERE clause to execute the following
statement:

UPDATE employees SET Email = 'jsmith@mycompany.com'

you update the Email field for all rows in the table.

Deleting data from a database

The DELETE statement removes rows from a table. The DELETE statement has the
following syntax:

DELETE FROM table_name
[WHERE search_condition]

Note: There are additional options to DELETE depending on your database. For a
complete syntax description for DELETE, see the product documentation.

You can remove all rows from a table using a statement in the form:

DELETE FROM employees

Typically, you specify a WHERE clause to the DELETE statement to delete specific rows
of the table. For example, the following statement deletes John Smith from the table:

DELETE FROM employees WHERE EmpID=51

Updating multiple tables

The examples in this section all describe how to modify a single database table. However,
you might have a database that uses multiple tables to represent information.

One way to update multiple tables is to use one INSERT statement per table and to wrap
all INSERT statements within a database transaction. A transaction contains one or more
SQL statements that can be rolled back or committed as a unit. If any single statement in
the transaction fails, you can roll back the entire transaction, cancelling any previous
writes that occurred within the transaction. You can use the same technique for updates
and deletes.
Using SQL 427

Writing queries using an editor
Dreamweaver MX, ColdFusion Studio, and HomeSite+ provide a GUI for writing and
executing queries. A GUI is useful for developing and testing your queries before you
insert them into a ColdFusion application.

This section contains a brief description of these GUIs. For more information, see the
documentation on your specific tool.

Writing queries using Dreamweaver MX
This section describes how to define a query using the Dreamweaver MX Recordset
dialog box, which allows you to create a record set without having to manually enter SQL
statements. Defining a record set using this method can be as easy as selecting a database
connection and table from the pop-up menus.

To define a record set without writing SQL:

1 In the Dreamweaver Document window, open the page that will use the record set.

2 To open the Data Bindings panel, select Window > Data Bindings.

3 In the Data Bindings panel, click the Plus (+) button and choose Recordset (Query)
from the pop-up menu.

The Simple Recordset dialog box appears:

4 Complete the dialog box.

5 Click the Test button to execute the query and ensure that it retrieves the information
you intended.

If you defined a filter that uses parameters input by users, the Test button displays the
Test Value dialog box. Enter a value in the Test Value text box and click OK. If an
instance of the record set is successfully created, a table displaying the data from your
record set appears.

6 Click OK to add the record set to the list of available content sources in the Data
bindings panel.
428 Chapter 19 Introduction to Databases and SQL

If you prefer to write your own SQL statements, or need to create more complex queries
then the Simple Recordset dialog box allows, you can define record sets using the
Advanced Recordset dialog box

Creating an advanced record set by writing SQL :

1 In the Dreamweaver MX Document window, open the page that will use the record
set.

2 Choose Windows > Data Bindings to display the Data Bindings panel.

3 In the Data Bindings panel, click the Plus (+) button and select Recordset (Query)
from the pop-up menu.

If the Simple Recordset dialog box appears, switch to the Advanced Recordset dialog
box by clicking the Advanced button.

The Advanced Recordset dialog box appears:

4 Complete the dialog box.

5 Click the Test button to execute the query and ensure that it retrieves the information
you intended.

If you defined a filter that uses parameters input by users, the Test button displays the
Test Value dialog box. Enter a value in the Test Value text field and click OK. If an
instance of the record set is successfully created, a table displaying the data from your
record set appears.

6 Click OK to add the record set to the list of available content sources in the Data
Bindings panel.
Writing queries using an editor 429

Writing queries using ColdFusion Studio and Macromedia HomeSite+
Macromedia HomeSite+ includes the combined features of HomeSite 5 and ColdFusion
Studio 5, with additional support for new ColdFusion MX tags. Both HomeSite+ and
ColdFusion Studio support SQL Builder for writing queries.

SQL Builder is a powerful visual tool for building, testing, and saving SQL statements for
use in application data queries. You can copy completed SQL code blocks directly into
your ColdFusion applications.

To open SQL Builder:

Do one of the following:
• Select Tools > SQL Builder from the HomeSite+ or ColdFusion Studio menu, select

an RDS server, select a database from the drop-down list, and click New Query.
• In the Database tab, select an RDS server, right-click a database name or a table, and

select New Query.
• Open the cfquery tag editor, select an RDS server, and click New Query.

The SQL Builder interface

The following figure shows the SQL Builder interface:
430 Chapter 19 Introduction to Databases and SQL

The SQL Builder is divided into the following four sections:

Writing SQL statements

SQL Builder opens a SELECT statement by default, since this is the most common type
of query. SQL Builder supports the following four types of SQL statements:
• Select (default)
• Insert
• Update
• Delete

Section Use

Toolbar Contains buttons for SQL keywords and commands.

Table pane Provides a view of the tables in your query and allows you to create joins
between tables.

Properties pane Allows you to set the properties of the query, such as the columns that
are being selected or the columns that are being updated.

SQL pane Shows you the SQL statement as it is built.

The SQL pane does not support reverse editing, so any changes you
make in this pane will not be made to the query in the Properties pane or
the Table pane.
Writing queries using an editor 431

432 Chapter 19 Introduction to Databases and SQL

CHAPTER 20

Accessing and Retrieving Data
This chapter describes how to retrieve data from a database and work with query data.
This chapter also shows how to use the cfquery tag to query a data source, and use the
cfoutput tag to output the query results to a web page.

Contents

• Working with dynamic data... 434

• Retrieving data .. 435

• Outputting query data... 438

• Getting information about query results .. 441

• Enhancing security with cfqueryparam .. 443
433

Working with dynamic data
A web application page is different from a static web page because it can publish data
dynamically. This can involve querying databases, connecting to LDAP or mail servers,
and leveraging COM, DCOM, CORBA, or Java objects to retrieve, update, insert, and
delete data at runtime—as your users interact with pages in their browsers.

For ColdFusion developers, the term data source can refer to a number of different types
of structured content accessible locally or across a network. You can query web sites,
LDAP servers, POP mail servers, and documents in a variety of formats. Most commonly
though, a database drives your applications, and for this discussion a data source means
the entry point from ColdFusion to a database.

In this chapter, you build a query to retrieve data from the CompanyInfo data source. In
Windows, this data source connects to a Microsoft Access database (company.mdb). In
UNIX, this data source connects to a dBASE database. In subsequent chapters in this
book, you insert and update data in this database.

To query a database, you must use:
• ColdFusion data sources
• The cfquery tag
• SQL commands
434 Chapter 20 Accessing and Retrieving Data

Retrieving data
You can query databases to retrieve data at runtime. The retrieved data, called the record
set, is stored on that page as a query object. A query object is a special entity that
contains the record set values, plus RecordCount, CurrentRow, and ColumnList query
variables. You specify the query object’s name in the name attribute of the cfquery tag. The
query object is often called simply the query.

The following is a simple cfquery tag:

<cfquery name = "GetSals" datasource = "CompanyInfo">
SELECT * FROM Employee
ORDER BY LastName

</cfquery>

Note: The terms “record set” and “query object” are often used synonymously when
discussing record sets for queries. For more information, see Chapter 22, “Using Query of
Queries” on page 461.

When retrieving data from a database, perform the following tasks:
• To tell ColdFusion how to connect to a database, use the cfquery tag on a page.
• To specify the data that you want to retrieve from the database, write SQL commands

inside the cfquery block.
• Later on the page, reference the query object and use its data values in any tag that

presents data, such as cfoutput, cfgrid, cftable, cfgraph, or cftree.

The cfquery tag
The cfquery tag is one of the most frequently used CFML tags. You use it with the
cfoutput tag to retrieve and reference the data returned from a query. When ColdFusion
encounters a cfquery tag on a page, it does the following:
• Connects to the specified data source.
• Performs SQL commands that are enclosed within the block.
• Returns result set values to the page in a query object.

The cfquery tag syntax
The following code shows the syntax for the cfquery tag:

<cfquery name="EmpList" datasource="CompanyInfo">
SQL code...

</cfquery>

In this example, the query code tells ColdFusion to do the following:
• Connect to the CompanyInfo data source (the company.mdb database).
• Execute SQL code that you specify.
• Store the retrieved data in the query object EmpList.

When creating queries to retrieve data, keep the following guidelines in mind:
• You must use opening <cfquery> and ending </cfquery> tags, because the cfquery tag

is a block tag.
• Enter the query name and datasource attributes within the opening cfquery tag.
Retrieving data 435

• To tell the database what to process during the query, place SQL statements inside
the cfquery block.

• When referencing text literals in SQL, use single quotation marks ('). For example,
SELECT * FROM mytable WHERE FirstName='Jacob' selects every record from mytable in
which the first name is Jacob.

• Surround attribute values with double quotation marks (“attrib_value”).
• Make sure that a data source exists in the ColdFusion MX Administrator before you

reference it in a cfquery tag.
• Columns and tables that you refer to in your SQL statement must exist, otherwise the

query will fail.
• Reference the query data by naming the query in one of the presentation tags, such as

cfoutput, cfgrid, cftable, cfgraph, or cftree later on the page.
• When ColdFusion returns database columns, it removes table and owner prefixes. For

example, if you query Employee.Emp_ID in the query, the Employee, is removed
and returns as Emp_ID. You can use an alias to handle duplicate column names; for
more information, see Chapter 22, “Using Query of Queries” on page 461.

• You cannot use SQL reserved words, such as MIN, MAX, COUNT, in a SQL
statement. Because reserved words are database-dependent, see your database’s
documentation for a list of reserved words.

Building queries
As discussed earlier in this chapter, you build queries using the cfquery tag and SQL.

Note: This and many subsequent procedures use the CompanyInfo data source that
connects to the company.mdb database. This data source is installed by default. For
information on adding or configuring a data source, see Administering ColdFusion MX.

To query the table:

1 Create a ColdFusion page with the following content:
<html>
<head>
<title>Employee List</title>
</head>
<body>
<h1>Employee List</h1>
<cfquery name="EmpList" datasource="CompanyInfo">

SELECT FirstName, LastName, Salary, Contract
FROM Employee

</cfquery>
</body>
</html>

2 Save the page as emplist.cfm in the myapps directory under your web_root directory.
For example, the default path on a Windows computer would be:

C:\CFusionMX\wwwroot\myapps\
436 Chapter 20 Accessing and Retrieving Data

3 Enter the following URL in your web browser:

http://127.0.0.1/myapps/emplist.cfm

Only the header appears, as the following figure shows:

4 View the source in the browser:

ColdFusion creates the EmpList data set, but only HTML and text return to the
browser. When you view the page’s source, you see only HTML tags and the heading
“Employee List.” To display the data set on the page, you must code tags and
variables to output the data.

Reviewing the code

The query you just created retrieves data from the CompanyInfo database. The following
table describes the highlighted code and its function:

Code Description

<cfquery name="EmpList"
datasource="CompanyInfo">

Queries the database specified in the CompanyInfo
data source.

SELECT FirstName, LastName, Salary,
Contract
FROM Employee

Gets information from the FirstName, LastName,
Salary, and Contract fields in the Employee table.

</cfquery> Ends the cfquery block.
Retrieving data 437

Outputting query data
After you define a query on a page, you can use the cfoutput tag with the query attribute
to output data from the record set to a page. When you use the query attribute, keep the
following in mind:
• ColdFusion loops through all the code contained within the cfoutput block, once for

each row in the record set returned from the database.
• You must reference specific column names within the cfoutput block to output the

data to the page.
• You can place text, CFML tags, and HTML tags inside or surrounding the cfoutput

block to format the data on the page.
• Although you do not have to specify the query name when you refer to a query

column, you should use the query name as a prefix for best practices reasons. For
example, if you specify the Emplist query in your cfoutput tag, you can refer to the
Firstname column in the Emplist query as Firstname. However, using the query name
as a prefix—Emplist.Firstname— is preferred, and is in the following procedure.

The cfoutput tag accepts a variety of optional attributes but, ordinarily, you use the query
attribute to define the name of an existing query.

To output query data on your page:

1 Edit emplist.cfm so that it appears as follows:
<html>
<head>
<title>Employee List</title>
</head>
<body>
<h1>Employee List</h1>
<cfquery name="EmpList" datasource="CompanyInfo">

SELECT FirstName, LastName, Salary, Contract
FROM Employee

</cfquery>
<cfoutput query="EmpList">
#EmpList.FirstName#, #EmpList.LastName#, #EmpList.Salary#,

#EmpList.Contract#

</cfoutput>
</body>
</html>
438 Chapter 20 Accessing and Retrieving Data

2 Save the file and view it in your web browser:

A list of employees appears in the browser, with each line displaying one row of data.

Note: You might need to refresh your browser to see your changes.

You created a ColdFusion application page that retrieves and displays data from a
database. At present, the output is raw and needs formatting. For more information, see
“Retrieving and Formatting Data” on page 579.

Reviewing the code

The results of the query appear on the page. The following table describes the
highlighted code and its function:

Query output notes and considerations
When outputting query results, keep the following guidelines in mind:
• A cfquery must precede the cfoutput that references its results. Both must be on the

same page (unless you use the cfinclude tag; for more information, see “Including
pages with the cfinclude tag,” in Chapter 8).

• It is a good idea to place queries at the top of the page, to simplify testing and
debugging. However, some queries might not execute if certain conditions are not
met.

Code Description

<cfoutput query="EmpList"> Displays information retrieved in the EmpList
query.

#EmpList.FirstName#, #EmpList.LastName#,
#EmpList.Salary#, #EmpList.Contract#

Displays the value of the FirstName, LastName,
Salary, and Contract fields of each record,
separated by commas and spaces.

 Inserts a line break (go to the next line) after each
record.

</cfoutput> Ends the cfoutput block.
Outputting query data 439

• To output data from all the records of a query, specify the query name by using the
query attribute in the cfoutput tag.

• Columns must exist and be retrieved to the application to output their values.
• Inside a cfoutput block that uses a cfquery attribute, you can prefix the query

variables with the name of the query; for example, Emplist.FirstName.
• As with other attributes, surround the query attribute value with double quotes (").
• As with any variables that you reference for output, surround column names with

pound signs (#) to tell ColdFusion to output the column’s current values.
• Add a
 tag to the end of the variable references so that ColdFusion starts a new

line for each row that the query returns.
440 Chapter 20 Accessing and Retrieving Data

Getting information about query results
Each time you query a database with the cfquery tag, you get the data (the record set) and
the query variables; together these comprise the query object. The following table
describes the query variables, which are sometimes referred to as query properties:

In your CFML code, you can use these variables as if they were columns in a database
table.

To output the query record count on your page:

1 Edit emplist.cfm so that it appears as follows:
<html>
<head>
<title>Employee List</title>
</head>
<body>
<h1>Employee List</h1>
<cfquery name="EmpList" datasource="CompanyInfo">

SELECT FirstName, LastName, Salary, Contract
FROM Employee

</cfquery>
<cfoutput query="EmpList">

#EmpList.FirstName#, #EmpList.LastName#, #EmpList.Salary#,
#EmpList.Contract#

</cfoutput>

<cfoutput>

The query returned #EmpList.RecordCount# records.
</cfoutput>
</body>
</html>

Variable Description

RecordCount The total number of records returned by the query.

ColumnList A comma-delimited list of the query columns, in alphabetical order.

CurrentRow The current row of the query being processed by cfoutput.
Getting information about query results 441

2 Save the file and view it in your web browser:

The number of employees now appears below the list of employees. You might have
to refresh your browser and scroll to see the RecordCount output.

Note: The variable cfquery.executionTime contains the amount of time, in milliseconds, it
took for the query to complete. Do not prefix the variable name with the query name.

Reviewing the code

You now display the number of records retrieved in the query. The following table
describes the code and its function:

Query variable notes and considerations
When using query variables, keep the following guidelines in mind:
• Reference the query variable within a cfoutput block so that ColdFusion outputs the

query variable value to the page.
• Surround the query variable reference with pound signs (#) so that ColdFusion

knows to replace the variable name with its current value.
• Do not use the cfoutput tag query attribute when you output the RecordCount or

ColumnList property. If you do, you get one copy of the output for each row. Instead,
prefix the variable with the name of the query.

Code Description

<cfoutput> Displays what follows.

The query returned Displays the text “The query returned”.

#EmpList.RecordCount# Displays the number of records retrieved in the EmpList
query.

records. Displays the text “records..

</cfoutput> Ends the cfoutput block.
442 Chapter 20 Accessing and Retrieving Data

Enhancing security with cfqueryparam
Some Database Management Systems (DBMSs) let you send multiple SQL statements in
a single query. In many development environments—including ColdFusion, ASP, and
CGI—URL or form variables in a dynamic query can append malicious SQL statements
to existing queries. Be aware that there are potential security risks when you pass
parameters in a query string.

About query string parameters
When you let a query string pass a parameter, ensure that only the expected information
is passed. The following ColdFusion query contains a WHERE clause, which selects only
database entries that match the last name specified in the LastName field of a form:

<cfquery name="GetEmployees" datasource="CompanyInfo">
 SELECT FirstName, LastName, Salary
 FROM Employee
 WHERE LastName='#Form.LastName#'
</cfquery>

Someone could call this page with the following malicious URL:

http://myserver/page.cfm?Emp_ID=7%20DELETE%20FROM%20Employee

The result is that ColdFusion tries to execute the following query:

<cfquery name="GetEmployees" datasource="CompanyInfo">
SELECT * FROM Employee
WHERE Emp_ID = 7 DELETE FROM Employee

</cfquery>

In addition to an expected integer for the Emp_ID column, this query also passes
malicious string code in the form of a SQL statement. If this query successfully executes,
it deletes all rows from the Employee table—something you definitely do not want to
enable by this method. To prevent such actions, you must evaluate the contents of query
string parameters.

Using cfqueryparam
You can use the cfqueryparam tag to evaluate query string parameters and pass a
ColdFusion variable within a SQL statement. This tag evaluates variable values before
they reach the database. You specify the data type of the corresponding database column
in the cfsqltype attribute of the cfqueryparam tag. In the following example, because the
Emp_ID column in the CompanyInfo data source is an integer, you specify a cfsqltype
of cf_sql_integer:

<cfquery name="EmpList" datasource="CompanyInfo">
SELECT * FROM Employee
WHERE Emp_ID = <cfqueryparam value = "#Emp_ID#"

cfsqltype = "cf_sql_integer">
</cfquery>
Enhancing security with cfqueryparam 443

The cfqueryparam tag checks that the value of Emp_ID is an integer data type. If
anything else in the query string is not an integer, such as a SQL statement to delete a
table, the cfquery tag does not execute. Instead, the cfqueryparam tag returns the
following error message:

Invalid data '7 DELETE FROM Employee' for CFSQLTYPE 'CF_SQL_INTEGER'.

Using cfqueryparam with strings

When passing a variable containing a string to a query, specify a cfsqltype of
cf_sql_char, as in the following example:

<cfquery name = "getFirst" dataSource = "cfsnippets">
SELECT * FROM employees
WHERE LastName = <cfqueryparam value = "#LastName#"

cfsqltype = "cf_sql_char" maxLength = "17">
</cfquery>

In this case, cfqueryparam performs the following checks:
• It ensures that LastName contains a string.
• It ensures that the string is 17 characters or less.
• It escapes the string with single quotes so that it appears as a single value to the

database. Even if you pass a bad URL, it appears as follows:
WHERE LastName = 'Anwar DELETE FROM MyCustomerTable'.

Using cfSqlType

The following table lists the available SQL types against which you can evaluate the value
attribute of the cfqueryparam tag:

BIGINT BIT CHAR DATE

DECIMAL DOUBLE FLOAT IDSTAMP

INTEGER LONGVARCHAR MONEY MONEY4

NUMERIC REAL REFCURSOR SMALLINT

TIME TIMESTAMP TINYINT VARCHAR
444 Chapter 20 Accessing and Retrieving Data

CHAPTER 21

Updating Your Database
This chapter describes how to use ColdFusion to insert, update, and delete information
in a database.

Contents

• About updating your database ... 446

• Inserting data... 446

• Updating data.. 452

• Deleting data ... 459
445

About updating your database
ColdFusion was originally developed as a way to readily interact with databases. You can
quickly insert, update, and delete the contents of your database by using ColdFusion
forms, which are typically a pair of pages. One page displays the form with which your
end user will enter values; the other page performs the action (insert, update or delete).

Depending on the extent and type of data manipulation, you can use CFML with or
without SQL commands. If you use SQL commands, ColdFusion requires a minimal
amount of SQL knowledge.

Inserting data
You usually use two application pages to insert data into a database:
• An insert form
• An insert action page

You can create an insert form with standard HTML form tags or with cfform tags (see
“Creating forms with the cfform tag” on page 608). When the user submits the form,
form variables are passed to a ColdFusion action page that performs an insert operation
(and whatever else is called for) on the specified data source. The insert action page can
contain either a cfinsert tag or a cfquery tag with a SQL INSERT statement. The insert
action page should also contain a confirmation message for the end user.

Creating an HTML insert form
The following procedure creates a form using standard HTML tags. The form looks like
the following in your web browser:
446 Chapter 21 Updating Your Database

To create an insert form:

1 Create a ColdFusion page with the following content:
<html>
<head>
<title>Insert Data Form</title>
</head>

<body>
<h2>Insert Data Form</h2>

<table>
<!--- begin html form;
put action page in the "action" attribute of the form tag --->
<form action="insert_action.cfm" method="post">
<tr>

<td>Employee ID:</td>
<td><input type="text" name="Emp_ID" size="4" maxlength="4"></td>

</tr>
<tr>

<td>First Name:</td>
<td><input type="Text" name="FirstName" size="35" maxlength="50"></td>

</tr>
<tr>

<td>Last Name:</td>
<td><input type="Text" name="LastName" size="35" maxlength="50"></td>

</tr>
<tr>

<td>Department Number:</td>
<td><input type="Text" name="Dept_ID" size="4" maxlength="4"></td>

</tr>
<tr>

<td>Start Date:</td>
<td><input type="Text" name="StartDate" size="16" maxlength="16"></td>

</tr>
<tr>

<td>Salary:</td>
<td><input type="Text" name="Salary" size="10" maxlength="10"></td>

</tr>
<tr>

<td>Contractor:</td>
<td><input type="checkbox" name="Contract" value="Yes" checked>Yes</td>

</tr>
<tr>

<td> </td>
<td><input type="Submit" value="Submit"> <input type="Reset"

value="Clear Form"></td>
</tr>
</form>
<!--- end html form --->
</table>

</body>
</html>
Inserting data 447

2 Save the file as insert_form.cfm in the myapps directory under your web_root and
view it in your web browser.

Note: The form will not work until you write an action page for it. For more information, see
“Creating an action page to insert data” on page 448.

Data entry form notes and considerations
If you use the cfinsert tag in the action page to insert the data into the database, you
should follow these rules for creating the form page:
• You only need to create HTML form fields for the database columns into which you

will insert data.
• By default, cfinsert inserts all of the form’s fields into the database columns with the

same names. For example, it puts the Form.Emp_ID value in the database Emp_ID
column. The tag ignores form fields that lack corresponding database column names.

Note: You can also use the formfields attribute of the cfinsert tag to specify which fields
to insert; for example, formfields="prod_ID,Emp_ID,status".

Creating an action page to insert data
You can use the cfinsert tag or the cfquery tag to create an action page that inserts data
into a database.

Creating an insert action page with cfinsert

The cfinsert tag is the easiest way to handle simple inserts from either a cfform or an
HTML form. This tag inserts data from all the form fields with names that match
database field names.

To create an insert action page with cfinsert:

1 Create a ColdFusion page with the following content:
<html>
<head> <title>Input form</title> </head>

<body>
<!--- If the Contractor check box is clear,

set the value of the Form.Contract to "No" --->
<cfif not isdefined("Form.Contract")>
 <cfset Form.Contract = "No">
</cfif>

<!--- Insert the new record --->
<cfinsert datasource="CompanyInfo" tablename="Employee">

<h1>Employee Added</h1>
<cfoutput>You have added #Form.FirstName# #Form.Lastname# to the

employee database.
</cfoutput>

</body>
</html>

2 Save the page as insert_action.cfm.
448 Chapter 21 Updating Your Database

3 View insert_form.cfm in your web browser and enter values.

Note: You might wish to compare views of the Employee table in the CompanyInfo data
source before and after inserting values in the form.

4 Click Submit.

ColdFusion inserts your values into the Employee table and displays a confirmation
message.

Reviewing the code

The following table describes the code and its function:

Note: If you use form variables in cfinsert or cfupdate tags, ColdFusion automatically
validates any form data it sends to numeric, date, or time database columns. You can use the
hidden field validation functions for these fields to display a custom error message. For more
information, see Chapter 26, “Retrieving and Formatting Data” on page 579.

Creating an insert action page with cfquery

For more complex inserts from a form submittal, you can use a SQL INSERT statement
in a cfquery tag instead of using a cfinsert tag. The SQL INSERT statement is more
flexible because you can insert information selectively or use functions within the
statement.

The following procedure assumes that you have created the insert_action.cfm page, as
described in “Creating an insert action page with cfinsert” on page 448.

Code Description

<cfif not isdefined("Form.Contract")>
 <cfset Form.Contract = "No">
</cfif>

Sets the value of Form.Contract to No if it is not
defined. If the Contractor check box is
unchecked, no value is passed to the action
page; however, the database field must have
some value.

<cfinsert datasource="CompanyInfo"
tablename="Employee">

Creates a new row in the Employee table of the
CompanyInfo database. Inserts data from the
form into the database fields with the same
names as the form fields.

<cfoutput>You have added
#Form.FirstName# #Form.Lastname#
to the employee database.
</cfoutput>

Informs the user that values were inserted into
the database.
Inserting data 449

To create an insert action page with cfquery:

1 In insert_action.cfm, replace the cfinsert tag with the following highlighted cfquery
code:
<html>
<head>

<title>Input form</title>
</head>

<body>
<!--- If the Contractor check box is clear),

set the value of the Form.Contract to "No" --->
<cfif not isdefined("Form.Contract")>
 <cfset Form.Contract = "No">
</cfif>

<!--- Insert the new record --->
<cfquery name="AddEmployee" datasource="CompanyInfo">

INSERT INTO Employee
VALUES (#Form.Emp_ID#, '#Form.FirstName#',

'#Form.LastName#', #Form.Dept_ID#,
'#Form.StartDate#', #Form.Salary#, '#Form.Contract#')

</cfquery>

<h1>Employee Added</h1>
<cfoutput>You have added #Form.FirstName# #Form.Lastname# to the

employee database.
</cfoutput>

</body>
</html>

2 Save the page.

3 View insert_form.cfm in your web browser and enter values.

4 Click Submit.

ColdFusion inserts your values into the Employee table and displays a confirmation
message.

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

<cfquery name="AddEmployee"
datasource="CompanyInfo">

INSERT INTO Employee
VALUES (#Form.Emp_ID#,

'#Form.FirstName#',
'#Form.LastName#',
#Form.Dept_ID#,
'#Form.StartDate#',
#Form.Salary#,
'#Form.Contract#')

</cfquery>

Inserts a new row into the Employee table of the
CompanyInfo database. Specifies each form field to be
added.

Because you are inserting data into all database fields in
the same left-to-right order as in the database, you do not
have to specify the database field names in the query.

Because #From.Emp_ID#, #Form.Dept_ID#, and
#Form.Salary# are numeric, they do not need to be
enclosed in quotation marks.
450 Chapter 21 Updating Your Database

Inserting into specific fields

The preceding example inserts data into all the fields of a table (the Employee table has
seven fields). There might be times when you do not want users to add data into all
fields. To insert data into specific fields, the SQL statement in the cfquery must specify
the field names following both INSERT INTO and VALUES. For example, the
following cfquery omits salary and start date information from the update. Database
values for these fields are 0 and NULL, respectively, according to the database’s design.

<cfquery name="AddEmployee" datasource="CompanyInfo">
INSERT INTO Employee

(Emp_ID,FirstName,LastName,
Dept_ID,Contract)

VALUES
(#Form.Emp_ID#,'#Form.FirstName#','#Form.LastName#',
#Form.Dept_ID#,'#Form.Contract#')

</cfquery>
Inserting data 451

Updating data
You usually use the following two application pages to update data in a database:
• An update form
• An update action page

You can create an update form with cfform tags or HTML form tags. The update form
calls an update action page, which can contain either a cfupdate tag or a cfquery tag with
a SQL UPDATE statement. The update action page should also contain a confirmation
message for the end user.

Creating an update form
The following are the key differences between an update form and an insert form:
• An update form contains a reference to the primary key of the record that is being

updated.
A primary key is a field(s) in a database table that uniquely identifies each record. For
example, in a table of employee names and addresses, only the Emp_ID is unique to
each record.

• An update form is usually populated with existing record data.

The easiest way to designate the primary key in an update form is to include a hidden
input field with the value of the primary key for the record you want to update. The
hidden field indicates to ColdFusion which record to update.

To create an update form:

1 Create a ColdFusion page with the following content:
<html>
<head>
<title>Update Form</title>
</head>

<body>
<cfquery name="GetRecordtoUpdate"

datasource="CompanyInfo">
SELECT * FROM Employee
WHERE Emp_ID = #URL.Emp_ID#

</cfquery>

<cfoutput query="GetRecordtoUpdate">
<table>
<form action="update_action.cfm" method="Post">

<input type="Hidden" name="Emp_ID"
value="#Emp_ID#">

<tr>
<td>First Name:</td>
<td><input type="text" name="FirstName" value="#FirstName#"></td>

</tr>
<tr>

<td>Last Name:</td>
<td><input type="text" name="LastName" value="#LastName#"></td>
452 Chapter 21 Updating Your Database

</tr>
<tr>

<td>Department Number:</td>
<td><input type="text" name="Dept_ID" value="#Dept_ID#"></td>

</tr>
<tr>

<td>Start Date:</td>
<td><input type="text" name="StartDate" value="#StartDate#"></td>

</tr>
<tr>

<td>Salary:</td>
<td><input type="text" name="Salary" value="#Salary#"></td>

</tr>
<tr>

<td>Contractor:</td>
<td><cfif #Contract# IS "Yes">

<input type="checkbox" name="Contract" checked>Yes
<cfelse>

<input type="checkbox" name="Contract">Yes
</cfif></td>

</tr>
<tr>

<td> </td>
<td><input type="Submit" value="Update Information"></td>

</tr>
</form>
</table>
</cfoutput>

</body>
</html>

2 Save the file as update_form.cfm.

3 View update_form.cfm in your web browser by specifying the page URL and an
Employee ID; for example, enter the following:

http://localhost/myapps/update_form.cfm?Emp_ID=3

Note: Although you can view an employee’s information, you must code an action page
before you can update the database. For more information, see “Creating an action page
to update data” on page 455.
Updating data 453

Reviewing the code

The following table describes the code and its function:

Code Description

<cfquery name="GetRecordtoUpdate"
datasource="CompanyInfo">
SELECT * FROM Employee
WHERE Emp_ID = #URL.Emp_ID#

</cfquery>

Queries the CompanyInfo data source
and returns records in which the
employee ID matches what was
entered in the URL that called this
page.

<cfoutput query="GetRecordtoUpdate">
...
</cfoutput>

Makes available as variables the
results of the GetRecordtoUpdate
query in the form created in
subsequent lines.

<form action="update_action.cfm" method="Post">
...
</form>

Creates a form whose variables will be
processed on the update_action.cfm
action page.

<input type="Hidden" name="Emp_ID"
value="#Emp_ID#">

Uses a hidden input field to pass the
Emp_ID (primary key) value to the
action page.

First Name:
<input type="text" name="FirstName"
value="#FirstName#">

Last Name:
<input type="text" name="LastName"
value="#LastName#">

Department Number:
<input type="text" name="Dept_ID"

value="#Dept_ID#">

Start Date:
<input type="text" name="StartDate"
value="#StartDate#">

Salary:
<input type="text" name="Salary"
value="#Salary#">

Populates the fields of the update
form. This example does not use
ColdFusion formatting functions. As a
result, start dates look like
1985-03-12 00:00:00 and salaries
do not have dollar signs or commas.
The user can replace the information in
any field using any valid input format
for the data.

Contractor:
<cfif #Contract# IS "Yes">

<input type="checkbox" name="Contract"
checked>Yes

<cfelse>
<input type="checkbox" name="Contract">

Yes

</cfif>

<input type="Submit" value="Update Information">
</form>
</cfoutput>

The Contract field requires special
treatment because a check box
displays and sets its value. The cfif
structure puts a check mark in the
check box if the Contract field value is
Yes, and leaves the box empty
otherwise.
454 Chapter 21 Updating Your Database

Creating an action page to update data
You can create an action page to update data with either the cfupdate tag or cfquery with
the UPDATE statement.

Creating an update action page with cfupdate

The cfupdate tag is the easiest way to handle simple updates from a front-end form. The
cfupdate tag has an almost identical syntax to the cfinsert tag.

To use the cfupdate tag, you must include the primary key field(s) in your form
submittal. The cfupdate tag automatically detects the primary key field(s) in the table
that you are updating and looks for them in the submitted form fields. ColdFusion uses
the primary key field(s) to select the record to update (therefore, you cannot update the
primary key value itself). It then uses the remaining form fields that you submit to
update the corresponding fields in the record. Your form only needs to have fields for the
database fields that you want to change.

To create an update page with cfupdate:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>Update Employee</title>
</head>
<body>
<cfif not isdefined("Form.Contract")>

<cfset form.contract = "No">
<cfelse>

<cfset form.contract = "Yes">
</cfif>

<cfupdate datasource="CompanyInfo"
tablename="Employee">

<h1>Employee Updated</h1>
<cfoutput>
You have updated the information for #Form.FirstName#
#Form.LastName# in the employee database.
</cfoutput>

</body>
</html>

2 Save the page as update_action.cfm.

3 View update_form.cfm in your web browser by specifying the page URL and an
Employee ID; for example, enter the following:

http://localhost/myapps/update_form.cfm?Emp_ID=3
Updating data 455

The current information for that record appears:

4 Enter new values in any of the fields, and click Update Information.

ColdFusion updates the record in the Employee table with your new values and
displays a confirmation message.

Reviewing the code

The following table describes the code and its function:

Code Description

<cfif not isdefined("Form.Contract")>
 <cfset Form.contract = "No">
<cfelse>

<cfset form.contract = "Yes">
</cfif>

Sets the value of Form.Contract to No if it is
not defined, or to Yes if it is defined. If the
Contractor check box is unchecked, no value
is passed to the action page; however, the
database field must have some value.

<cfupdate datasource="CompanyInfo"
tablename="Employee">

Updates the record in the database that
matches the primary key on the form
(Emp_ID). Updates all fields in the record with
names that match the names of form controls.

<cfoutput>
You have updated the information for

#Form.FirstName# #Form.LastName#
in the employee database.

</cfoutput>

Informs the user that the change was made
successfully.
456 Chapter 21 Updating Your Database

Creating an update action page with cfquery

For more complicated updates, you can use a SQL UPDATE statement in a cfquery tag
instead of a cfupdate tag. The SQL UPDATE statement is more flexible for complicated
updates.

The following procedure assumes that you have created the update_action.cfm page as
described in “Creating an update action page with cfupdate” on page 455.

To create an update page with cfquery:

1 In update_action.cfm, replace the cfupdate tag with the following highlighted
cfquery code:
<html>
<head>

<title>Update Employee</title>
</head>
<body>
<cfif not isdefined("Form.Contract")>

<cfset form.contract = "No">
<cfelse>

<cfset form.contract = "Yes">
</cfif>

<!--- cfquery requires date formatting when retrieving from
Access. Use the left function when setting StartDate to trim
the ".0" from the date when it first appears from the
Access database --->
 <cfquery name="UpdateEmployee" datasource="CompanyInfo">

UPDATE Employee
SET FirstName = '#Form.Firstname#',

LastName = '#Form.LastName#',
Dept_ID = #Form.Dept_ID#,
StartDate = '#left(Form.StartDate,19)#',
Salary = #Form.Salary#

WHERE Emp_ID = #Form.Emp_ID#
</cfquery>

<h1>Employee Updated</h1>
<cfoutput>
You have updated the information for
#Form.FirstName# #Form.LastName#
in the employee database.
</cfoutput>
</body>
</html>

2 Save the page.

3 View update_form.cfm in your web browser by specifying the page URL and an
Employee ID; for example, type the following:

http://localhost/myapps/update_form.cfm?Emp_ID=3.

4 Enter new values in any of the fields, and click Update Information.

ColdFusion updates the record in the Employee table with your new values and
displays a confirmation message.
Updating data 457

When the cfquery tag retrieves date information from a Microsoft Access database, it
displays the date with tenths of seconds, as follows:

This example uses the left function to trim the two final characters. The CompanyInfo
data source connects to company.mdb.

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

<cfquery name="UpdateEmployee"
datasource="CompanyInfo">
UPDATE Employee
SET FirstName = '#Form.Firstname#',

LastName = '#Form.LastName#',
Dept_ID = #Form.Dept_ID#,
StartDate = '#left(Form.StartDate,19)#',
Salary = #Form.Salary#

WHERE Emp_ID = #Form.Emp_ID#
</cfquery>

Updates the specified columns in the
record in the Employee table of the
CompanyInfo database that matches the
primary key (Emp_ID).

Because #Form.Dept_ID#,
#Form.Salary#, and #Form.Emp_ID#
are numeric, they do not need to be
enclosed in quotation marks.

Because of the way cfquery gets and
displays dates from Access databases,
you use the left function to trim the
returned value.
458 Chapter 21 Updating Your Database

Deleting data
You use a cfquery tag with a SQL DELETE statement to delete data from a database.
ColdFusion has no cfdelete tag.

Deleting a single record
To delete a single record, use the table’s primary key in the WHERE condition of a SQL
DELETE statement. In the following procedure, Emp_ID is the primary key, so the SQL
Delete statement is as follows:

DELETE FROM Employee WHERE Emp_ID = #Form.Emp_ID#

You often want to see the data before you delete it. The following procedure displays the
data to be deleted by reusing the form page used to insert and update data. Any data that
you enter in the form before submitting it is not used, so you can use a table to display
the record to be deleted instead.

To delete one record from a database:

1 In update_form.cfm, change the title to “Delete Form” and the text on the submit
button to “Delete Record”.

2 Change the form tag so that it appears as follows:
<form action="delete_action.cfm" method="Post">

3 Save the modified file as delete_form.cfm.

4 Create a ColdFusion page with the following content:
<html>
<head>
<title>Delete Employee Record</title>
</head>
<body>

<cfquery name="DeleteEmployee"
datasource="CompanyInfo">

DELETE FROM Employee
WHERE Emp_ID = #Form.Emp_ID#

</cfquery>

<h1>The employee record has been deleted.</h1>
<cfoutput>
You have deleted #Form.FirstName# #Form.LastName# from the

employee database.
</cfoutput>
</body>
</html>

5 Save the page as delete_action.cfm.

6 View delete_form.cfm in your web browser by specifying the page URL and an
Employee ID; for example, enter the following:

http://localhost/myapps/delete_form.cfm?Emp_ID=3.Click Delete Record.

ColdFusion deletes the record in the Employee table and displays a confirmation
message.
Deleting data 459

Reviewing the code

The following table describes the code and its function:

Deleting multiple records
You can use a SQL condition to delete several records. The following example deletes the
records for everyone in the Sales department (which has Dept_ID number 4) from the
Employee table:

DELETE FROM Employee
WHERE Dept_ID = 4

To delete all the records from the Employee table, use the following code:

DELETE FROM Employee

Caution: Deleting records from a database is not reversible. Use DELETE statements
carefully.

Code Description

<cfquery name="DeleteEmployee"
datasource="CompanyInfo">

DELETE FROM Employee
WHERE Emp_ID = #Form.Emp_ID#

</cfquery>

Deletes the record in the database whose
Emp_ID column matches the Emp_ID (hidden)
field on the form. Since the Emp_ID is the
table’s primary key, only one record is deleted.

<cfoutput>
You have deleted #Form.FirstName#

#Form.LastName# from the
employee database.

</cfoutput>

Informs the user that the record was deleted.
460 Chapter 21 Updating Your Database

CHAPTER 22

Using Query of Queries
A query that retrieves data from a record set is called a Query of Queries. After you
generate a record set, you can interact with its results as if they were database tables by
using Query of Queries. This chapter describes the benefits and procedures for this
feature.

Contents

• About record sets ... 462

• About Query of Queries .. 465

• Query of Queries user guide .. 474

• BNF for Query of Queries... 486
461

About record sets
Query of Queries is based on manipulating the record set, which you can create using the
cfquery tag and other ways.

When you execute a database query, ColdFusion retrieves the data in a record set. In
addition to presenting record set data to the user, you can manipulate this record set to
improve your application’s performance.

Because a record set contains rows (records) and columns (fields), you can think of it as a
virtual database table, or as a spreadsheet. For example, the cfpop tag retrieves a record set
in which each row is a message and each column is a message component, such as To,
From, and Subject.

Referencing queries as objects
You can reference ColdFusion queries as objects by assigning a query to a variable, as
follows:

<cfquery name = "query01"
 datasource = "myDNS"
 SELECT * FROM CUSTOMERS
</cfquery>
...
<cfset query02 = query01>

The query is not copied; both names point to the same record set data. Therefore, if you
make changes to the table referenced in query01, the original query and the query object
called query02 both reflect these changes. If you perform a copy with an array, the array
is copied.

Creating a record set
You can perform a Query of Queries on any ColdFusion tag or function that generates a
record set, including the following:
• cfcollection
• cfdirectory
• cfftp
• cfhttp
• cfindex
• cfldap

• cfmail
• cfpop
• cfprocresult

• cfquery (against a database or against another Query of Queries)
• cfsearch
• cfstoredproc

• cfwddx
• the queryNew(); query function
462 Chapter 22 Using Query of Queries

Creating a record set with a function
In addition to creating a record set by using a cfquery or other CFML tags, you can
create it with the queryNew() function.

To create a record set with the queryNew() function:

1 Create a ColdFusion page with the following content:
<html>
<head>
<title>The queryNew function</title>
</head>

<body>
<h2>QueryNew Example</h2>

<!--- create a query ---><cfset qInstruments = queryNew("name, instrument,
years_playing")>

<!--- add rows --->
<cfset newrow = queryaddrow(qInstruments, 3)>

<!--- set values in cells --->
<cfset temp = querysetcell(qInstruments, "name", "Thor", 1)>
<cfset temp = querysetcell(qInstruments, "instrument", "hammer", 1)>
<cfset temp = querysetcell(qInstruments, "years_playing", "1000", 1)>

<cfset temp = querysetcell(qInstruments, "name", "Bjorn", 2)>
<cfset temp = querysetcell(qInstruments, "instrument", "sitar", 2)>
<cfset temp = querysetcell(qInstruments, "years_playing", "24", 2)>

<cfset temp = querysetcell(qInstruments, "name", "Raoul", 3)>
<cfset temp = querysetcell(qInstruments, "instrument", "flute", 3)>
<cfset temp = querysetcell(qInstruments, "years_playing", "12", 3)>

<!--- output the query --->
<cfoutput query="qInstruments">

<pre>#name##instrument# #years_playing#</pre>
</cfoutput>

<h3>Individual record retrieval:</h3>
<cfoutput>
<p>#qInstruments.name[2]# has played #qInstruments.instrument[2]# for

#qInstruments.years_playing[2]# years.
</cfoutput>

</body>
</html>

2 Save the page as queryNew.cfm in the myapps directory under the web_root directory.
About record sets 463

3 In your browser, enter the following URL to display the query results:

http://127.0.0.1/myapps/queryNew.cfm

The following figure shows how the output appears:

Note: When you create a record set, you can store in it complex objects, such as arrays and
structures. However, you cannot use Query Of Queries on a record set that contains complex
objects. For more information on Query of Queries, see “About Query of Queries” on page
465.
464 Chapter 22 Using Query of Queries

About Query of Queries
After you have created a record set with a tag or function, you can query the record set in
several dependent queries. A query that retrieves data from a record set is called a Query
of Queries. A typical use of a Query of Queries is to retrieve an entire table into memory
with one query, and then access the table data (the record set) with subsequent sorting or
filtering queries. In essence, you query the record set as if it were a database table.

Note: Because you can generate a record set in ways other than using the cfquery tag, the
term In Memory Query is sometimes used instead of Query of Queries.

Benefits of Query of Queries
Performing a Query of Queries has many benefits, including the following:
• If you need to access the same tables multiple times, you greatly reduce access time,

because the data is already in memory (in the record set).
A Query of Queries is ideal for tables of 5,000 to 50,000 rows, and is limited only by
the memory of the ColdFusion Server host machine.

• You can perform joins and union operations on results from different data sources.
For example, you can perform a union operation on queries from different databases
to eliminate duplicates for a mailing list.

• You can efficiently manipulate cached query results in different ways. You can query a
database once, and then use the results to generate several different summary tables.
For example, if you need to summarize the total salary by department, by skill, and
by job, you can make one query to the database and use its results in three separate
queries to generate the summaries.

• You can obtain drill-down, master-detail information for which you do not access the
database for the details.
For example, you can select information about departments and employees in a
query, and cache the results. You can then display the employees’ names. When users
select an employee, the application displays the employee’s details by selecting
information from the cached query, without accessing the database.

Performing a Query of Queries
There are four steps to perform a Query of Queries.

To perform a Query of Queries:

1 Generate a record set.

You can write a normal query using a tag or function that creates a record set. This is
sometimes called a master query. For more information, see “Creating a record set”
on page 462.

2 Write a detail query—a query that specifies dbtype="query" in its cfquery tag.

3 In the detail query, write a SQL statement that retrieves the relevant records. Specify
the names of one or more existing queries as the table names in your SQL code. Do
not specify a datasource attribute.
About Query of Queries 465

4 If the database content does not change rapidly, use the cachedwithin attribute of the
master query to cache the query results between page requests. This way, ColdFusion
accesses the database on the first page request, and does not query the database again
until the specified time expires. You must use the CreateTimeSpan function to specify
the cachedwithin attribute value (in days, hours, minutes, seconds format).

The detail query generates a new query results set, identified by the value of the name
attribute of the detail query. The following example illustrates the use of a master query
and a single detail query that extracts information from the master.

To use the results of a query in a query:

1 Create a ColdFusion page with the following content:
<body>
<h1>Employee List</h1>
<!--- LastNameSearch (normally generated interactively) --->
<cfset LastNameSearch="Doe">

<!--- Master Query --->
<cfquery datasource="CompanyInfo" name="master"

cachedwithin=#CreateTimeSpan(0,1,0,0)#>
SELECT * from Employee

</cfquery>

<!--- Detail Query (dbtype=query, no data source) --->
<cfquery dbtype="query" name="detail">

SELECT Emp_ID, FirstName, LastName
FROM master
WHERE LastName=<cfqueryparam value="#LastNameSearch#"

cfsqltype="cf_sql_char" maxLength="20"></cfquery>

<!--- output the detail query results --->
<p>Output using a query of query:</p>
<cfoutput query=detail>

#Emp_ID#: #FirstName# #LastName#

</cfoutput>

<p>Columns in the master query:</p>
<cfoutput>

#master.columnlist#

</cfoutput>

<p>Columns in the detail query:</p>
<cfoutput>

#detail.columnlist#

</cfoutput>
</body>

2 Save the page as query_of_query.cfm in the myapps directory under the web_root.
466 Chapter 22 Using Query of Queries

3 In your browser, enter the following URL to display the queryresults:

http://127.0.0.1/myapps/query_of_query.cfm

The following figure shows how the output appears:

Reviewing the code

The master query retrieves the entire Employee table from the CompanyInfo data source
(the CompanyInfo database). The detail query selects only the three columns to display
for employees with the specified last name. The following table describes the code and its
function:

Code Description

cfset LastNameSearch="Doe" Sets the last name to use in the detail
query. In a complete application, this
information comes from user interaction.

<cfquery datasource="CompanyInfo" name="master"
cachedwithin=#CreateTimeSpan(0,1,0,0)#>
SELECT * from Employee

</cfquery>

Queries the CompanyInfo data source and
selects all data in the Employees table.
Caches the query data between requests
to this page, and does not query the
database if the cached data is less than an
hour old.

<cfquery dbtype="query" name="detail">
SELECT Emp_ID, FirstName, LastName
FROM master
WHERE LastName=<cfqueryparam
value=”#LastNameSearch#"
cfsqltype=”cf_sql_char”
maxLength="20"></cfquery>

Uses the master query as the source of
the data in a new query, named detail. This
new query selects only entries that match
the last name specified by the
LastNameSearch variable. The query also
selects only three columns of data:
employee ID, first name, and last name.
The query uses the cfqueryparam tag to
prevent passing erroneous or harmful
code.
About Query of Queries 467

Displaying record set data incrementally

If your database is large, you can limit the number of rows displayed at one time. The
following example shows how to use the currentRow query variable of a Query of Queries
to do this. For more information on query variables, see “Getting information about
query results” on page 441.

To display record set data incrementally:

1 Create a ColdFusion page with the following content:
<html>
<head>
<title>QoQ with incremental row return</title>
</head>

<body>
<h3>QoQ with incremental row return</h3>
<!--- define startrow and maxrows to facilitate 'next N' style browsing --->
<cfparam name = "MaxRows" default = "5">
<cfparam name = "StartRow" default = "1">

<!--- master query: retrieve all info from Employee table --->
<cfquery name = "GetSals" datasource = "CompanyInfo">

SELECT * FROM Employee
ORDER BY LastName

</cfquery>

<!--- detail query: select 3 fields from the master query --->
<cfquery name = "GetSals2" dbtype = "query">

SELECT FirstName, LastName, Salary
FROM GetSals
ORDER BY LastName

</cfquery>

<!--- build table to display output --->
<table cellpadding = 1 cellspacing = 1>

<tr>
 <td bgcolor = f0f0f0>
 <i> </i>
 </td>

<cfoutput query=detail>
#Emp_ID#: #FirstName# #LastName#

</cfoutput>

Uses the detail query to display the list of
employee IDs, first names, and last
names.

<cfoutput>
#master.columnlist#

</cfoutput>

Lists all the columns returned by the
master query.

<cfoutput>
#detail.columnlist#

</cfoutput>

Lists all the columns returned by the detail
query.

Code Description
468 Chapter 22 Using Query of Queries

 <td bgcolor = f0f0f0>
 <i>FirstName</i>
 </td>

 <td bgcolor = f0f0f0>
 <i>LastName</i>
 </td>

 <td bgcolor = f0f0f0>
 <i>Salary</i>
 </td>
</tr>

<!--- Output the query and define the startrow and maxrows
 parameters. Use the query variable currentRow to
 keep track of the row you are displaying. --->
<cfoutput query = "GetSals2" startrow = "#StartRow#" maxrows = "#MaxRows#">
<tr>
 <td valign = top bgcolor = ffffed>

 #GetSals2.currentRow#
 </td>

 <td valign = top>
 #FirstName#

 </td>

 <td valign = top>
 #LastName#

 </td>

 <td valign = top>
 #Salary#

 </td>
</tr>
</cfoutput>

<!--- If the total number of records is less than or equal to
the total number of rows, provide a link to the same page, with the
StartRow value incremented by MaxRows (5, in this example) --->
<tr>
 <td colspan = 4>
 <cfif (startrow + maxrows) lte getsals2.recordcount>
 <a href="qoq_next_row.cfm?startrow=<cfoutput>#Evaluate(StartRow +

MaxRows)#</cfoutput>">See next <cfoutput>#MaxRows#</cfoutput>
 rows
 </cfif>
 </td>
</tr>

</table>
</body>
</html>

2 Save the page as qoq_next_row.cfm in the myapps directory under the web_root.

3 In your web browser, enter the following URL to display the query results:

http://127.0.0.1/myapps/qoq_next_row.cfm
About Query of Queries 469

The following figure shows how the output appears:

Using the cfdump tag with query results

As you debug your CFML code, you can use the cfdump tag to quickly present the value
of your query. This tag has the following format:

<cfdump var="#query_name#">

For more information on the cfdump tag, see CFML Reference.

Using Query of Queries with non-SQL record sets

A Query of Queries can operate on any CFML tag or function that returns a record set;
you are not limited to operating on cfquery results. You can perform queries on non-SQL
record sets, such as a cfdirectory tag, Verity searches, a cfldap tag, and so on.

The following example shows how a Query of Queries interacts with the record set of a
Verity search. This example assumes that you have a valid Verity collection, called bbb,
which contains documents with a target word, film, or its variants (films, filmed,
filming). Change the name of the collection and the search criteria to as appropriate for
your Verity collection. For more information on Verity, see Chapter 24, “Building a
Search Interface” on page 521.

To use Query of Queries with a Verity record set:

1 Create a ColdFusion page with the following content:
<html>
<head>
<title>QoQ and Verity</title>
</head>

<body>
<!--- master query: retrieve all documents from the bbb collection
that contain ’film’ (or its stemmed variants); change values for
collection and criteria as needed for your Verity collection --->
470 Chapter 22 Using Query of Queries

<cfsearch name = "quick"
collection="bbb"
type = "simple"
criteria="film">

<h3>Master query dump:</h3>
<cfdump var="#quick#">

<!--- detail query: retrieve from the master query only those
documents with a score greater than a criterion (here,
0.7743) --->
<cfquery name="qoq" dbtype="query">

SELECT * from quick
WHERE quick.score > 0.7743

</cfquery>

<h3>Detail query dump:</h3>
<cfdump var="#qoq#">

</body>
</html>

2 Save the page as qoq_verity.cfm in the myapps directory under the web_root.

3 In your web browser, enter the following URL to display the query results:

http://127.0.0.1/myapps/qoq_verity.cfm

The following figure shows how the output appears:

Note: This figure shows a collapsed master query output and an expanded detail query
output. Click an output to expand or collapse it.

The first cfdump tag shows the master query, which retrieves all records. The second
cfdump shows the Query of Queries results.

Tip: Adjust the score criterion of the detail query to reflect the contents of your
collection.

The next example shows how a Query of Queries combines record sets from a
cfdirectory tag, which is limited to retrieval of one file type per use.
About Query of Queries 471

To use Query of Queries to combine record sets:

1 Create a ColdFusion page with the following content:
<html>
<head>
<title>Images Folder</title>
</head>

<body>
<h2>Image Retrieval with QoQ</h2>
<!--- set the images directory --->
<cfset dir = ("C:\pix\")>

<!--- retrieve all GIFs --->
<cfdirectory name="GetGIF"
 action="list"
 directory="#dir#"
 filter="*.gif">

<!--- retrieve all JPGs --->
<cfdirectory name="GetJPG"
 action="list"
 directory="#dir#"
 filter="*.jpg">

<!--- join the queries with a UNION in a QoQ (cfdirectory

automatically returns the directory name as "Name") --->
<cfquery dbtype="query" name="GetBoth">
 SELECT * FROM GetGIF
 UNION
 SELECT * FROM GetJPG
 ORDER BY Name
</cfquery>

<!--- display output in a linked, ordered list --->
<cfoutput>
 <p>The #dir# directory contains #GetBoth.RecordCount#

images:

 <cfloop query="GetBoth">
 #GetBoth.Name#

 </cfloop>

</cfoutput>

</body>
</html>

2 Save the page as qoq_cfdirectory.cfm in the myapps directory under the web_root.
472 Chapter 22 Using Query of Queries

3 In your web browser, enter the following URL to display the query results:

http://127.0.0.1/myapps/qoq_cfdirectory.cfm

The following figure shows how the output appears:
About Query of Queries 473

Query of Queries user guide
The following sections discuss Query of Queries functionality. If you know SQL or have
interacted with databases, you might be familiar with some of these features.

Using dot notation
ColdFusion supports using dot notation in table names.

Example

If a structure named A contains a field named B, which contains a table named Products,
you can refer to the table with dot notation, as follows:

SELECT tape_ID, length
FROM A.B.Products;

Using joins
A join operation uses a single SELECT statement to return a result set from multiple
tables. The re are two main types of JOIN operations:
• INNER JOIN includes in the result set only records that are present in both tables
• OUTER JOIN includes in the result set all records in one of the tables.

ColdFusion does not support OUTER JOINs, nor does it support the INNER JOIN
syntax, as the following example shows:

SELECT Dog_ID, Breed_ID,
FROM Dogs INNER JOIN Breed
ON Dogs.Dog_ID = Breed.Dog_ID;

ColdFusion supports INNER JOINs between two tables, as the following example
shows. This operation is the most common type of join.

SELECT Dog_ID, Breed_ID
FROM Dogs, Breed
WHERE Dogs.Dog_ID = Breed.Dog_ID;

Using unions
The UNION operator lets you combine the results of two or more SELECT expressions
into a single record set. The original tables must have the same number of columns, and
corresponding columns must be UNION-compatible data types. Columns are
UNION-compatible data types if they meet one of the following conditions:
• The same data type; for example, both Tinyint
• Both Numeric; for example, Tinyint, Smallint, Integer, Bigint, Double, Float, Real,

Decimal, or Numeric
• Both Characters; for example, Char, Varchar, or LongVarchar
• Both Dates; for example, Time, TimeStamp, or Date

Note: Query Of Queries does not support ODBC-formatted dates and times.

Syntax

select_expression = select_expression UNION [ALL] select_expression
474 Chapter 22 Using Query of Queries

Example

This example uses the following tables:

To combine Table1 and Table2, use a UNION statement, as follows:

SELECT * FROM Table1
UNION
SELECT * FROM Table2

The UNION statement produces the following result (UNION) table:

Using aliases for column names

The column names of a UNION table are the column names in the result set of the first
SELECT statement in the UNION operation; ColdFusion ignores the column names in
the other SELECT statement. To change the column names of the result table, you can
use an alias, as follows:

Select Type as SportType, Name as SportName from Table1
UNION
Select * from Table2

Table1

Type(int) Name(varchar)

1 Tennis

2 Baseball

3 Football

Table2

ID(int) Sport(varchar)

3 Football

4 Volleyball

5 PingPong

Result table

Type(int) Name(varchar)

1 Tennis

2 Baseball

3 Football

4 Volleyball

5 PingPong
Query of Queries user guide 475

Duplicate rows and multiple tables

By default, the UNION operator removes duplicate rows from the result table. If you use
the keyword ALL, then duplicates are included.

You can combine an unlimited number of tables using the UNION operator, for
example:

Select * from Table1
UNION
Select * from Table2
UNION
Select * from Table3
...

Parentheses and evaluation order

By default, the Query of Queries SQL engine evaluates a statement containing UNION
operators from left to right. You can use parentheses to change the order of evaluation.
For example, the following two statements are different:

/* First statement. */
SELECT * FROM TableA
UNION ALL
(SELECT * FROM TableB
UNION
SELECT * FROM TableC
)

/* Second statement. */
(SELECT * FROM TableA
UNION ALL
SELECT * FROM TableB
)
UNION
SELECT * FROM TableC

In the first statement, there are no duplicates in the union between TableB and TableC.
Then, in the union between that set and TableA, the ALL keyword includes the
duplicates. In the second statement, duplicates are included in the union between TableA
and TableB but are eliminated in the subsequent union with TableC. The ALL keyword
has no effect on the final result of this expression.

Using other keywords with UNION

When you perform a UNION, the individual SELECT statements cannot have their
own ORDER BY or COMPUTE clauses. You can only have one ORDER BY or
COMPUTE clause after the last SELECT statement; this clause is applied to the final,
combined result set. You can only specify GROUP BY and HAVING expressions in the
individual SELECT statements.
476 Chapter 22 Using Query of Queries

Using conditional operators
ColdFusion lets you use the following conditional operators in your SQL statements:
• Test
• Null
• Comparison
• Between
• IN
• LIKE

Test conditional

This conditional tests whether a Boolean expression is true, false, or unknown.

Syntax

cond_test ::= expression [IS [NOT] {TRUE | FALSE | UNKNOWN}]

Example

SELECT _isValid FROM Chemicals
WHERE _isValid IS true;

Null conditional

This conditional tests whether an expression is null.

Syntax

null_cond ::= expression IS [NOT] NULL

Example

SELECT bloodVal FROM Standards
WHERE bloodVal IS NOT null;

Comparison conditional

This conditional lets you compare an expression against another expression of the same
data type (Numeric, String, Date, or Boolean). You can use it to selectively retrieve only
the relevant rows of a record set.

Syntax

comparison_cond ::= expression [> | >= | <> | != | < | <=] expression

Example

The following example uses a comparison conditional to retrieve only those dogs whose
IQ is at least 150:

SELECT dog_name, dog_IQ
FROM Dogs
WHERE dog_IQ >= 150;
Query of Queries user guide 477

Between conditional

This conditional lets you compare an expression against another expression. You can use
it to selectively retrieve only the relevant rows of a record set. Like the comparison
conditional, the BETWEEN conditional makes a comparison; however, the between
conditional makes a comparison against a range of values. Therefore, its syntax requires
two values, which are inclusive, a minimum and a maximum. You must separate these
values with the AND keyword.

Syntax

between_cond ::= expression [NOT] BETWEEN expression AND expression

Example

The following example uses a BETWEEN conditional to retrieve only those dogs whose
IQ is between 150 and 165, inclusive:

SELECT dog_name, dog_IQ
FROM Dogs
WHERE dog_IQ BETWEEN 150 AND 165;

IN conditional

This conditional lets you specify a comma-delimited list of conditions to match. It is
similar in function to the OR conditional. In addition to being more legible when
working with long lists, the IN conditional can contain another SELECT statement.

Syntax

in_cond ::= expression [NOT] IN (expression_list)

Example

The following example uses the IN conditional to retrieve only those dogs who were born
at either Ken’s Kennels or Barb’s Breeders:

SELECT dog_name, dog_IQ, Kennel_ID
FROM Dogs
WHERE kennel_ID IN ('Kens','Barbs');

LIKE conditional

This conditional lets you perform wildcard searches, in which you compare your data to
search patterns. This strategy differs from other conditionals, such as BETWEEN or IN,
because the LIKE conditional compares your data to a value that is partially unknown.
478 Chapter 22 Using Query of Queries

Syntax

like_cond ::= left_string_exp [NOT] LIKE right_string_exp [ESCAPE escape_char]

The left_string_exp can be either a constant string, or a column reference to a string
column. The right_string_exp can be either a column reference to a string column, or a
search pattern. A search pattern is a search condition that consists of literal text and at
least one wildcard character. A wildcard character is a special character that represents an
unknown part of a search pattern, and is interpreted as follows:
• The underscore (_) represents any single character.
• The percent sign (%) represents zero or more characters.
• Square brackets ([]) represents any character in the range.
• Square brackets with a caret [^] represent any character not in the range.
• All other characters represent themselves.

Note: Earlier versions of ColdFusion do not support bracketed ranges.

Examples

The following example uses the LIKE conditional to retrieve only those dogs of the breed
Terrier, whether the dog is a Boston Terrier, Jack Russell Terrier, Scottish Terrier, and so
on:

SELECT dog_name, dog_IQ, breed
FROM Dogs
WHERE breed LIKE '%Terrier';

The following examples are select statements that use bracketed ranges:

SELECT lname FROM Suspects WHERE lname LIKE 'A[^c]%';
SELECT lname FROM Suspects WHERE lname LIKE '[a-m]%';
SELECT lname FROM Suspects WHERE lname LIKE '%[]';
SELECT lname FROM Suspects WHERE lname LIKE 'A[%]%';
SELECT lname FROM Suspects WHERE lname LIKE 'A[^c-f]%';

Case sensitivity

ColdFusion supports two string functions, UPPER() and LOWER(), which you can use to
achieve case-insensitive matching.

Examples

The following example matches only 'Sylvester':

SELECT dog_name
FROM Dogs
WHERE dog_name LIKE 'Sylvester';

The following example is not case-sensitive; it uses the LOWER() function to match
'Sylvester', 'sylvester', 'SYLVESTER', and so on:

SELECT dog_name
FROM Dogs
WHERE LOWER(dog_name) LIKE 'Sylvester';
Query of Queries user guide 479

Escaping wildcards

You can specify your own escape character using the conditional ESCAPE clause.

Example

The following example uses the ESCAPE clause to enable a search for a literal percent
sign (%), which ColdFusion normally interprets as a wildcard character:

SELECT emp_discount
FROM Benefits
WHERE emp_discount LIKE '10\%'
ESCAPE '\';

Using aggregate functions
Aggregate functions operate on a set of data and return a single value. Use these functions
for retrieving summary information from a table, as opposed to retrieving an entire table
and then operating on the record set of the entire table.

Consider using aggregate functions to perform the following operations:
• To display the average of a column
• To count the number of rows for a column
• To find the earliest date in a column

Since not every relational database management system (RDBMS) supports all aggregate
functions, refer to your database’s documentation. The following table lists the aggregate
functions that ColdFusion supports:

Note: For more information, see CFML Reference.

Syntax

aggregate_func ::= <COUNT>(* | column_name) | AVG | SUM | MIN | MAX)
([ALL | DISTINCT] numeric_exp)

Example

The following example uses the AVG() function to retrieve the average IQ of all terriers:

SELECT dog_name, AVG(dog_IQ) AS avg_IQ
FROM Dogs
WHERE breed LIKE '%Terrier';

Function Description

AVG() Returns the average (mean) for a column.

COUNT() Returns the number of rows in a column.

MAX() Returns the largest value of a column.

MIN() Returns the lowest value of a column.

SUM() Returns the sum of values of a column.
480 Chapter 22 Using Query of Queries

Arbitrary expressions in aggregate functions

ColdFusion supports aggregate functions of any arbitrary expression, as follows:

SELECT lorange, count(lorange+hirange)
FROM roysched
GROUP BY lorange;

Aggregate functions in arbitrary expressions

ColdFusion supports mathematical expressions that include aggregate functions, as
follows:

SELECT MIN(lorange) + MAX(hirange)
FROM roysched
GROUP BY lorange;

Using group by and having expressions
ColdFusion supports the use of any arbitrary arithmetic expression, as long as it is
referenced by an alias.

Examples

The following code is correct:

SELECT (lorange + hirange)/2 AS midrange,
COUNT(*)
FROM roysched
GROUP BY midrange;

The following code is correct:

SELECT (lorange+hirange)/2 AS x,
COUNT(*)
FROM roysched GROUP BY x
HAVING x > 10000;

The following code is not supported in Query of Queries:

SELECT (lorange + hirange)/2 AS midrange,
COUNT(*)
FROM roysched
GROUP BY (lorange + hirange)/2;

Using ORDER BY clauses
ColdFusion supports the ORDER BY clause to sort. Make sure that it is the last clause in
your SELECT statement. You can sort by multiple columns, by relative column position,
by nonselected columns. You can specify a descending sort direction with the DESC
keyword (by default, most RDBMS sorts are ascending, which makes the ASC keyword
unnecessary).

Syntax

order_by_column ::= (<IDENTIFIER> | <INTEGER_LITERAL>) [<ASC> | <DESC>]
Query of Queries user guide 481

Examples

The following example shows a simple sort using an ORDER BY clause:

SELECT acetylcholine_levels, dopamine_levels
FROM results
ORDER BY dopamine_levels

The following example shows a more complex sort; results are first sorted by ascending
levels of dopamine, then by descending levels of acetylcholine. The ASC keyword is
unnecessary, and is used only for legibility.

SELECT acetylcholine_levels, dopamine_levels
FROM results
ORDER BY 2 ASC, 1 DESC

Using aliases
ColdFusion supports the use of database column aliases. An alias is an alternate name for
a database field or value. ColdFusion lets you reuse an alias in the same SQL statement.

One way to create an alias is to concatenate (append) two or more columns to generate a
value. For example, you can concatenate a first name and a last name to create the value
fullname. Because the new value does not exist in a database, you refer to it by its alias.
The AS keyword assigns the alias in the SELECT statement.

Examples

ColdFusion supports alias substitutions in the ORDER BY, GROUP BY, and HAVING
clauses.

Note: ColdFusion does not support aliases for table names.

SELECT FirstName + ' ' + LastName AS fullname
from Employee;

The following examples rely on these two master queries:

<cfquery name="employee" datasource="2pubs">
SELECT * FROM employee

</cfquery>

<cfquery name="roysched" datasource="2pubs">
SELECT * FROM roysched

</cfquery>

To generate output for the following examples, use the cfdump tag. For example, use
<cfdump var="#order_by#"> for the following ORDER BY example.

ORDER BY example

<cfquery name="order_by" dbtype="query">
SELECT (job_id + job_lvl)/2 AS job_value
FROM employee
ORDER BY job_value

</cfquery>
482 Chapter 22 Using Query of Queries

GROUP BY example

<cfquery name="group_by" dbtype="query">
SELECT lorange+hirange AS x, count(hirange)
FROM roysched
GROUP BY x

</cfquery>

HAVING example

<cfquery name="having" dbtype="query">
SELECT (lorange+hirange)/2 AS x,
COUNT(*)
FROM roysched GROUP BY x
HAVING x > 10000

</cfquery>

Handling null values
ColdFusion uses Boolean logic to handle conditional expressions. Proper handling of
NULL values requires the use of ternary logic. The IS [NOT] NULL clause works correctly
in ColdFusion. However the following expressions do not work properly when the
column breed is NULL:

WHERE (breed > 'A')
WHERE NOT (breed > 'A')

The correct behavior should not include NULL breed columns in the result set of either
expression. To avoid this limitation, you can add an explicit rule to the conditionals and
rewrite them in the following forms:

WHERE breed IS NOT NULL AND (breed > 'A')
WHERE breed IS NOT NULL AND not (breed > 'A')

Escaping reserved keywords
ColdFusion has a list of reserved keywords, which are typically part of the SQL language
and are not normally used for names of columns or tables. To escape a reserved keyword
for a column name or table name, enclose it in brackets.

Caution: Earlier versions of ColdFusion let you use some reserved keywords without
escaping them.

Examples

ColdFusion supports the following SELECT statement examples:

SELECT [from] FROM parts;
SELECT [group].firstname FROM [group];
SELECT [group].[from] FROM [group];

ColdFusion does not support nested escapes, such as in the following example:

SELECT [[from]] FROM T;
Query of Queries user guide 483

The following table lists ColdFusion reserved keywords:

ABSOLUTE ACTION ADD ALL ALLOCATE

ALTER AND ANY ARE AS

ASC ASSERTION AT AUTHORIZATION AVG

BEGIN BETWEEN BIT BIT_LENGTH BOTH

BY CASCADE CASCADED CASE CAST

CATALOG CHAR CHARACTER CHARACTER_LENGTH CHAR_LENGTH

CHECK CLOSE COALESCE COLLATE COLLATION

COLUMN COMMIT CONNECT CONNECTION CONSTRAINT

CONSTRAINTS CONTINUE CONVERT CORRESPONDING COUNT

CREATE CROSS CURRENT CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER CURSOR DATE DAY

DEALLOCATE DEC DECIMAL DECLARE DEFAULT

DEFERRABLE DEFERRED DELETE DESC DESCRIBE

DESCRIPTOR DIAGNOSTICS DISCONNECT DISTINCT DOMAIN

DOUBLE DROP ELSE END END-EXEC

ESCAPE EXCEPT EXCEPTION EXEC EXECUTE

EXISTS EXTERNAL EXTRACT FALSE FETCH

FIRST FLOAT FOR FOREIGN FOUND

FROM FULL GET GLOBAL GO

GOTO GRANT GROUP HAVING HOUR

IDENTITY IMMEDIATE IN INDICATOR INITIALLY

INNER INPUT INSENSITIVE INSERT INT

INTEGER INTERSECT INTERVAL INTO IS

ISOLATION JOIN KEY LANGUAGE LAST

LEADING LEFT LEVEL LIKE LOCAL

LOWER MATCH MAX MIN MINUTE

MODULE MONTH NAMES NATIONAL NATURAL

NCHAR NEXT NO NOT NULL

NULLIF NUMERIC OCTET_LENGTH OF ON

ONLY OPEN OPTION OR ORDER

OUTER OUTPUT OVERLAPS PAD PARTIAL

POSITION PRECISION PREPARE PRESERVE PRIMARY

PRIOR PRIVILEGES PROCEDURE PUBLIC READ

REAL REFERENCES RELATIVE RESTRICT REVOKE

RIGHT ROLLBACK ROWS SCHEMA SCROLL

SECOND SECTION SELECT SESSION SESSION_USER

SET SIZE SMALLINT SOME SPACE

SQL SQLCODE SQLERROR SQLSTATE SUBSTRING

SUM SYSTEM_USER TABLE TEMPORARY THEN

TIME TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE TO

TRAILING TRANSACTION TRANSLATE TRANSLATION TRIM
484 Chapter 22 Using Query of Queries

TRUE UNION UNIQUE UNKNOWN UPDATE

UPPER USAGE USER USING VALUE

VALUES VARCHAR VARYING VIEW WHEN

WHENEVER WHERE WITH WORK WRITE

YEAR ZONE
Query of Queries user guide 485

BNF for Query of Queries
The Backus Naur Form (BNF) is a formal notation to describe programming syntax. The
following is the BNF for Query of Queries:

Input ::= select_statement

select_statement ::= select_expression (<ORDER> <BY> order_by_list)?

select_expression ::= (<OPENPAREN> select_expression <CLOSEPAREN> |
select_specification) (<UNION> (<ALL>)? select_expression)?

select_specification ::= <SELECT> (<ALL> | <DISTINCT>)? select_list <FROM>
from_table_list (<WHERE> cond_exp)? (<GROUP> <BY> group_by_list)?
(<HAVING> cond_exp)?

order_by_list ::= order_by_column (<COMMA> order_by_column)*

order_by_column ::= (<IDENTIFIER> | <INTEGER_LITERAL>) (<ASC> | <DESC>)?

group_by_list ::= column_ref (<COMMA> column_ref)*

from_table_list ::= <IDENTIFIER> (<COMMA> <IDENTIFIER>)*

select_list ::= select_column (<COMMA> select_column)*

select_column ::= <ASTERISK>
 | <IDENTIFIER> <DOT> (<ASTERISK> | <IDENTIFIER> (alias)?)
 | expression (alias)?

alias ::= (<AS>)? <IDENTIFIER>

cond_exp ::= cond_term (<OR> cond_exp)?

cond_term ::= cond_factor (<AND> cond_term)?

cond_factor ::= (<NOT>)? cond_test

cond_test ::= cond_primary (<IS> (<NOT>)? (<TRUE> | <FALSE> | <UNKNOWN>))?

cond_primary ::= simple_cond
 | <OPENPAREN> cond_exp <CLOSEPAREN>

simple_cond ::= like_cond
 | null_cond
 | between_cond
 | in_cond
 | comparison_cond

null_cond ::= row_constructor <IS> (<NOT>)? <NULL>

comparison_cond ::= row_constructor comparison_operator row_constructor

between_cond ::= row_constructor (<NOT>)? <BETWEEN> row_constructor
<AND> row_constructor
486 Chapter 22 Using Query of Queries

in_cond ::= row_constructor (<NOT>)? <IN> <OPENPAREN> (expression_list)
<CLOSEPAREN>

row_constructor ::= expression

comparison_operator ::= <LESSEQUAL>
 | <GREATEREQUAL>
 | <NOTEQUAL>
 | <NOTEQUAL2>
 | <EQUAL>
 | <LESS>
 | <GREATER>

like_cond ::= string_exp (<NOT>)? <LIKE> string_exp

expression_list ::= expression (<COMMA> expression)?

expression ::= <STRING_LITERAL>
 | <OPENPAREN> <STRING_LITERAL> <CLOSEPAREN>
 | numeric_exp

numeric_exp ::= numeric_term ((<PLUS> | <MINUS>) numeric_exp)?

numeric_term ::= numeric_factor ((<ASTERISK> | <SLASH>) numeric_term)?

numeric_factor ::= (<PLUS> | <MINUS>)? numeric_primary

numeric_primary ::= <INTEGER_LITERAL>
 | <FLOATING_POINT_LITERAL>
 | aggregate_func
 | column_ref
 | <OPENPAREN> numeric_exp <CLOSEPAREN>

aggregate_func ::= <COUNT> <OPENPAREN> count_param <CLOSEPAREN>
 | (<AVG> | <SUM> | <MIN> | <MAX>) <OPENPAREN> (<ALL> | <DISTINCT>)?

numeric_exp <CLOSEPAREN>

count_param ::= <ASTERISK>
 | (<ALL> | <DISTINCT>)? numeric_exp

string_exp ::= <STRING_LITERAL>
 | column_ref
 | <OPENPAREN> string_exp <CLOSEPAREN>

column_ref ::= <IDENTIFIER> (<DOT> <IDENTIFIER>)?
BNF for Query of Queries 487

488 Chapter 22 Using Query of Queries

CHAPTER 23

Managing LDAP Directories
CFML applications use the cfldap tag to access and manage LDAP (Lightweight
Directory Access Protocol) directories. This chapter provides information on how to use
this tag to view, query, and update LDAP directories.

This chapter teaches you how to query and update an LDAP database. It does not assume
that you are familiar with LDAP, and provides an introduction to LDAP directories and
the LDAP protocol. However, it does assume that you have information on your LDAP
database’s structure and attributes, and it does not explain how to create an LDAP
directory or manage a directory server. To learn more about LDAP and LDAP servers, see
your LDAP server documentation and published books on LDAP.

The examples in this chapter use the Airius sample LDAP database that is supplied with
the Netscape and iPlanet Directory Servers.

Contents

• About LDAP ... 490

• The LDAP information structure .. 492

• Using LDAP with ColdFusion... 495

• Querying an LDAP directory .. 496

• Updating an LDAP directory... 503

• Advanced topics... 514
489

About LDAP
The LDAP protocol enables organizations to arrange and access directory information in
a hierarchy. In this context, directory refers to a collection of information, such as a
telephone directory, not a collection of files in a folder on a disk drive.

LDAP originated in the mid-1990s as a response to the need to access ISO X.500
directories from personal computers that had limited processing power. Since then,
products such as iPlanet Server have been developed that are native LDAP directory
servers. Several companies now provide LDAP access to their directory servers, including
Novell NDS, Microsoft Active Directory Services (ADS), Lotus Domino, and Oracle.

An LDAP directory is typically a hierarchically structured database. Each layer in the
hierarchy typically corresponds to a level of organizational structure.

The following example shows a simple directory structure:

This example is fully symmetrical: all the entries at each layer are of the same type.

You can also structure an LDAP directory so that the layers under one entry contain
different information from the layers under another entry.
490 Chapter 23 Managing LDAP Directories

The following figure show such an asymmetric directory:

In this directory structure, the second level of the tree divides the directory into two
organizational units: people and groups. The third level contains entries with
information that is specific to the organizational unit. Each person’s entry includes a
name, e-mail address, and telephone number. Each group’s entry includes the names of
group members.

This complexity and flexibility is a key to LDAP's usefulness. With it, you can represent
any organizational structure.

LDAP offers performance advantages over conventional databases for accessing
hierarchical, directory-like information that is read frequently and changed infrequently.

Although LDAP is often used for e-mail, address, telephone, or other organizational
directories, it is by no means limited to these types of applications. For example, you can
store ColdFusion Server Advanced Security information in an LDAP database.
About LDAP 491

The LDAP information structure
The following sections describe the LDAP information structure: the elements of an
LDAP directory and how they are structured. These sections describe the following basic
LDAP concepts:
• Entry
• Attribute
• Distinguished name
• Schema, including the object class and attribute type

Entry
The basic information object of LDAP is the entry. An entry is composed of one or more
attributes. Entries are subject to content rules defined by the directory schema (see
“Schema” on page 493).

Each node, not just the terminal nodes, of an LDAP directory is an entry. In the
preceding figures, each item is an entry. For example, in the first diagram, both USA and
Ferrari are entries. The USA entry’s attributes could include a Language attribute, and
the Ferrari entry could include an entry for the chief executive officer.

Attribute
An LDAP directory entry consists of one or more attributes. Attributes have types and
values. The type determines the information that the values can contain. The type also
specifies how the value is processed. For example, the type determines whether an
attribute can have multiple values. The mail attribute type, which contains an e-mail
address, is multivalued so you can store multiple e-mail addresses for one person.

Some commonly-used attribute types have short keyword type names. Often these
correspond to longer type names, and the two names can be used interchangeably. The
following table lists common attribute type keywords used in LDAP directories:

Keyword Long name Comment

c CountryName

st stateOrProvinceName

l LocalityName typically, city, but can be any geographical unit

street StreetAddress

o OrganizationName

ou OrganizationalUnitName

cn CommonName typically, first and last name

sn SurName

dc domaincomponent

mail mail e-mail address
492 Chapter 23 Managing LDAP Directories

At the time this chapter was written, Netscape provided a list of standard Attribute names
on its website, at:

http://developer.netscape.com/docs/manuals/directory/schema2/41/contents.htm

For more information, see “Attribute type” on page 494.

Distinguished name (DN)
An entry’s distinguished name uniquely identifies it in the directory. A DN is made up of
relative distinguished names (RDN)s. An RDN identifies the entry among the children
of its parent entry. For example, in the first figure in “About LDAP”, the RDN for the
Ferrari entry is “o=Ferrari”.

An entry’s DN consists of an entry’s RDN followed by the DN of its parent. In other
words, it consists of the RDNs for the entry and each of the entry’s parent entries, up to
the root of the directory tree. The RDNs are separated by commas and optional spaces.
For example, in the first figure, the DN for the Ferrari entry is “o=Ferrari, c=Italy”.

As with file system pathnames and URLs, entering the correct LDAP name format is
essential to successful search operations.

Note: The RDN is an attribute of a directory entry. The full DN is not. However, you can
output the full DN by specifying "dn" in a query’s attributes list. For more information, see
CFML Reference. ColdFusion always returns DNs with spaces after the commas.

A multivalued RDN is made up of more than one attribute-value pair. In multivalued
RDNs, the attribute-value pairs are separated by plus signs (+). In the sample directories,
individuals could have complex RDNs consisting of their common name and their
e-mail address; for example, “cn=Robert Boyd + mail=rjboyd@macromedia.com”.

Schema

The concepts of schemas and object classes are central to a thorough understanding of
LDAP. Although detailed descriptions of them are beyond the scope of this chapter, the
following sections provide enough information to use the cfldap tag effectively.

A directory schema is a set of rules that determines what can be stored in a directory. It
defines, at a minimum, the following two basic directory characteristics:
• The object classes to which entries can belong
• The directory attribute types

Object class

Object classes enable LDAP to group related information. Frequently, an object class
corresponds to a real object or concept, such as a country, person, room, or domain (in
fact, these are all standard object type names). Each entry in an LDAP directory must
belong to one or more object classes.

The following characteristics define an object class:
• The class name
• A unique object ID that identifies the class
• The attribute types that entries of the class must contain
The LDAP information structure 493

• The attribute types that entries of the class can optionally contain
• (Optional) A superior class from which the class is derived

If an entry belongs to a class that derives from another class, the entry’s objectclass
attribute lists the lowest-level class and all the superior classes from which the lowest-level
class derives.

When you add, modify, or delete a directory entry, you must treat the entry’s object class
as a possibly multivalued attribute. For example, when you add a new entry, you specify
the object class in the cfldap tag attributes attribute. To retrieve an entry’s object class
names, specify “objectclass” in the list of query attributes. To retrieve entries that provide
a specific type of information, you can use the object class name in the cfldap tag filter
attribute.

Attribute type

A schema’s attribute type specification defines the following properties:
• The attribute type name
• A unique object ID that identifies the attribute type
• (Optional) An indication of whether the type is single-valued or multivalued (the

default is multivalued)
• The attribute syntax and matching rules (such as case sensitivity)

The attribute type definition can also determine limits on the range or size of values that
the type represents, or provide an application-specific usage indicator. For standard
attributes, a registered numeric ID specifies the syntax and matching rule information.
For more information on attribute syntaxes, see ETF RFC 2252 at
http://www.ietf.org/rfc/rfc2252.txt.

Operational attributes, such as creatorsName or modifyTimeStamp, are managed by the
directory service and cannot be changed by user applications.
494 Chapter 23 Managing LDAP Directories

Using LDAP with ColdFusion
The cfldap tag extends the ColdFusion query capabilities to LDAP network directory
services. The cfldap tag lets you use LDAP in many ways, such as the following:
• Create Internet White Pages so users can locate people and resources and get

information about them.
• Provide a front end to manage and update directory entries.
• Build applications that incorporate data from directory queries in their processes.
• Integrate applications with existing organizational or corporate directory services.

The cfldap tag action attribute supports the following operations on LDAP directories:

The following table lists the attributes that are required and optional for each action. For
more information on each attribute, see CFML Reference.

Action Description

query Returns attribute values from a directory.

add Adds an entry to a directory.

modify Adds, deletes, or changes the value of an attribute in a directory entry.

delete Deletes an entry from a directory.

modifyDN Renames a directory entry (changes its distinguished name).

Action Required attributes Optional attributes

query server, name, start,
attributes

port, username, password, timeout, secure, rebind,
referral, scope, filter, sort, sortControl startRow,
maxRows, separator, delimiter

add server, dn, attributes port, username, password, timeout, secure, rebind,
referral, separator, delimiter

modify server, dn, attributes port, username, password, timeout, secure, rebind,
referral, modifyType, separator, delimiter

modifyDN server, dn, attributes port, username, password, timeout, secure, rebind,
referral

delete server, dn port, username, password, timeout, secure, rebind,
referral
Using LDAP with ColdFusion 495

Querying an LDAP directory
The cfldap tag lets you search an LDAP directory. The tag returns a ColdFusion query
object with the results, which you can use as you would any query result. When you
query an LDAP directory, you specify the directory entry where the search starts and the
attributes whose values to return. You can specify the search scope and attribute content
filtering rules and use other attributes to further control the search.

Scope

The search scope sets the limits of a search. The default scope is the level below the
distinguished name specified in the start attribute. This scope does not include the entry
identified by the start attribute. For example, if the start attribute is “ou=support,
o=macromedia” the level below support is searched. You can restrict a query to the level
of the start entry, or extend it to the entire subtree below the start entry.

Search filter
The search filter syntax has the form attribute operator value. The default filter,
objectclass=*, returns all entries in the scope.

The following table lists the filter operators:

Operator Example Matches

=* (mail=*) All entries that contain a mail attribute.

= (o=macromedia) Entries in which the organization name is macromedia.

~= (sn~=Hansen) Entries with a surname that approximates Hansen. The
matching rules for approximate matches vary among
directory vendors, but anything that "sounds like" the
search string should be matched. In this example, the
directory server might return entries with the surnames
Hansen and Hanson.

>= (st>=ma) The name "ma" and names appearing after "ma" in an
alphabetical state attribute list.

<= (st<=ma) The name "ma" and names appearing before "ma" in an
alphabetical state attribute list.

* (o=macro*) Organization names that start with "macro".

(o=*media) Organization names that end with "media".

(o=mac*ia) Organization names that start with "mac" and end with
"ia". You can use more than one * operator in a string; for
example, m*ro*dia.

(o=*med*) Organization names that contain the string "med",
including the exact string match "med".

& (&(o=macromedia)
(co=usa))

Entries in which the organization name is "macromedia"
and the country is "usa".
496 Chapter 23 Managing LDAP Directories

The Boolean operators & and | can operate on more than two attributes and precede all of
the attributes on which they operate. You surround a filter with parentheses and use
parentheses to group conditions.

If the pattern that you are matching contains an asterisk, left parenthesis, right
parenthesis, backslash, or NUL character, you must use the following three-character
escape sequence in place of the character:

For example, to match the common name St*r Industries, use the filter
(cn=St\2Ar Industries).

LDAP v3 supports an extensible match filter that permits server-specific matching rules.
For more information on using extensible match filters, see your LDAP server
documentation.

Searching and sorting notes

• To search for multiple values of a multivalued attribute type, use the & operator to
combine expressions for each attribute value. For example, to search for an entry in
which cn=Robert Jones and cn=Bobby Jones, specify the following filter:
filter="(&(cn=Robert Jones)(cn=Bobby Jones))"

• You can use object classes as search filter attributes; for example, you can use the
following search filter:
filter="(objectclass=inetorgperson)"

• To specify how query results are sorted, use the sort field to identify the attribute(s)
to sort. By default, ColdFusion returns sorted results in case-sensitive ascending
order. To specify descending order, case-insensitive sorting, or both, use the
sortControl attribute.

| (|(o=macromedia)
(sn=macromedia)
(cn=macromedia))

Entries in which the organization name is "macromedia"
or the surname is "macromedia", or the common name is
"macromedia".

! (!(STREET=*)) Entries that do not contain a StreetAddress attribute.

Character Escape sequence

* \2A

(\28

) \29

\ \5C

NUL \00

Operator Example Matches
Querying an LDAP directory 497

• ColdFusion requests the LDAP server to do the sorting. This can have the following
effects:

− The sort order might differ between ColdFusion MX and previous versions.

− If you specify sorting and the LDAP server does not support sorting, ColdFusion
generates an error. To sort results from servers that do not support sorting, use a
query of queries on the results.

• If you use filter operators to construct sophisticated search criteria, performance
might degrade if the LDAP server is slow to process the synchronous search routines
that cfldap supports. You can use the cfldap tag timeout and maxRows attributes to
control the apparent performance of pages that perform queries, by limiting the
number of entries and by exiting the query if the server does not respond in a
specified time.

Getting all the attributes of an entry
Typically, you do not use a query that gets all the attributes in an entry. Such a query
would return attributes that are used only by the directory server. However, you can get
all the attributes by specifying attributes="*" in your query.

If you do this, ColdFusion returns the results in a structure in which each element
contains a single attribute name-value pair. The tag does not return a query object.
ColdFusion does this because LDAP directory entries, unlike the rows in a relational
table, vary depending on their object class.

For example, the following code retrieves the contents of the Airius directory:

<cfldap name="GetList"
server=#myServer#
action="query"
attributes="*"
scope="subtree"
start="o=airius.com"
sort="sn,cn">

This tag returns entries for all the people in the organization and entries for all the
groups. The group entries have a different object class, and therefore different attributes
from the person entries. If ColdFusion returned both types of entries in one query object,
some rows would have only the group-specific attribute values and the other rows would
have only person-specific attribute values. Instead, ColdFusion returns a structure in
which each attribute is an entry.

Example: querying an LDAP directory
The following example uses the cfldap tag to get information about the people in the
Airius corporation’s Santa Clara office. Users can enter all or part of a person’s name and
get a list of matching names with their departments, e-mail addresses, and telephone
numbers.

This example uses the sample Airius corporate directory that is distributed with the
Netscape Directory Server. If you do not have access to this directory, modify the code to
work with your LDAP directory.
498 Chapter 23 Managing LDAP Directories

To query an LDAP directory:

1 Create a file that looks like the following:
<!--- This example shows the use of CFLDAP --->
<html>
<head> <title>cfldap Query Example</title> </head>

<h3>cfldap Query Example</h3>

<body>
<p>This tool queries the Airius.com database to locate all people in

the company's Santa Clara office whose common names contain the
text entered in the form.</p>

<p>Enter a full name, first name, last name, or name fragment.</p>

<form action="cfldap.cfm" method="POST">
<input type="text" name="name">

<input type="submit" value="Search">

</form>

<!--- make the LDAP query --->
<!-- Note that some search text is required.

A search filter of cn=** would cause an error -->
<cfif (isdefined("form.name") AND (form.name IS NOT ""))>

<cfldap
server="ldap.airius.com"
action="query"
name="results"
start="ou=People, o=Airius.com"
scope="onelevel"
filter="(&(cn=*#form.Name#*)(l=Santa Clara))"
attributes="cn,sn,ou,mail,telephonenumber"
sort="ou,sn"
maxrows=100
timeout=20

>

<!--- Display results --->
<table border=0 cellspacing=2 cellpadding=2>
 <tr>

<th colspan=4><cfoutput>#results.RecordCount# matches found</cfoutput>
</th>

 </tr>
 <tr>

<th>Name</th>
<th>Department</th>
<th>E-Mail</th>
<th>Phone</th>

 </tr>
<cfoutput query="results">
 <tr>

<td>#cn#</td>
<td>#listFirst(ou)#</td>
<td>#mail#</td>
<td>#telephonenumber#</td>
Querying an LDAP directory 499

 </tr>
</cfoutput>
</table>

</cfif>

</body>
</html>

2 Change the server attribute from ldap.airius.com to the name of your installation of
the Airius database.

3 Save the page as cfldap.cfm and run it in your browser.

Reviewing the code

The following table describes the code:

Code Description

<form action="cfldap.cfm" method="POST">
<input type="text" name="name">

<input type="submit" value="Search">
</form>

Uses a form to get the name or name fragment
to search for.

<cfif (isdefined("form.name")
 AND (form.name IS NOT ""))>

Ensures that the user has submitted the form.
This is necessary because the form page is also
the action page. Ensures that the user entered
search text.
500 Chapter 23 Managing LDAP Directories

This search shows the use of a logical AND statement in a filter. It returns one attribute,
the surname, that is used only for sorting the results.

<cfldap
 server="ldap.airius.com"
 action="query"
 name="results"
 start="ou=People, o=Airius.com"
 scope="onelevel"

 filter="(&(cn=*#form.Name#*)
 (l=Santa Clara))"

 attributes="cn,sn,ou,mail,
 telephonenumber"

 sort="ou,sn"

 maxrows=100
 timeout=20
>

Connects anonymously to LDAP server
ldap.airius.com, query the directory, and return
the results to a query object named results.

Starts the query at the directory entry that has
the distinguished name ou=People,
o=Airius.com, and searches the directory level
immediately below this entry.

Requests records for entries that contain the
location (l) attribute value "Santa Clara" and the
entered text in the common name attribute.

Gets the common name, surname,
organizational unit, e-mail address, and
telephone number for each entry.

Sorts the results first by organization name,
then by surname. Sorts in the default sorting
order.

Limit the request to 100 entries. If the server
does not return the data in 20 seconds,
generates an error indicating that LDAP timed
out.

<table border=0 cellspacing=2
cellpadding=2>

<tr>
<th colspan=4>
<cfoutput>#results.RecordCount#

matches found</cfoutput>
</th>

</tr>
<tr>
<th>Name</th>
<th>Department</th>
<th>E-Mail</th>
<th>Phone</th>

</tr>
<cfoutput query="results">
<tr>
<td>#cn#</td>
<td>#ListFirst(ou)#</td>
<td>#mail#
</td>
<td>#telephonenumber#</td>

</tr>
</cfoutput>
</table>
</cfif>

Starts a table to display the output

Displays the number of records returned.

Displays the common name, department,
e-mail address, and telephone number of each
entry.

Displays only the first entry in the list of
organizational unit values. (For more
information, see the description that follows
this table for more information.)

Code Description
Querying an LDAP directory 501

In this query, the ou attribute value consists of two values in a comma-delimited list. One
is the department name. The other is People. This is because the Airius database uses the
ou attribute type twice:
• In the distinguished names, at the second level of the directory tree, where it

differentiates between organizational units such as people, groups, and directory
servers

• As the department identifier in each person’s entry

Because the attribute values are returned in order from the person entry to the directory
tree root, the ListFirst function extracts the person’s department name.
502 Chapter 23 Managing LDAP Directories

Updating an LDAP directory
The cfldap tag lets you do the following to LDAP directory entries:
• Add
• Delete
• Add attributes
• Delete attributes
• Replace attributes
• Change the DN (rename the entry)

These actions let you manage LDAP directory contents remotely.

The following sections show how to build a ColdFusion page that lets you manage an
LDAP directory:
• “Adding a directory entry” on page 503
• “Deleting a directory entry” on page 509
• “Updating a directory entry” on page 510

The form displays directory entries in a table and includes a button that lets you populate
the form fields based on the unique user ID.

The example ColdFusion page does not add or delete entry attributes or change the DN.
The sections “Adding and deleting attributes of a directory entry” on page 512 and
“Changing a directory entry’s DN” on page 513 describe these operations.

To keep the code short, this example has limitations that are not appropriate in a
production application. In particular, it has the following limitations:
• If you enter an invalid user ID and click either the Update or the Delete button,

ColdFusion generates a “No such object” error, because there is no directory entry to
update or delete. Your application should verify that the ID exists in the directory
before it tries to change or delete its entry.

• If you enter a valid user ID in an empty form and click Update, the application
deletes all the attributes for the User. The application should ensure that all required
attribute fields contain valid entries before updating the directory.

Adding a directory entry
When you add an entry to an LDAP directory, you specify the DN, all the required
attributes, including the entry’s object class, and any optional attributes. The following
example builds a form that adds an entry to an LDAP directory.

To add an entry:

1 Create a file that looks like the following:
<!--- set the LDAP server ID, user name, and password as variables

here so they can be changed in only one place --->
<cfset myServer="ldap.myco.com">
<cfset myUserName="cn=Directory Manager">
<cfset myPassword="password">
Updating an LDAP directory 503

<!--- Initialize the values used in form fields to empty strings --->
<cfparam name="fullNameValue" default="">
<cfparam name="surnameValue" default="">
<cfparam name="emailValue" default="">
<cfparam name="phoneValue" default="">
<cfparam name="uidValue" default="">

<!---When the form is submitted, add the LDAP entry --->
<cfif isdefined("Form.action") AND Trim(Form.uid) IS NOT "">

<cfif Form.action is "add">
<cfif Trim(Form.fullName) is "" OR Trim(Form.surname) is ""

OR Trim(Form.email) is "" OR Trim(Form.phone) is "">
<h2>You must enter a value in every field.</h2>
<cfset fullNameValue=Form.fullName>
<cfset surnameValue=Form.surname>
<cfset emailValue=Form.email>
<cfset phoneValue=Form.phone>
<cfset uidValue=Form.uid>

<cfelse>
<cfset attributelist="objectclass=top, person,

organizationalperson, inetOrgPerson;
cn=#Trim(Form.fullName)#; sn=#Trim(Form.surname)#;
mail=#Trim(Form.email)#;
telephonenumber=#Trim(Form.phone)#;
ou=Human Resources;
uid=#Trim(Form.uid)#">

<cfldap action="add"
attributes="#attributeList#"
dn="uid=#Trim(Form.uid)#, ou=People, o=Airius.com"
server=#myServer#
username=#myUserName#
password=#myPassword#>

<cfoutput><h3>Entry for User ID #Form.uid# has been added</h3>
</cfoutput>

</cfif>
</cfif>

</cfif>

<html>
<head>

<title>Update LDAP Form</title>
</head>
<body>
<h2>Manage LDAP Entries</h2>

<cfform action="update_ldap.cfm" method="post">
<table>

<tr><td>Full Name:</td>
<td><cfinput type="Text"

 name="fullName"
 value=#fullNameValue#
 size="20"
 maxlength="30"
 tabindex="1"></td>

</tr>
<tr><td>Surname:</td>
504 Chapter 23 Managing LDAP Directories

<td><cfinput type="Text"
name="surname"
Value= "#surnameValue#"
size="20"
maxlength="20"
tabindex="2"></td>

</tr>
<tr>

<td>E-mail Address:</td>
<td><cfinput type="Text"

name="email"
value="#emailValue#"
size="20"
maxlength="20"
tabindex="3"></td>

</tr>
<tr>

<td>Telephone Number:</td>
<td><cfinput type="Text"

name="phone"
value="#phoneValue#"
size="20"
maxlength="20"
tabindex="4"></td>

</tr>
<tr>

<td>User ID:</td>
<td><cfinput type="Text"

name="uid"
value="#uidValue#"
size="20"
maxlength="20"
tabindex="5"></td>

</tr>
<tr>

<td colspan="2">
<input type="Submit"
 name="action"
 value="Add"
 tabindex="8"></td>

</tr>
</table>

*All fields are required for Add

</cfform>

<!---Output the user list --->
<h2>User List for the Human Resources Department</h2>
<cfldap name="GetList"

server=#myServer#
action="query"
attributes="cn,sn,mail,telephonenumber,uid"
start="o=Airius.com"
scope="subtree"
filter="ou=Human Resources"
sort="sn,cn"
Updating an LDAP directory 505

sortControl="asc, nocase">

<table border="1">
<tr>

<th>Full Name</th>
<th>Surname</th>
<th>Mail</th>
<th>Phone</th>
<th>UID</th>

</tr>
<cfoutput query="GetList">
<tr>

<td>#GetList.cn#</td>
<td>#GetList.sn#</td>
<td>#GetList.mail#</td>
<td>#GetList.telephonenumber#</td>
<td>#GetList.uid#</td>

</tr>
</cfoutput>

</table>
</body>
</html>

2 At the top of the file, change the myServer, myUserName, and myPassword variable
assignments to values that are valid for your LDAP server.

3 Save the page as update_ldap.cfm and run it in your browser.

Reviewing the code

The following table describes the code:

Code Description

<cfset myServer="ldap.myco.com">
<cfset myUserName="cn=Directory

Manager">
<cfset myPassword="password">

Initializes the LDAP connection
information variables. Uses variables for
all connection information so that any
changes have to be made in only one
place.

<cfparam name="fullNameValue"
default="">

<cfparam name="surnameValue"
default="">

<cfparam name="emailValue"
default="">

<cfparam name="phoneValue"
default="">

<cfparam name="uidValue" default="">

Sets the default values of empty strings
for the form field value variables. The data
entry form uses cfinput fields with value
attributes so that the form can be prefilled
and so that, if the user submits an
incomplete form, ColdFusion can retain
any entered values in the form when it
redisplays the page.

<cfif isdefined("Form.action") AND
Trim(Form.uid) IS NOT "">

Ensures that the user entered a User ID in
the form.

<cfif Form.action is "add"> If the user clicks Add, processes the code
that follows.
506 Chapter 23 Managing LDAP Directories

<cfif Trim(Form.fullName) is ""
OR Trim(Form.surname) is ""
OR Trim(Form.email) is ""
OR Trim(Form.phone) is "">

<h2>You must enter a value in every
field.</h2>

<cfset fullNameValue=
Form.fullName>

<cfset surnameValue=
Form.surname>

<cfset emailValue=Form.email>
<cfset phoneValue=Form.phone>
<cfset uidValue=Form.uid>

If any field in the submitted form is blank,
display a message and set the other form
fields to display data that the user
submitted.

<cfelse>
<cfset attributelist=

"objectclass=top,person,
organizationalperson,
inetOrgPerson;

cn=#Trim(Form.fullName)#;
sn=#Trim(Form.surname)#;
mail=#Trim(Form.email)#;

telephonenumber=
#Trim(Form.phone)#;
ou=Human Resources;
uid=#Trim(Form.uid)#">

If the user entered data in all fields, sets
the attributelist variable to specify the
entry’s attributes, including the object
class and the organizational unit (in this
case, Human Resources).

The Trim function removes leading or
trailing spaces from the user data.

<cfldap action="add"
attributes="#attributeList#"
dn="uid=#Trim(Form.uid)#,
ou=People, o=Airius.com"
server=#myServer#
username=#myUserName#
password=#myPassword#>

<cfoutput><h3>Entry for User ID
#Form.uid# has been added</h3>

</cfoutput>
</cfif>
</cfif>
</cfif>

Adds the new entry to the directory.

Code Description
Updating an LDAP directory 507

<cfform action="update_ldap.cfm"
 method="post">

<table>
<tr><td>Full Name:</td>

<td><cfinput type="Text"
 name="fullName"
 value=#fullNameValue#
 size="20"
 maxlength="30"
 tabindex="1"></td>

</tr>
.
.
.

<tr><td colspan="2">
<input type="Submit"

 name="action"
 value="Add"
 tabindex="6"></td>

</tr>
</table>

*All fields are required for Add

</cfform>

Outputs the data entry form, formatted as
a table. Each cfinput field always has a
value, set by the value attribute when the
page is called. The value attribute lets
ColdFusion update the form contents
when the form is redisplayed after the user
clicks Add. The code that handles cases in
which the user fails to enter all the required
data uses this feature.

<cfldap name="GetList"
server=#myServer#
action="query"
attributes="cn,sn,mail,

telephonenumber,uid"
start="o=Airius.com"
scope="subtree"
filter="ou=Human Resources"
sort="sn,cn"
sortControl="asc, nocase">

Queries the directory and gets the
common name, surname, e-mail address,
telephone number, and user ID from the
matching entries.

Searches the subtree from the entry with
the DN of o=Airius.com, and selects all
entries in which the organizational unit is
Human Resources.

Sorts the results by surname and then
common name (to sort by last name, then
first). Sorts in default ascending order that
is not case-sensitive.

<table border="1">
<tr>
<th>Full Name</th>
<th>Surname</th>
<th>Mail</th>
<th>Phone</th>
<th>UID</th>
</tr>
<cfoutput query="GetList">
<tr>
<td>#GetList.cn#</td>
<td>#GetList.sn#</td>
<td>#GetList.mail#</td>
<td>#GetList.telephonenumber#</td>
<td>#GetList.uid#</td>
</tr>
</cfoutput>

</table>
</body>
</html>

Display the query results in a table.

Code Description
508 Chapter 23 Managing LDAP Directories

Deleting a directory entry
To delete a directory entry, you must specify the entry DN.

The following example builds on the code that adds an entry. It adds Retrieve and Delete
buttons. The Retrieve button lets you view a user’s information in the form before you
delete it.

To delete an entry:

1 Open update_ldap.cfm, which you created in “Adding a directory entry” on page
503.

2 Between the first and second </cfif> tags, add the following code:
<cfelseif Form.action is "Retrieve">

<cfldap name="GetEntry"
server=#myServer#
action="query"
attributes="cn,sn,mail,telephonenumber,uid"
scope="subtree"
filter="uid=#Trim(Form.UID)#"
start="o=Airius.com">

<cfset fullNameValue = GetEntry.cn[1]>
<cfset surnameValue = GetEntry.sn[1]>
<cfset emailValue = GetEntry.mail[1]>
<cfset phoneValue = GetEntry.telephonenumber[1]>
<cfset uidValue = GetEntry.uid[1]>

<cfelseif Form.action is "Delete">
<cfldap action="delete"

dn="uid=#Trim(Form.UID)#, ou=People, o=Airius.com"
server=#myServer#
username=#myUserName#
password=#myPassword#>

<cfoutput><h3>Entry for User ID #Form.UID# has been deleted
</h3></cfoutput>

3 At the end of the code for the Add button (the input tag with Value=Add at the
bottom of the form), delete the </td> end tag.

4 After the end of the Add button input tag, add the following code:

<input type="Submit"

 name="action"
 value="Retrieve"
 tabindex="7">

<input type="Submit"

 name="action"
 value="Delete"
 tabindex="8"></td>

5 Save the file and run it in your browser.
Updating an LDAP directory 509

Reviewing the code

The following table describes the code:

Updating a directory entry
The cfldap tag lets you change the values of entry attributes. To do so, you specify the
entry DN in the dn attribute, and list the attributes to change and their new values in the
attributes attribute.

The following example builds on the code that adds and deletes an entry. It can update
one or more of an entry’s attributes. Because the UID is part of the DN, you cannot
change it.

Code Description

<cfelseif Form.action is "Retrieve">
<cfldap name="GetEntry"

server=#myServer#
action="query"
attributes="cn,sn,mail,

telephonenumber,uid"
scope="subtree"
filter="uid=#Trim(Form.UID)#"
start="o=Airius.com">

<cfset fullNameValue=
GetEntry.cn[1]>

<cfset surnameValue=GetEntry.sn[1]>
<cfset emailValue=GetEntry.mail[1]>
<cfset phoneValue=

GetEntry.telephonenumber[1]>
<cfset uidValue=GetEntry.uid[1]>

If the user clicks Retrieve, queries the
directory and gets the information for
the specified User ID.

Sets the form field’s Value attribute to
the corresponding query column.

This example uses the array index [1] to
identify the first row of the GetEntry
query object. Because the query always
returns only one row, the index can be
omitted.

<cfelseif Form.action is "Delete">
<cfldap action="delete"

dn="uid=#Trim(Form.UID)#,
ou=People, o=Airius.com"

server=#myServer#
username=#myUserName#
password="password">

<cfoutput><h3>Entry for User
ID #Form.UID# has been
deleted</h3></cfoutput>

The user clicks delete, deletes the entry
with the specified User ID and informs
the user that the entry was deleted.

<input type="Submit"

name="action"
value="Retrieve"
tabindex="7">

<input type="Submit"

name="action"
value="Delete"
tabindex="8"></td>

Displays submit buttons for the Retrieve
and Delete actions.
510 Chapter 23 Managing LDAP Directories

To update an entry:

1 Open update_ldap.cfm, which you created in “Adding a directory entry” on page
503.

2 Between the cfelseif Form.action is "Retrieve" block and the </cfif> tag, add the
following code:
<cfelseif Form.action is "Update">
<cfset attributelist="cn=#Trim(form.FullName)#; sn=#Trim(Form.surname)#;

mail=#Trim(Form.email)#;
telephonenumber=#Trim(Form.phone)#">

<cfldap action="modify"
modifytype="replace"
attributes="#attributeList#"
dn="uid=#Trim(Form.UID)#, ou=People, o=Airius.com"
server=#myServer#
username=#myUserName#
password=#myPassword#>

<cfoutput><h3>Entry for User ID #Form.UID# has been updated</h3>
</cfoutput>

3 At the end of the code for the Delete button (the input tag with Value=Delete) at the
bottom of the form), delete the </td> mark.

4 After the end of the Delete button input tag, add the following code:

<input type="Submit"

name="action"
value="Update"
tabindex="9"></td>

5 Save the file and run it in your browser.
Updating an LDAP directory 511

Reviewing the code

The following table describes the code:

Adding and deleting attributes of a directory entry
The following table lists the cfldap tag attributes that you must specify to add and delete
LDAP attributes in an entry:

You can add or delete multiple attributes in one statement. To do this, use semicolons to
separate the attributes in the attribute string.

The following example specifies the description and seealso LDAP attributes:

attributes="description=Senior Technical Writer;seealso=writers"

You can change the character that you use to separate values of multivalued attributes in
an attribute string. You can also change the character that separates attributes when a
string contains multiple attributes. For more information, see “Specifying an attribute
that includes a comma or semicolon” on page 514.

You can add or delete attributes only if the directory schema defines them as optional for
the entry’s object class.

Code Description

<cfelseif Form.action is "Update">
<cfset attributelist="cn=#Trim

(form.FullName)#;
sn=#Trim(Form.surname)#;
mail=#Trim(Form.email)#;
telephonenumber=#Trim(Form.phone)#">

<cfldap action="modify"
modifytype="replace"
attributes="#attributeList#"

dn="uid=#Trim(Form.UID)#,
ou=People, o=Airius.com"

server=#myServer#
username=#myUserName#
password=#myPassword#>

<cfoutput><h3>Entry for User ID
#Form.UID# has been updated</h3>

</cfoutput>

If the user clicks Update, sets the
attribute list to the form field values
and replaces the attributes for the
entry with the specified UID.

Displays a message to indicate that
the entry was updated.

This code replaces all of the attributes
in a form, without checking whether
they are blank. A more complete
example would check for blank fields
and either require entered data or not
include the corresponding attribute in
the attributes string.

<input type="Submit"

name="action"
value="Update"
tabindex="9"></td>

Defines the Submit button for the
update action.

Action cfldap syntax

Add attribute to entry dn = "entry dn"
action = "modify"
modifyType = "add"
attributes = "attribname=attribValue[;...]"

Delete attribute from entry dn = "entry dn"
action = "modify"
modifyType = "delete"
attributes = "attribName[;...]"
512 Chapter 23 Managing LDAP Directories

Changing a directory entry’s DN
To change the DN of an entry, you must provide the following information in the cfldap
tag:

dn="original DN"
action="modifyDN"
attributes="dn=new DN"

For example:

<cfldap action="modifyDN"
dn="#old_UID#, ou=People, o=Airius.com"
attributes="uid=#newUID#"
server=#myServer#
username=#myUserName#
password=#myPassword#>

The new DN and the entry attributes must conform to the directory schema; therefore,
you cannot move entries arbitrarily in a directory tree. You can only modify a leaf only.
For example, you cannot modify the group name if the group has children.

Note: LDAP v2 does not let you change entry DNs.
Updating an LDAP directory 513

Advanced topics
The following sections present advanced topics that enable you to use LDAP directories
more effectively.

Specifying an attribute that includes a comma or semicolon
LDAP attribute values can contain commas. The cfldap tag normally uses commas to
separate attribute values in a value list. Similarly, an attribute can contain a semicolon,
which cfldap normally uses to delimit (separate) attributes in an attribute list. To
override the default separator and delimiter characters, you use the cfldap tag separator
and delimiter attributes.

For example, assume you want to add the following attributes to an LDAP entry:

cn=Proctor, Goodman, and Jones
description=Friends of the company; Rationalists

Use the cfldap tag in the following way:

<cfldap action="modify"
modifyType="add"
attributes="cn=Proctor, Goodman, and Jones: description=Friends

of the company; Rationalists"
dn="uid=goodco, ou=People, o=Airius.com"
separator="&"
delimiter=":"
server=#myServer#
username=#myUserName#
password=#myPassword#>

Using cfldap output
You can create a searchable Verity collection from LDAP data. For an example of
building a Verity collection using an LDAP directory, see “Indexing cfldap query results,”
in Chapter 24.

The ability to generate queries from other queries is very useful when cfldap queries
return complex data. For more information on querying queries, see Chapter 22, “Using
Query of Queries” on page 461.

Viewing a directory schema
LDAP v3 exposes a directory's schema information in a special entry in the root DN. You
use the directory root subschemaSubentry attribute to access this information.

The following ColdFusion query shows how to get and display the directory schema. It
displays information from the schema’s object class and attribute type definitions. For
object classes, it displays the class name, superior class, required attribute types, and
optional attribute types. For attribute types, it displays the type name, type description,
and whether the type is single- or multivalued.
514 Chapter 23 Managing LDAP Directories

The example does not display all the information in the schema. For example, it does not
display the matching rules. It also does not display the object class IDs, attribute type
IDs, attribute type syntax IDs, or the object class descriptions. (The object class
description values are all “Standard Object Class.”)

Note: To be able to view the schema for an LDAP server, the server must support LDAP
v3.

This example does not work on iPlanet Directory Server 5.0. It does work on a 4.x server.

To view the schema for an LDAP directory:

1 Create a new file that looks like the following:
<html>
<head>

<title>LDAP Schema</title>
</head>

<body>
<!--- Start at Root DSE to get the subschemaSubentry attribute --->
<cfldap

name="EntryList"
server="ldap.mycorp.com"
action="query"
attributes="subschemaSubentry"
scope="base"
start="">

<!--- Use the DN from the subschemaSubEntry attribute to get the schema --->
<cfldap

name="EntryList2"
server="ldap.mycorp.com"
action="query"
attributes="objectclasses, attributetypes"
scope="base"
filter="objectclass=*"
start=#entryList.subschemaSubentry#>

<!--- Only one record is returned, so query loop is not required --->
<h2>Object Classes</h2>
<table border="1">

<tr>
<th>Name</th>
<th>Superior class</th>
<th>Must have</th>
<th>May have</th>

</tr>
<cfloop index = "thisElement" list = #Entrylist2.objectclasses#>

<cfscript>
thiselement = Trim(thisElement);
nameloc = Find("NAME", thisElement);
descloc = Find("DESC", thisElement);
suploc = Find("SUP", thisElement);
mustloc = Find("MUST", thisElement);
mayloc = Find("MAY", thisElement);
endloc = Len(thisElement);
Advanced topics 515

</cfscript>
<tr>

<td><cfoutput>#Mid(thisElement, nameloc+6, descloc-nameloc-8)#
</cfoutput></td>

<cfif #suploc# NEQ 0>
<td><cfoutput>#Mid(thisElement, suploc+5, mustloc-suploc-7)#
</cfoutput></td>

<cfelse>
<td>NONE</td>

</cfif>
<cfif #mayloc# NEQ 0>

<td><cfoutput>#Replace(Mid(thisElement, mustloc+6,
mayloc-mustloc-9), " $ ", ", ", "all")#</cfoutput></td>

<td><cfoutput>#Replace(Mid(thisElement, mayloc+5, endloc-mayloc-8),
" $ ", ", ", "all")#</cfoutput></td>

<cfelse>
<td><cfoutput>#Replace(Mid(thisElement, mustloc+6,

endloc-mustloc-9), " $ ", ", ", "all")#</cfoutput></td>
<td>NONE</td>

</cfif>
</tr>

</cfloop>
</table>

<h2>Attribute Types</h2>
<table border="1" >

<tr>
<th>Name</th>
<th>Description</th>
<th>multivalued?</th>

</tr>
<cfloop index = "thisElement"

list = #ReplaceNoCase(EntryList2.attributeTypes, ", alias", "
 Alias",
"all")# delimiters = ",">
<cfscript>

thiselement = Trim(thisElement);
nameloc = Find("NAME", thisElement);
descloc = Find("DESC", thisElement);
syntaxloc = Find("SYNTAX", thisElement);
singleloc = Find("SINGLE", thisElement);
endloc = Len(thisElement);

</cfscript>
<tr>

<td><cfoutput>#Mid(thisElement, nameloc+6, descloc-nameloc-8)#
</cfoutput></td>

<td><cfoutput>#Mid(thisElement, descloc+6, syntaxloc-descloc-8)#
</cfoutput></td>

<cfif #singleloc# EQ 0>
 <td><cfoutput>Yes</cfoutput></td>

<cfelse>
 <td><cfoutput>No</cfoutput></td>

</cfif>
</tr>

</cfloop>
</table>
516 Chapter 23 Managing LDAP Directories

</body>
</html>

2 Change the server from ldap.mycorp.com to your LDAP server. You might also need
to specify a user ID and password in the cfldap tag.

3 Save the template as ldapschema.cfm in myapps under your web root directory and
view it in your browser.

Reviewing the code

The following table describes the code and its function:

Code Description

<cfldap
name="EntryList"
server="ldap.mycorp.com"
action="query"
attributes="subschemaSubentry"
scope="base"
start="">

Gets the value of the
subschemaSubentry attribute from the
root of the directory server. The value is
the DN of the schema.

<cfldap
name="EntryList2"
server="ldap.mycorp.com"
action="query"
attributes="objectclasses,

attributetypes"
scope="base"
filter="objectclass=*"
start=#entryList.subschemaSubentry#>

Uses the schema DN to get the
objectclasses and attributetypes
attributes from the schema.

<h2>Object Classes</h2>
<table border="1">

<tr>
<th>Name</th>
<th>Superior class</th>
<th>Must have</th>
<th>May have</th>

</tr>
<cfloop index = "thisElement" list =

#Entrylist2.objectclasses#>
<cfscript>

thisElement = Trim(thisElement);
nameloc = Find("NAME",

thisElement);
descloc = Find("DESC",

thisElement);
suploc = Find("SUP", thisElement);
mustloc = Find("MUST",

thisElement);
mayloc = Find("MAY", thisElement);
endloc = Len(thisElement);

</cfscript>

Displays the object class name, superior
class, required attributes, and optional
attributes for each object class in a table.

The schema contains the definitions of all
object classes in a comma delimited list,
so the code uses a list type cfloop tag.

The thisElement variable contains the
object class definition. Trim off any
leading or trailing spaces, then use the
class definition field keywords in Find
functions to get the starting locations of
the required fields, including the Object
class ID. (The ID is not displayed.)

Gets the length of the thisElement string
for use in later calculations.
Advanced topics 517

<tr>
<td><cfoutput>#Mid(thisElement,

nameloc+6, descloc-nameloc-8)
#</cfoutput></td>

<cfif #suploc# NEQ 0>
<td><cfoutput>#Mid(thisElement,
suploc+5, mustloc-suploc-7)#
</cfoutput></td>

<cfelse>
<td>NONE</td>

</cfif>
<cfif #mayloc# NEQ 0>
 <td><cfoutput>#Replace

(Mid(thisElement, mustloc+6,
mayloc-mustloc-9), " $ ", ", ",
"all")#</cfoutput></td>

 <td><cfoutput>#Replace
(Mid(thisElement, mayloc+5,
endloc-mayloc-8), " $ ", ", ",
"all")#</cfoutput></td>

<cfelse>
 <td><cfoutput>#Replace

(Mid(thisElement, mustloc+6,
endloc-mustloc-9), " $ ", ", ",
"all")#</cfoutput></td>

 <td>NONE</td>
</cfif>

</tr>
</cfloop>

</table>

Displays the field values. Uses the Mid
function to extract individual field values
from the thisElement string.

The top object class does not have a
superior class entry. Handles this special
case by testing the suploc location
variable. If the value is not 0, handles
normally, otherwise, output "NONE".

There might not be any optional
attributes. Handles this case similarly to
the superior class. The calculation of the
location of required attributes uses the
location of the optional attributes if the
field exists; otherwise, uses the end of the
object class definition string.

Code Description
518 Chapter 23 Managing LDAP Directories

Referrals
An LDAP database can be distributed over multiple servers. If the requested information
is not on the current server, the LDAP v3 standard provides a mechanism for the server
to return a referral to the client that informs the client of an alternate server. (This feature
is also included in some LDAP v2-compliant servers.)

ColdFusion can handle referrals automatically. If you specify a nonzero referral attribute
in the cfldap tag, ColdFusion sends the request to the server specified in the referral.

The referral attribute value specifies the number of referrals allowed for the request. For
example, if the referral attribute is 1, and server A sends a referral to server B, which
then sends a referral to server C, ColdFusion returns an error. If the referral attribute is
2, and server C has the information, the LDAP request succeeds. The value to use

<h2>Attribute Types</h2>
<table border="1" >

<tr>
<th>Name</th>
<th>Description</th>
<th>Multivalued?</th>

</tr>
<cfloop index = "thisElement" list =

 #ReplaceNoCase(attributeTypes, ",
 alias", "
 Alias", "all")#
 delimiters = ",">
<cfscript>
 thiselement = Trim(thisElement);
 nameloc = Find("NAME",

thisElement);
 descloc = Find("DESC",

thisElement);
 syntaxloc = Find("SYNTAX",

thisElement);
 singleloc = Find("SINGLE",

thisElement);
 endloc = Len(thisElement);
</cfscript>

<tr>
<td><cfoutput>#Mid(thisElement,

nameloc+6, descloc-nameloc-8)#
</cfoutput></td>

<td><cfoutput>#Mid(thisElement,
descloc+6, syntaxloc-descloc-8)
#</cfoutput></td>

<cfif #singleloc# EQ 0>
 <td><cfoutput>Yes</cfoutput>
</td>

<cfelse>
 <td><cfoutput>No</cfoutput>
</td>

</cfif>
</tr>

</cfloop>
</table>
</cfloop>

Does the same types of calculations for
the attribute types as for the object
classes.

The attribute type field can contain the
text ", alias for....". This text includes a
comma, which also delimits attribute
entries. Use the ReplaceNoCase function to
replace any comma that precedes the
word "alias" with an HTML
 tag.

The attribute definition includes a numeric
syntax identifier, which the code does not
display, but uses its location in calculating
the locations of the other fields.

Code Description
Advanced topics 519

depends on the topology of the distributed LDAP directory, the importance of response
speed, and the value of response completeness.

When ColdFusion follows a referral, the rebind attribute specifies whether ColdFusion
uses the cfldap tag login information in the request to the new server. The default, No,
sends an anonymous login to the server.

Managing LDAP security
When you consider how to implement LDAP security, you must consider server security
and application security.

Server security

The cfldap tag supports secure socket layer (SSL) v2, security. This security provides
certificate-based validation of the LDAP server. It also encrypts data transferred between
the ColdFusion Server and the LDAP server, including the user password, and ensures
the integrity of data passed between the servers.

The LDAP server sends a certificate that is securely “signed” by a trusted authority and
identifies (authenticates) the sender. The ColdFusion server uses the certificate to ensure
that the server is valid. The ColdFusion server does not send the LDAP server a
certificate, and you must use the cfldap tag username and password attributes to
authenticate yourself to the LDAP server.

To use security, first ensure that the LDAP server supports SSL v3 security.

Specify the cfldap tag secure attribute as follows:

secure = "cfssl_basic"

For example:

<cfldap action="modify"
modifyType="add"
atributes="cn=Lizzie"
dn="uid=lborden, ou=People, o=Airius.com"
server=#myServer#
username=#myUserName#
password=#myPassword#
secure="cfssl_basic"
port=636>

The port attribute specifies the server port used for secure LDAP communications,
which is 636 by default. If you do not specify a port, ColdFusion attempts to connect to
the default, nonsecure, LDAP port 389.

Application security

To ensure application security, you must prevent outsiders from gaining access to the
passwords that you use in cfldap tags. The best way to do this is to use variables for your
username and password attributes. You can set these variables on one encrypted
application page. For more information on securing applications, see Chapter 16,
“Securing Applications” on page 347.
520 Chapter 23 Managing LDAP Directories

CHAPTER 24

Building a Search Interface
You can provide a full-text search capability for documents and data sources on a
ColdFusion site by enabling the Verity search engine.

This chapter describes how to build a Verity search interface with which users can
perform powerful searches on your application. It also describes how to index your
documents and data sources so that users can search them.

Contents

• About Verity .. 522

• Creating a search tool for ColdFusion applications .. 528

• Using the cfsearch tag .. 542

• Working with record sets ... 545
521

About Verity
To efficiently search through paragraphs of text or files of varying types, you need
full-text search capabilities. ColdFusion includes the Verity search engine, which provides
full-text indexing and searching.

The Verity engine performs searches against collections, not against the actual
documents. A collection is a special database created by Verity that contains metadata
that describes the documents that you have indexed. The indexing process examines
documents of various types in a collection and creates a metadata description—the
index—which is specialized for rapid search and retrieval operations.

The ColdFusion implementation of Verity supports collections of the following basic
data types:
• Text files such as HTML pages and CFML pages
• Binary documents (see “Supported file types” on page 523)
• Record sets returned from cfquery, cfldap, and cfpop queries

You can build collections from individual documents or from an entire directory tree.
Collections can be stored anywhere, so you have much flexibility in accessing indexed
data.

In your ColdFusion application, you can search multiple collections, each of which can
focus on a specific group of documents or queries, according to subject, document type,
location, or any other logical grouping. Because you can perform searches against
multiple collections, you have substantial flexibility in designing your search interface.

Using Verity with ColdFusion
Here are some ways to use Verity with ColdFusion:
• Index your website and provide a generalized search mechanism, such as a form

interface, for executing searches.
• Index specific directories containing documents for subject-based searching.
• Index cfquery record sets, giving users the ability to search against the data. Because

collections contain data optimized for retrieval, this method is much faster than
performing multiple database queries to return the same data.

• Index cfldap and cfpop query results.
• Manage and search collections generated outside of ColdFusion using native Verity

tools. This additional capability requires only that the full path to the collection be
specified in the index and search commands.

• Index e-mail generated by ColdFusion application pages and create a searching
mechanism for the indexed messages.

• Build collections of inventory data and make those collections available for searching
from your ColdFusion application pages.

• Support international users in a range of languages using the cfindex, cfcollection,
and cfsearch tags.
522 Chapter 24 Building a Search Interface

Advantages of using Verity
Verity can index the output from queries so that you or a user can search against the
record sets. Searching query results has a clear advantage over using SQL to search a
database directly in speed of execution because metadata from the record sets are stored
in a Verity index that is optimized for searching.

Performing a Verity search has the following advantages over other search methods:
• You can reduce the programming overhead of query constructs by allowing users to

construct their own queries and execute them directly. You need only be concerned
with presenting the output to the client web browser.

• Verity can index database text fields, such as notes and product descriptions, that
cannot be effectively indexed by native database tools.

• When indexing collections containing documents in formats such as Adobe Acrobat
(PDF) and Microsoft Word, Verity scans for the document title (if one was entered),
in addition to the document text, and displays the title in the search results list.

• When Verity indexes web pages, it can return the URL for each document. This is a
valuable document management feature.

Supported file types
The ColdFusion Verity implementation supports a wide array of file and document
types. As a result, you can index web pages, ColdFusion applications, and many binary
document types and produce search results that include summaries of these documents.

To support multiple WYSIWYG document types, Verity bundles the KeyView Filter Kit.
The KeyView Filter Kit includes document filters that support the indexing and viewing
of more than 45 native document formats. Numerous popular document suites and
formats are supported, including Microsoft Office 95, 97, and 2000, Corel WordPerfect,
Microsoft Word, Microsoft Excel, Lotus AMI Pro, and Lotus 1-2-3.

The Verity KeyView filters support the following formats:

Word processing/text formats

• Applix Words (v4.2, 4.3, 4.4, 4.41)
• ASCII Text (All versions)
• ANSI Text (All versions)
• Folio Flat File (v3.1)
• HTML (Verity Zone Filter)
• Lotus AmiPro (v2.3)
• Lotus Ami Professional Write Plus (All versions)
• Lotus Word Pro (v96, 97, R9)
• Maker Interchange Format (MIF) v5.5
• Microsoft RTF (All versions)
• Microsoft Word (v2, 6, 95, 97, 2000)
• Microsoft Word Mac (v4, 5, 6, 98)
• Microsoft Word PC (v4.,5, 6)
• Microsoft Works (v1.0, 2.0, 3.0, 4.0)
About Verity 523

• Microsoft Write (v1.0, 2.0, 3.0)
• PDF (Verity PDF Filter)
• Text files (Verity Text Filter)
• Unicode Text (All versions)
• WordPerfect (v5.x, 6, 7, 8)
• WordPerfect Mac (v2, 3)
• XyWrite (v4.12)

Spreadsheet formats

• Applix Spreadsheets (v4.3, 4.4)
• Corel QuattroPro (v7, 8)
• Lotus 1-2-3 (v2, 3, 4, 5, 96, 97, R9)
• Microsoft Excel (v3, 4, 5, 96, 97, 2000)
• Microsoft Excel Mac (98)
• Microsoft Works spreadsheet (v1.0, 2.0, 3.0, 4.0)

Presentation formats

• Applix Presents (v4.3, 4.4)
• Corel Presentations (v7.0, 8.0)
• Lotus Freelance (v96, 97, R9)
• Microsoft PowerPoint (v4.0, 95, 97, 2000)
• Microsoft PowerPoint Mac (98)

Picture formats

• AMI Draw Graphics (SDW)
• Applix Graphics v4.3, 4.4
• Fax Systems (TIFF CCITT) Groups 3 & 4
• Computer Graphics Metafile (CGM)
• Corel Draw CDR (TIFF Header)
• DCX Fax
• Encapsulated PostScript (EPS)
• Enhanced Metafile (EMF)
• JPEG File Interchange Format
• Lotus Pic (PIC)
• Mac PICT (raster content)
• MacPaint (MAC)
• Microsoft Excel Charts
• Microsoft Windows Animated Cursor
• Microsoft Windows Bitmap (BMP)
• Microsoft Windows Cursor/Icon
• Microsoft Windows Metafile (WMF)
• PC PaintBrush (PCX)
• Portable Network Graphics (PNG)
524 Chapter 24 Building a Search Interface

• Sun Raster SGI RGB
• Truevision Targa
• TIFF
• WordPerfect Graphics (WPG) v1, 2

Multimedia formats

• Audio Interchange File Format (AIFF)
• Microsoft Sound (WAV)
• MIDI (MID)
• MPEG 1 Video (MPG)
• MPEG 2 Audio
• NeXT/Sun Audio (AU)
• QuickTime Movie v2.0
• Video for Windows v2.1
About Verity 525

Support for international languages
ColdFusion supports Verity Locales in European and Asian languages. For European
languages, ColdFusion uses LinguistX™ technology from Inxight; for Asian languages,
ColdFusion uses ICU (IBM® Classes for Unicode) technology. For more information
about installing Verity Locales, see Installing ColdFusion MX.

The default language for Verity collections is English. To index data in another supported
language, select it from the drop-down list when you create a collection with the
ColdFusion Administrator. In CFML, the cfcollection, cfindex, and cfsearch tags have
an optional language attribute that you use to specify the language of the collection that
you are searching. If you do not specify a language in these tags, ColdFusion checks the
neo-verity.xml file for the collection’s language. If this is defined, ColdFusion uses that
language.

Use the following table to find the correct value for the language attribute for your
collection; for example, the following code creates a collection for simplified Chinese:

<cfcollection action = "create" collection = "lei_01"
 path = "c:\cfusionmx\verity\collections"
 language = "simplified_chinese">

The following table lists the languages names and attributes that ColdFusion supports:

Language Language attribute Localization technology

Arabic arabic ICU

Chinese (simplified) simplified_chinese ICU

Chinese (traditional) traditional_chinese ICU

Czech czech ICU

Danish danish LinguistX

Dutch dutch LinguistX

English english LinguistX

Finnish finnish LinguistX

French french LinguistX

German german LinguistX

Greek greek ICU

Hebrew hebrew ICU

Hungarian hungarian ICU

Italian italian LinguistX

Japanese japanese ICU

Korean korean ICU

Norwegian norwegian LinguistX

Norwegian (Bokmal) bokmal LinguistX

Norwegian (Nynorsk) nynorsk LinguistX
526 Chapter 24 Building a Search Interface

You can register collections in the Administrator or by creating a collection with the
cfcollection tag. If you register a given collection with ColdFusion and you specify a
language attribute, then you do not have to specify the language attribute when using
cfindex and cfsearch for that collection. If you do not register a given collection with
ColdFusion, the language defaults to English, unless you specify it in the language
attribute for the cfindex and cfsearch tags for that collection.

Polish polish ICU

Portuguese portuguese LinguistX

Russian russian ICU

Spanish spanish LinguistX

Swedish swedish LinguistX

Turkish turkish ICU

Language Language attribute Localization technology
About Verity 527

Creating a search tool for ColdFusion applications
There are three main tasks in creating a search tool for your ColdFusion application:

1 Create a collection.

2 Index the collection.

3 Design a search interface.

You can perform each task programmatically—that is, by writing CFML code.
Alternatively, you can use the ColdFusion Administrator to create and index the
collection. Also, ColdFusion Studio has a Verity Wizard that generates ColdFusion pages
that index the collection and design a search interface. The following table summarizes
the steps and available methods for creating the search tool:

This chapter presents the non-code methods for developing a search tool, followed by
code examples that perform the same task. If you have ColdFusion Studio and access to
the ColdFusion Administrator, the fastest development method is as follows:

1 Create the collection with the ColdFusion Administrator.

2 Use the Verity Wizard to index the collection and design a search interface.

Creating a collection with the ColdFusion MX Administrator
Use the following procedure to quickly create a collection with the ColdFusion
Administrator:

Step CFML
ColdFusion MX
Administrator Verity Wizard

Creating a collection Yes Yes No

Indexing a collection Yes Yes Yes

Designing a search interface Yes No Yes
528 Chapter 24 Building a Search Interface

To create a collection with the ColdFusion MX Administrator:

1 In the ColdFusion MX Administrator, select Data & Services > Verity Collections.
The Verity Collections page appears:

2 Enter a name for the collection; for example, DemoDocs.

3 Enter a path for the directory location of the new collection; for example,
C:\cfusionmx\verity\collections\.

By default, ColdFusion stores collections in \cf_root\verity\collections\ in Windows
and in /cf_root/verity/collections in UNIX.

Note: This is the location for the collection, not for the files that you will search.

4 (Optional) Select a language other than English for the collection from the Language
drop-down list.

5 Click Create Collection.

The name and full path of the new collection appears in the list of Connected Verity
Collections:

Note: You can map a collection currently available on your network or local disk by
creating a local reference (an alias) for that collection. In this procedure, enter the
collection alias as the collection name, and enter a UNC (Universal Naming Convention)
path to the folder for the collection.
Creating a search tool for ColdFusion applications 529

You have successfully created a collection, DemoDocs, that currently has no data. A
collection becomes populated with data when you index it. For more information, see the
next section, “About indexing a collection” on page 530.

About indexing a collection
A new collection is an empty shell that must be indexed before you search it. The
indexing procedure also populates the collection with data contained in the collection’s
files. Similar to creating a collection, you can index a collection either in the ColdFusion
Administrator or programmatically.

Note: You can index and search against collections created outside of ColdFusion by using
the external attribute of cfindex and cfsearch.

Use the following guidelines to determine which method to use:

The cfcollection tag has the following action attribute values that can fix or improve
your index:
• repair Repairs the internal index files of a collection. This might take a few minutes

for large collections.
• optimize Optimizes a collection. Use this if you notice that your searches on a

collection take longer than previously.

Updating an index

Documents are modified frequently in many user environments. After you index your
documents, any changes that you make are not reflected in subsequent Verity searches
until you reindex the collection. Depending on your environment, you can create a
scheduled task to automatically keep your indexes current. For more information on
scheduled tasks, see Administering ColdFusion MX.

Indexing and building a search interface with the Verity Wizard
If you have ColdFusion Studio, you can use the Verity Wizard to generate a basic search
and index interface. Use the following procedure to quickly create a search application for
a collection. This procedure assumes the following:
• There is an empty Verity collection to hold the indexed data. For details on how to

use the ColdFusion Administrator to create a collection, see “Creating a collection
with the ColdFusion MX Administrator” on page 528.

Use the Administrator Use the cfindex tag

To index document files To index ColdFusion query results

When the collection does not require
frequent updates

When the collection requires frequent updates

To create the collection without writing
any CFML code

To dynamically update a collection from a
ColdFusion application page

To create a collection once When the collection requires updating by others
530 Chapter 24 Building a Search Interface

• A directory contains files of several types, such as text, word processing, spreadsheet,
and HTML. If this directory is within your web_root, then you can view the files
from the web browser.

• Some of these files contain a search target word(s).
• There is an available directory to hold the four ColdFusion pages that the wizard

generates.

To build a search interface using the Verity Wizard:

1 In ColdFusion Studio, select File > New.

2 In the New Document window, click the CFML tab.

3 Double-click the Verity Wizard.

The Verity Application window appears:

4 Enter the following information:

Field Description Example

Title Appears at the top of each generated
ColdFusion page.

Search CF Documentation

Directory Contains the generated ColdFusion pages. The
directory should be under your web_root so that
you can view ColdFusion pages in the web
browser.

web_root\vw_generated
Creating a search tool for ColdFusion applications 531

5 Click Next.

The Select Collection window appears:

6 Enter the following information:

7 Click Next.

The Indexing Settings window appears:

Field Description Example

Collection
Name

The name of the collection you created in the
ColdFusion Administrator (or by using the
cfcollection tag).

DemoDocs

Language The language used to create the collection
(English is the default).

english
532 Chapter 24 Building a Search Interface

8 Enter the following information:

9 Click Finish.

The wizard generates four ColdFusion pages to the directory you specified in step 4,
and displays an output summary:

Note: The file names are in the format pagetitle_Vpagename.cfm, where pagetitle is the
value you specified in step 4 and pagename is SearchForm, SearchResult, OpenFile, or
PathIndexing.

10 Click Close.

The wizard closes and the files open in ColdFusion Studio (you can adjust its size to
display all file tabs).

Field Description Example

Directory Path The directory that contains the
documents to be indexed.

C:\CFusionMX\wwwroot\cfdocs

Recursively
Index
Subdirectories

(Optional) Extends the indexing
operation to all directories below
the selected path.

enabled (default)

File Extensions The type(s) of files to index. Use a
comma to separate multiple file
types.

.htm, .html, .xml

Return URL (Optional) If your documents are
beneath the web_root, enter a URL
that corresponds to the Directory
Path.

http://127.0.0.1:8500/cfdocs/
Creating a search tool for ColdFusion applications 533

11 Browse the SearchForm page in ColdFusion Studio.

Alternatively, you can use the web browser; if you do so, enter an HTTP URL that
corresponds to your SearchForm, such as:
http://127.0.0.1:8500/vw_generated/SearchCFDocumentation_VSearchForm.cfm:

12 Click the Index link at the bottom of the page.

A confirmation message appears when indexing successfully completes.

13 Click the web browser’s back button to return to the search form.

14 Enter your search term(s); for example, Verity AND data source.

Tip: For more information on the Verity search syntax, see “Using Verity Search
Expressions” on page 553.

15 Click Search.

In ColdFusion Studio 4.x, the following compilation error might display:
Invalid parser construct found on line 46 at position 49. ColdFusion was
looking at the following text:'

To correct this error, do the following:

a In ColdFusion Studio, open the SearchResult page in Edit mode; for example,
WizardDocDemo_VSearchResult.cfm.

b In line 46, delete the pound signs that precede the hexadecimal color codes. The
correct code is:
<TR bgcolor="#IIf(CurrentRow Mod 2, DE('FFFFFF'), DE('FFFFCF'))#">

c Save the file.

d Browse the SearchForm page and enter the search target.
534 Chapter 24 Building a Search Interface

Your search results appear:

If you entered a Return URL value and your documents are beneath your web_root
(as in this procedure), you can click the link to open them.

You now have Verity search capability for your ColdFusion application. You can edit the
generated ColdFusion pages or copy the generated code into the current pages to better
integrate with your application.

You can create a search interface without using the Verity Wizard. The remainder of this
chapter describes how to write CFML code that is functionally identical to the pages
generated by the wizard. You can write the code using your text editor and preview it in
the web browser.

Creating a ColdFusion search tool programmatically
You can create a Verity search tool for your ColdFusion application in CFML. Although
writing CFML code can take more development time than using these tools, there are
situations in which writing code is the preferred development method.

Creating a collection with the cfcollection tag

The following are cases in which you might prefer using the cfcollection tag rather than
the ColdFusion MX Administrator to create a collection:
• You want your ColdFusion application to be able to create, delete, and maintain a

collection.
• You do not want to expose the ColdFusion MX Administrator to users.
• You want to create indexes on servers that you cannot access directly; for example, if

you use a hosting company.
Creating a search tool for ColdFusion applications 535

When using the cfcollection tag, you can specify the same attributes as in the
ColdFusion MX Administrator:
• action (Optional) The action to perform on the collection (create, delete, repair, or

optimize). The default value for the action attribute is list. For more information,
see CFML Reference.

• collection The name of the new collection, or the name of a collection upon which
you will perform an action.

• path The location for the Verity collection.
• language (Optional) The language used to create the collection (English, by

default).

You can create a collection by directly assigning a value to the name attribute of the
cfcollection tag, as shown in the following code:

<cfcollection action = "create"
collection = "a_new_collection"
path = "c:\CFusionMX\verity\collections\">

If you want your users to be able to dynamically supply the name and location for a new
collection, use the following procedures to create form and action pages.

To create a simple collection form page:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>Collection Creation Input Form</title>
</head>

<body>
<h2>Specify a collection</h2>
<form action="collection_create_action.cfm" method="POST">

<p>Collection name:
<input type="text" name="CollectionName" size="25"></p>

<p>What do you want to do with the collection?</p>
<input type="radio"

name="CollectionAction"
value="Create" checked>Create

<input type="radio"
name="CollectionAction"
value="Repair">Repair

<input type="radio"
name="CollectionAction"
value="Optimize">Optimize

<input type="submit"
name="submit"
value="Submit">

</form>

</body>
</html>
536 Chapter 24 Building a Search Interface

2 Save the file as collection_create_form.cfm in the myapps directory under the web
root directory.

Note: The form will not work until you write an action page for it, which is the next
procedure.

To create a collection action page:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>cfcollection</title>
</head>

<body>
<h2>Collection creation</h2>

<cfoutput>

<cfswitch expression=#Form.collectionaction#>
<cfcase value="Create">

<cfcollection action="Create"
collection="#Form.CollectionName#"
path="c:\cfusionmx\verity\collections\">
<p>The collection #Form.CollectionName# is created.

</cfcase>

<cfcase value="Repair">
<cfcollection action="Repair"
collection="#Form.CollectionName#">
<p>The collection #Form.CollectionName# is repaired.

</cfcase>

<cfcase value="Optimize">
<cfcollection action="Optimize"
collection="#Form.CollectionName#">
<p>The collection #Form.CollectionName# is optimized.

</cfcase>

<cfcase value="Delete">
<cfcollection action="Delete"
collection="#Form.CollectionName#">
<p>Collection deleted.

</cfcase>
</cfswitch>

</cfoutput>
</body>
</html>

2 Save the file as collection_create_action.cfm in the myapps directory under the web
root directory.

3 In the web browser, enter the following URL to display the form page:

http://127.0.0.1/myapps/collection_create_form.cfm
Creating a search tool for ColdFusion applications 537

The following figure shows how the output appears:

4 Enter a collection name; for example, CodeColl.

5 Verify that Create is selected and submit the form.

6 (Optional) In the ColdFusion Administrator, reload the Verity Collections page.

The name and full path of the new collection appears in the list of Connected Verity
Collections.

You successfully created a collection, named CodeColl, that currently has no data. For
information on indexing your collection using CFML, see “Indexing a collection using
the cfindex tag” on page 538.

Indexing a collection using the cfindex tag

You can index a collection in CFML using the cfindex tag, which eliminates the need to
use the ColdFusion MX Administrator. When using this tag, the following attributes
correspond to values entered in the ColdFusion MX Administrator:
• collection The name of the collection. If you are indexing an external collection

(external = "Yes"), you must also specify the fully qualified path for the collection.
• action (Optional) Can be update (the default action), delete, purge, or refresh.
• extensions (Optional) The delimited list of file extensions that ColdFusion uses to

index files if type="Path".
• key (Optional) The path containing the files you are indexing if type="path".
• URLpath (Optional) The URL path for files if type="file" and type="path".

When the collection is searched with cfsearch, the pathname is automatically
prefixed to filenames and returned as the url attribute.

• recurse (Optional) Yes or No. Yes specifies, if type = "Path", that directories below
the path specified in the key attribute are included in the indexing operation.

• language (Optional) The language of the collection. English is the default.

You can use form and action pages similar to the following examples to select and index a
collection.
538 Chapter 24 Building a Search Interface

To select which collection to index:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>Select the Collection to Index</title>
</head>
<body>

<h2>Specify the index you want to build</h2>

<form method="Post" action="collection_index_action.cfm">
<p>Enter the collection you want to index:
<input type="text" name="IndexColl" size="25" maxLength="35"></p>
<p>Enter the location of the files in the collection:
<input type="text" name="IndexDir" size="50" maxLength="100"></p>

<input type="submit" name="submit" value="Index">

</form>

</body>
</html>

2 Save the file as collection_index_form.cfm in the myapps directory under the
web_root.

Note: The form will not work until you write an action page for it, which is the next
procedure.

To use cfindex to index a collection:

1 Create a ColdFusion page with the following content:
<html>
<head>
<title>Creating Index</title>
</head>
<body>
<h2>Indexing Complete</h2>

<cfindex collection="#Form.IndexColl#"
action="refresh"
extensions=".htm, .html, .xls, .txt, .mif, .doc"
key="#Form.IndexDir#"
type="path"
urlpath="#Form.IndexDir#"
recurse="Yes"
language="English">

<cfoutput>
The collection #Form.IndexColl# has been indexed.

</cfoutput>
</body>
</html>

2 Save the file as collection_index_action.cfm.

3 In the web browser, enter the following URL to display the form page:
Creating a search tool for ColdFusion applications 539

http://127.0.0.1/myapps/collection_index_form.cfm

The following figure shows how the output appears:

4 Enter a collection name; for example, CodeColl.

5 Enter a file location; for example, C:\CFusionMX\wwwroot\vw_files.

6 Click Index.

A confirmation message appears upon successful completion.

Note: For information about using the cfindex tag with a database to index a collection, see
“Using database-directed indexing” on page 551.

Indexing a collection with the ColdFusion Administrator

As an alternative to programmatically indexing a collection and to using the Verity
Wizard, use the following procedure to quickly index a collection with the ColdFusion
Administrator.

To use ColdFusion Administrator to index a collection:

1 In the list of Connected Verity Collections, select a collection name; for example,
CodeColl.

2 Click Index to open the index page.

3 For File Extensions, enter the type(s) of files to index. Use a comma to separate
multiple file types; for example, .htm, .html, .xls, .txt, .mif, .doc.

4 Enter (or Browse to) the directory path that contains the files to be indexed; for
example, C:\Inetpub\wwwroot\vw_files.

5 (Optional) To extend the indexing operation to all directories below the selected
path, select the Recursively index subdirectories check box.

6 (Optional) Enter a Return URL to prepend to all indexed files.

This step lets you create a link to any of the files in the index; for example,

http://127.0.0.1/vw_files/.

7 (Optional) Select a language other than English.

For more information, see “Support for international languages” on page 526.
540 Chapter 24 Building a Search Interface

8 Click Submit Changes.

The indexing process. On completion, the Verity Collections page appears.

Note: The time required to generate the index depends on the number and size of the
selected files in the path.

This interface lets you easily build a very specific index based on the file extension and
path information you enter. In most cases, you do not need to change your server file
structures to accommodate the generation of indices.
Creating a search tool for ColdFusion applications 541

Using the cfsearch tag
You use the cfsearch tag to search an indexed collection. Searching a Verity collection is
similar to a standard ColdFusion query: both use a dedicated ColdFusion tag that
requires a name attribute for their searches. The following table compares the two tags:

Note: You receive an error if you attempt to search a collection that has not been indexed.

The following are important attributes for the cfsearch tag:
• name The name of the search query.
• collection The name of the collection(s) being searched. Use a fully qualified path

for an external collection. Separate multiple collections with a comma; for example,
collection = "sprocket_docs,CodeColl".

• criteria The search target (can be dynamic).

Each cfsearch returns variables that provide the following information about the search:
• RecordCount The total number of records returned by the search.
• CurrentRow The current row of the record set being processed by cfoutput.
• RecordsSearched The total number of records in the index that were searched. If no

records were returned in the search, this property returns a null value.

Note: To use cfsearch to search a Verity K2 Server collection, the collection attribute
must be the collection's unique alias name as defined in the k2server.ini and the external
attribute must be “No” (the default). For more detail, see Administering ColdFusion MX.

You can use search form and results pages similar to the following examples to search a
collection.

To create a search form:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>Searching a collection</title>
</head>
<body>
<h2>Searching a collection</h2>

<form method="post" action="collection_search_action.cfm">
<p>Enter search term(s) in the box below. You can use AND, OR, NOT, and
parentheses. Surround an exact phrase with quotation marks.</p>
<p><input type="text" name="criteria" size="50" maxLength="50">

cfquery cfsearch

Searches a data source Searches a collection

Requires name attribute Requires name attribute

Uses SQL statements to specify search
criteria

Uses a criteria attribute to specify search
criteria

Returns variables keyed to database table
field names

Returns a unique set of variables

Uses cfoutput to display query results Uses cfoutput to display search results
542 Chapter 24 Building a Search Interface

</p>
<input type="submit" value="Search">

</form>
</body>
</html>

2 Save the file as collection_search_form.cfm.

Enter a search target word(s) in this form, which passes this as the variable criteria to
the action page, which displays the search results.

To create the results page:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>Search Results</title>
</head>
<body>
<cfsearch

name = "codecoll_results"
collection = "CodeColl"
criteria = "#Form.Criteria#">

<h2>Search Results</h2>
<cfoutput>
Your search returned #codecoll_results.RecordCount# file(s).
</cfoutput>

<cfoutput query="codecoll_results">
<p>
File: #Key#

Document Title (if any): #Title#

Score: #Score#

Summary: #Summary#</p>

</cfoutput>
</body>
</html>

2 Save the file as collection_search_action.cfm.
Using the cfsearch tag 543

3 View collection_search_form.cfm in the web browser:

4 Enter a target word(s) and click Search.

The following figure shows how the output appears:

Note: As part of the indexing process, Verity automatically produces a summary of every
document file or every query record set that gets indexed. The default summary selects the
best sentences, based on internal rules, up to a maximum of 500 characters. Every cfsearch
operation returns summary information by default. For more information on this topic, see
“Using Verity Search Expressions” on page 553.
544 Chapter 24 Building a Search Interface

Working with record sets
The cfquery, cfldap, and cfpop tags return the results of a database query in a record set.
In some cases, you might want to search the record set. This section describes the reasons
and procedures for indexing the results of database, LDAP, and pop queries. It also
describes how a database can direct the indexing process, using different values for the
type attribute of the cfindex tag.

Indexing database record sets
The following are the steps to perform a Verity search on record sets:

1 Write a query to generate a record set.

2 Index the record set.

3 Search the record set.

Performing searches against a Verity collection rather than using cfquery provides faster
access, because the Verity collection indexes the database. Use this technique instead of
cfquery in the following cases:
• You want to index textual data. You can search Verity collections containing textual

data much more efficiently with a Verity search than with a SQL query.
• You want to give your users access to data without interacting directly with the data

source itself.
• You want to improve the speed of queries.
• You want your users to run queries but not update database tables.

Indexing the record set from a ColdFusion query involves an extra step not required
when you index documents. You must code the query and output parameters, and then
use the cfindex tag to index the record set from a cfquery, cfldap, or cfpop query.

You write a cfquery that retrieves the data to index, then you pass this information to a
cfindex tag, which populates the collection. The cfindex tag contains the following
attributes that correspond to the data source:

Using the cfindex tag on large custom query data can cause a “Java out of memory error”
or lead to excessive disk use on your computer. Because ColdFusion reads custom queries
into memory, if the query size is larger than your physical memory, then paging of
physical memory to disk occurs. The size of physical memory used is the smaller of the
actual physical memory on your computer and the Java Virtual Machine (JVM)
masimum memory parameter. You can specify the JVM parameter in the Administrator
or in the configuration file cfsuionmx/runtime/bin/jvm.config by the argument
[-Xmx512m].

The cfindex
attribute Description

key Primary key of the data source table

title Specifies a query column name

body Column(s) that you want to search for the index
Working with record sets 545

The following procedure assumes that you have a Verity collection named CodeColl. For
more information, see “Creating a collection with the cfcollection tag” on page 535. The
following procedure uses the CompanyInfo data source that is installed with ColdFusion.

To index a ColdFusion query:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>Adding Query Data to an Index</title>
</head>
<body>

<!--- retrieve data from the table --->
<cfquery name="getEmps" datasource="CompanyInfo">

SELECT * FROM EMPLOYEE
</cfquery>

<!--- update the collection with the above query results --->
<cfindex

query="getEmps"
collection="CodeColl"
action="Update"
type="Custom"
key="Emp_ID"
title="Emp_ID"
body="Emp_ID,FirstName,LastName,Salary">

<h2>Indexing Complete</h2>

<!--- output the record set --->
<p>Your collection now includes the following items:</p>
<cfoutput query="getEmps">

<p>#Emp_ID# #FirstName# #LastName# #Salary#</p>
</cfoutput>
</body>
</html>

2 Save the file as collection_db_index.cfm in the myapps directory under the web root
directory.
546 Chapter 24 Building a Search Interface

3 Open the file in the web browser to index the collection.

The resulting record set appears:

Using the cfindex tag for indexing tabular data is similar to indexing documents, with
the following exceptions:
• You set the type attribute to custom when indexing tabular data.
• You refer to column names from the cfquery in the body attribute.

To search and display database records:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>Searching a collection</title>
</head>
<body>

<h2>Searching a collection</h2>

<form method="post" action="collection_db_results.cfm">
<p>Collection name: <input type="text" name="collname" size="30"

maxLength="30"></p>

<p>Enter search term(s) in the box below. You can use AND, OR, NOT,
and parentheses. Surround an exact phrase with quotation marks.</p>
<p><input type="text" name="criteria" size="50" maxLength="50">
</p>
<p><input type="submit" value="Search"></p>

</form>

</body>
</html>
Working with record sets 547

2 Save the file as collection_db_search_form.cfm in the myapps directory under the
web_root.
This file is similar to collection_search_form.cfm, except the form uses
collection_db_results.cfm, which you create in the next step, as its action page.

3 Create another ColdFusion page with the following content:
<html>
<head>
<title>Search Results</title>
</head>

<body>

<cfsearch
 collection="#Form.collname#"
 name="getEmps"
 criteria="#Form.Criteria#">

<!--- output the record set --->
<cfoutput>
Your search returned #getEmps.RecordCount# file(s).
</cfoutput>

<cfoutput query="getEmps">
<p><table>
<tr><td>Title: </td><td>#Title#</td></tr>
<tr><td>Score: </td><td>#Score#</td></tr>
<tr><td>Key: </td><td>#Key#</td></tr>
<tr><td>Summary: </td><td>#Summary#</td></tr>
<tr><td>Custom 1:</td><td>#Custom1#</td></tr>
<tr><td>Column list: </td><td>#ColumnList#</td></tr>

</table></p>

</cfoutput>

</body>
</html>

4 Save the file as collection_db_results.cfm in the myapps directory under the
web_root.

5 View collection_db_search_form.cfm in the web browser and enter the name of the
collection and search terms; for example, search the CodeColl collection for lightner
or crooks.
548 Chapter 24 Building a Search Interface

The following figure shows how the output appears:

Indexing cfldap query results
The widespread use of the Lightweight Directory Access Protocol (LDAP) to build
searchable directory structures, internally and across the web, gives you opportunities to
add value to the sites that you create. You can index contact information or other data
from an LDAP-accessible server and allow users to search it.

When creating an index from an LDAP query, remember the following considerations:
• Because LDAP structures vary greatly, you must know the server’s directory schema

and the exact name of every LDAP attribute that you intend to use in a query.
• The records on an LDAP server can be subject to frequent change, so re-index the

collection before processing a search request.

In the following example, the search criterion is records with a telephone number in the
617 area code. Generally, LDAP servers use the Distinguished Name (dn) attribute as the
unique identifier for each record so that attribute is used as the key value for the index.

<!--- Run the LDAP query --->
<cfldap name="OrgList"

server="myserver"
action="query"
attributes="o, telephonenumber, dn, mail"
scope="onelevel"
filter="(|(O=a*) (O=b*))"
sort="o"
Working with record sets 549

start="c=US">

<!--- Output query record set --->
<cfoutput query="OrgList">

DN: #dn#

O: #o#

TELEPHONENUMBER: #telephonenumber#

MAIL: #mail#

=============================

</cfoutput>

<!--- Index the record set --->
<cfindex action="update"

collection="ldap_query"
key="dn"
type="custom"
title="o"
query="OrgList"
body="telephonenumber">

<!--- Search the collection --->
<!--- Use the wildcard * to contain the search string --->
<cfsearch collection="ldap_query"

name="s_ldap"
criteria="*617*">

<!--- Output returned records --->
<cfoutput query="s_ldap">

#Key#, #Title#, #Body#

</cfoutput>

Indexing cfpop query results
The contents of mail servers are generally volatile; specifically, the message number is
reset as messages are added and deleted. To avoid mismatches between the unique
message number identifiers on the server and in the Verity collection, you must re-index
the collection before processing a search.

As with the other query types, you must provide a unique value for the key attribute and
enter the data fields to index in the body attribute.

The following example updates the pop_query collection with the current mail for user1,
and searches and returns the message number and subject line for all messages containing
the word action:

<!--- Run POP query --->
<cfpop action="getall"

name="p_messages"
server="mail.company.com"
userName="user1"
password="user1">

<!--- Output POP query record set --->
<cfoutput query="p_messages">

#messagenumber#

#from#

550 Chapter 24 Building a Search Interface

#to#

#subject#

#body#

<hr>
</cfoutput>

<!--- Index record set --->
<cfindex action="update"

collection="pop_query"
key="messagenumber"
type="custom"
title="subject"
query="p_messages"
body="body">

<!--- Search messages for the word "action" --->
<cfsearch collection="pop_query"

name="s_messages"
criteria="action">

<!--- Output search record set --->
<cfoutput query="s_messages">

#key#, #title#

</cfoutput>

Using database-directed indexing
You can use the cfindex tag with a database that contains information on how to
construct, or populate, the index. The cfindex tag has a type attribute, which can have
custom, file, or path as its value. When type=custom, ColdFusion populates a collection
with the contents of the record set. When type=file or type=custom, the record set
becomes the input to perform any action—as defined by the action attribute—that uses
the key attribute as input for filenames or filepaths.

The following figure shows a database that you can use to populate a collection:
Working with record sets 551

The following code shows how to populate a collection named snippets with files that are
specified in the description column of the database:

<html>
<head>

<title>Database-directed index population</title>
</head>

<body>

<cfquery name="bookquery"
 datasource="book">
 SELECT * FROM book where bookid='file'
 </cfquery>

<cfoutput query="bookquery">
 #url#,#description#

<cfindex collection="snippets" action="update" type="file" query="bookquery"
key="description" urlpath="url">

</cfoutput>
</body>
</html>

Use the following code to search the snippets collection and display the results:

<cfsearch name="mySearch" collection="snippets" criteria="*.,.*">
<cfdump var="#mySearch#">

The following code shows how to populate the snippets collection with paths that are
specified in the description column of the database:

<html>
<cfquery name="bookquery"
 datasource="book">
 SELECT * FROM book where bookid='path1' or bookid='path2'
 </cfquery>

<cfoutput query="bookquery">
 #url#,#description#

<cfindex collection="snippets" action="update" type="path" query="bookquery"

key="description" urlpath="url" >

</cfoutput>
552 Chapter 24 Building a Search Interface

CHAPTER 25

Using Verity Search Expressions
This chapter describes Verity search expressions and how you can refine your searches to
yield the most accurate results.

Contents

• About Verity query types ... 554

• Using simple queries .. 555

• Using explicit queries... 558

• Composing search expressions ... 562

• Refining your searches with zones and fields .. 573
553

About Verity query types
When you search a Verity collection, you can use either a simple or explicit query. The
following table compares the two types:

The query type determines whether the search words that you enter are stemmed, and
whether the retrieved words contribute to relevance-ranked scoring. Both of these
conditions occur by default in simple queries. For more information on the STEM
operator and MANY modifier, see “Stemming in simple queries” on page 555.

Note: Operators and modifiers are formatted as uppercase letters in this chapter solely to
enhance legibility. They might be all lowercase or uppercase.

Query type Content
Use of operators
and modifiers CFML example

Simple One or more
words

Uses STEM operator
and MANY modifier,
by default

<cfsearch name = "band_search"
collection="bbb"
type = "simple"
criteria="film">

Explicit Words,
operators,
modifiers

Must be specified <cfsearch name = "my_search"
collection="bbb"
type = "explicit"

criteria="<WILDCARD>'sl[iau]m'">
554 Chapter 25 Using Verity Search Expressions

Using simple queries
The simple query is the default query type and is appropriate for the vast majority of
searches. When entering text on a search form, you perform a simple query by entering a
word or comma-delimited strings, with optional wildcard characters. Verity treats each
comma as a logical OR. If you omit the commas, Verity treats the expression as a phrase.

Caution: Many web search engines assume a logical AND for multiple word searches, and
search for a phrase only if you use quotation marks. Because Verity treats multiple word
searches differently, it might help your users if you provide examples on your search page or
a brief explanation of how to search.

The following table shows examples of simple searches:

The operators AND and OR, and the modifier NOT, do not require angle brackets (<>).
Operators typically require angle brackets and are used in explicit queries. For more
information about operators and modifiers, see “Operators and modifiers,” on page 563.

Stemming in simple queries
By default, Verity interprets words in a simple query as if you entered the STEM operator
(and MANY modifier). The STEM operator searches for words that derive from a
common stem. For example, a search for instructional returns files that contain instruct,
instructs, instructions, and so on.

The STEM operator works on words, not word fragments. A search for instrument
returns documents containing instrument, instruments, instrumental, and
instrumentation, whereas a search for instru does not. (A wildcard search for instru*
returns documents with these words, and also those with instruct, instructional, and so
on.)

Note: The MANY modifier presents the files returned in the search as a list based on a
relevancy score. A file with more occurrences of the search word has a higher score than a
file with fewer occurrences. As a result, the search engine ranks files according to word
density as it searches for the word that you specify, as well as words that have the same
stem. For more information on the MANY modifier, see “Modifiers” on page 572.

Example Search result

low,brass,instrument low or brass or instrument

low brass instrument the phrase, low brass instrument

film film, films, filming, or filmed

filming AND fun film, films, filming, or filmed, and fun

filming OR fun film, films, filming, or filmed, or fun

filming NOT fun film, films, filming, or filmed, but not fun
Using simple queries 555

The following figure shows a basic search interface performing a single word search:

The results of this search show the effects of the STEM operator and MANY modifier:
556 Chapter 25 Using Verity Search Expressions

In CFML, enter your search term(s) in the criteria attribute of the cfsearch tag:

<cfsearch name="search_name"
collection="bbb"
type="simple"

criteria="instructional">

Preventing stemming
When entering text on a search form, you can prevent Verity from implicitly adding the
STEM operator by doing one of the following:
• Perform an explicit query. For more information, see the next section, “Using explicit

queries” on page 558.
• Use the WORD operator. For more information, see “Operators” on page 563.

In CFML, you can prevent stemming by enclosing the double-quoted search term with
single quotes, as follows:

<cfsearch name="search_name"
collection="bbb"
type="simple"

criteria='"instructional"'
Using simple queries 557

Using explicit queries
In an explicit query, the Verity search engine literally interprets your search terms. The
following are two ways to perform an explicit query:
• On a search form, use quotation marks around your search term(s).
• In CFML, use type=explicit in the cfsearch tag.

When you enclose the search term in double quotation marks, Verity does not use the
STEM operator. For example, a search for “instructional”—enclosed in quotation
marks—does not return files that contain instruct, instructs, instructions, and so on
(unless the files also contain instructional). As the following figure shows, this search
retrieves fewer files than a search without quotation marks:

Using AND, OR, and NOT
Verity has many powerful operators and modifiers available for searching (for more
information, see “Operators and modifiers” on page 563). However, users might only use
the most basic operators—AND and OR, and the modifier NOT. The following are a
few important points:
• You can type operators in uppercase or lowercase letters.
• Verity reads operators from left to right. The AND operator takes precedence over

the OR operator.
• Use parentheses to clarify the search. Terms enclosed in parentheses are evaluated

first; innermost parentheses are evaluated first when there are nested parentheses.
558 Chapter 25 Using Verity Search Expressions

• To search for a literal AND, OR, or NOT, enclose the literal term in double
quotation marks; for example:
love “and” marriage.

Note: Although NOT is a modifier, you use it only with the AND and OR operators.
Therefore, it is sometimes casually referred to as an operator.

The following table gives examples of searches and their results:

Using wildcards and special characters
Part of the strength of the Verity search is its use of wildcards and special characters to
refine searches. Wildcard searches are especially useful when you are unsure of the correct
spelling of a term. Special characters help you search for tags in your code.

Searching with wildcards

The following table shows the wildcard characters that you can use to search Verity
collections:

Search term Returns files that contain

doctorate AND nausea both doctorate and nausea

doctorate “and” nausea the phrase doctorate and nausea

“doctorate and nausea” the phrase doctorate and nausea

masters OR doctorate AND
nausea

masters, or the combination of doctorate and nausea

masters OR (doctorate AND
nausea)

masters, or the combination of doctorate and nausea

(masters OR doctorate) AND
nausea

either masters or doctorate, and nausea

masters OR doctorate NOT
nausea

either masters or doctorate, but not nausea

Wildcard Description Example Search result

? Matches any single
alphanumeric character.

apple? apples or applet

* Matches zero or more
alphanumeric characters.
Avoid using the asterisk as
the first character in a search
string. An asterisk is ignored
in a set, ([]) or an alternative
pattern ({}).

app*ed Appleseed, applied, appropriated, and
so on.

[] Matches any one of the
characters in the brackets.
Square brackets indicate an
implied OR.

<WILDCARD> 'sl[iau]m' slim, slam, or slum
Using explicit queries 559

To search for a wildcard character as a literal, place a backslash character before it; for
example:
• To match a question mark or other wildcard character, precede the ? with one

backslash. For example, type the following in a search form: Checkers\?
• To match a literal asterisk, you precede the * with two backslashes, and enclose the

search term with either single or double quotation marks. For example, type the
following in a search form: ’M*’ (or “M*”) The following is the corresponding
CFML code:
<cfsearch name = "quick_search"

collection="bbb"
type = "simple"
criteria="'M*'">

Note: The last line is equivalent to criteria=’”M*”’>.

Searching for special characters

The search engine handles a number of characters in particular ways as the following
table describes:

To search for special characters as literals, precede the following nonalphanumeric
characters with a backslash character (\) in a search string:
• comma (,)
• left parenthesis (
• right parenthesis)
• double quotation mark (")
• backslash (\)

{ } Matches any one of a set of
patterns separated by a
comma,

<WILDCARD>
'hoist{s,ing,ed}'

hoists, hoisting, or hoisted

^ Matches any character not in
the set.

<WILDCARD>'sl[^ia]m' slum, but not slim or slam.

- Specifies a range for a single
character in a set.

<WILDCARD> 'c[a-r]t' cat, cot, but not cut (that is, every word
beginning with c, ending with t, and
containing any single letter from a to r)

Wildcard Description Example Search result

Characters Description

, () [These characters end a text token.

A token is a variable that stores configurable properties. It lets the
administrator or user configure various settings and options.

= > < ! These characters also end a text token. They are terminated by an
associated end character.

' ` < { [! These characters signify the start of a delimited token. They are
terminated by an associated end character.
560 Chapter 25 Using Verity Search Expressions

• left curly brace ({)
• left bracket ([)
• less than sign (<)
• backquote (`)

In addition to the backslash character, you can use paired backquote characters (` `) to
interpret special characters as literals. For example, to search for the wildcard string “a{b”
you can surround the string with backquotes, as follows:

à{b`

To search for a wildcard string that includes the literal backquote character (`) you must
use two backquote characters together and surround the entire string in backquotes:

*̀n`̀ t ̀

You can use paired backquotes or backslashes to escape special characters. There is no
functional difference between the two. For example, you can query for the term: <DDA>
using \<DDA\> or `<DDA> ̀as your search term.
Using explicit queries 561

Composing search expressions
The following rules apply to the composition of search expressions.

Case sensitivity
Verity searches are case-sensitive only when the search term is entered in mixed case. For
example, a search for zeus finds zeus, Zeus, or ZEUS; however, a search for Zeus finds
only Zeus.

To have your application always ignore the case the user types, use the LCase function in
the criteria attribute of cfsearch. The following code converts user input to lowercase,
thereby eliminating case-sensitivity concerns:

<cfsearch name="results"
collection="#form.collname#"
criteria="#LCase(form.criteria)#"
type="#form.type#">

Prefix and infix notation
By default, Verity uses infix notation, in which precedence is implicit in the expression;
for example, the AND operator takes precedence over the OR operator.

You can use prefix notation with any operator except an evidence operator (typically,
STEM, WILDCARD, or WORD; for a description of evidence operators, see “Evidence
operators,” on page 568). In prefix notation, the expression explicitly specifies
precedence. Rather than repeating an operator, you can use prefix notation to list the
operator once and list the search targets in parentheses. For example, the following
expressions are equivalent:
• Moses <NEAR> Larry <NEAR> Jerome <NEAR> Daniel <NEAR> Jacob
• <NEAR>(Moses,Larry,Jerome,Daniel,Jacob)

The following prefix notation example searches first for documents that contain Larry
and Jerome, then for documents that contain Moses:

OR (Moses, AND (Larry,Jerome))

The infix notation equivalent of this is as follows:

Moses OR (Larry AND Jerome)

Commas in expressions
If an expression includes two or more search terms within parentheses, a comma is
required between the elements (whitespace is ignored). The following example searches
for documents that contain any combination of Larry and Jerome together:

AND (Larry, Jerome)
562 Chapter 25 Using Verity Search Expressions

Precedence rules
Expressions are read from left to right. The AND operator takes precedence over the OR
operator; however, terms enclosed in parentheses are evaluated first. When the search
engine encounters nested parentheses, it starts with the innermost term.

Delimiters in expressions
You use angle brackets (< >), double quotation marks ("), and backslashes (\) to delimit
various elements in a search expression, as the following table describes:

Operators and modifiers
You are probably familiar with searches containing AND, OR, and NOT. Verity has
many additional operators and modifiers, of various types, that offer you a high degree of
specificity in setting search parameters.

Operators

An operator represents logic to be applied to a search element. This logic defines the
qualifications that a document must meet to be retrieved. You can use operators to refine
your search or to influence the results in other ways.

For example, you can construct an HTML form for conducting searches. In the form,
you can search for a single term. You can refine the search by limiting the search scope in
a number of ways. Operators are available for limiting a query to a sentence or paragraph,
and you can search words based on proximity.

Ordinarily, you use operators in explicit searches, as follows:

"<operator>search_string"

Example Search result

Moses AND Larry OR Jerome documents that contain Moses and Larry, or Jerome

(Moses AND Larry) OR Jerome (same as above)

Moses AND (Larry OR Jerome) documents that contain Moses and either Larry or
Jerome

Character Usage

< > Left and right angle brackets are reserved for designating operators and
modifiers. They are optional for the AND, OR, and NOT, but required for all
other operators.

" Use double quotation marks in expressions to search for a word that is
otherwise reserved as an operator or modifier, such as AND, OR, and NOT.

\ To include a backslash in a search expression, insert two backslashes for
each backslash character that you want included in the search; for example,
C:\\cfusionmx\\bin.
Composing search expressions 563

The following operator types are available:

The following table shows the operators, according to type, that are available for
conducting searches of ColdFusion Verity collections:

Concept operators

Concept operators combine the meaning of search elements to identify a concept in a
document. Documents retrieved using concept operators are ranked by relevance. The
following table describes each concept operator:

Operator type Purpose

Concept Identifies a concept in a document by combining the meanings of
search elements.

Relational Searches fields in a collection.

Evidence Specifies basic and intelligent word searches.

Proximity Specifies the relative location of words in a document.

Score Manipulates the score returned by a search element. You can set the
score percentage display to four decimal places.

Concept Relational Evidence Proximity Score

ACCRUE < STEM NEAR YESNO

ALL <= WILDCARD NEAR/N PRODUCT

AND = WORD PARAGRAPH SUM

ANY > THESAURUS PHRASE COMPLEMENT

OR >= SOUNDEX SENTENCE

CONTAINS TYPO/N IN

MATCHES

STARTS

ENDS

SUBSTRING

Operator Description

AND Selects documents that contain all the search elements that you specify.

OR Selects documents that show evidence of at least one of the search
elements that you specify.

ACCRUE Selects documents that include at least one of the search elements that
you specify. Documents are ranked based on the number of search
elements found.
564 Chapter 25 Using Verity Search Expressions

Relational operators

Relational operators search document fields (such as AUTHOR) that you defined in the
collection. Documents containing specified field values are returned. Documents
retrieved using relational operators are not ranked by relevance, and you cannot use the
MANY modifier with relational operators.

You use the following operators for numeric and date comparisons:

For example, to search for documents that contain values for 1999 through 2002, you
perform either of the following searches:
• A simple search for 1999,2000,2001,2002
• An explicit search using the = operator: >=1999,<=2002

If a document field named PAGES is defined, you can search for documents that are 5
pages or less by entering PAGES < 5 in your search. Similarly, if a document field named
DATE is defined, you can search for documents dated prior to and including December
31, 1999 by entering DATE <= 12-31-99 in your search.

ALL Selects documents that contain all of the search elements that you specify.
A score of 1.00 is assigned to each retrieved document. ALL and AND
retrieve the same results, but queries using ALL are always assigned a
score of 1.00.

ANY Selects documents that contain at least one of the search elements that
you specify. A score of 1.00 is assigned to each retrieved document. ANY
and OR retrieve the same results, but queries using ANY are always
assigned a score of 1.00.

Operator Description

= Equal

!= Not equal

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

Operator Description
Composing search expressions 565

The following relational operators compare text and match words and parts of words:

For example, assume a document field named SOURCE includes the following values:
• Computer
• Computerworld
• Computer Currents
• PC Computing

Operator Description Example

CONTAINS Selects documents by matching the
word or phrase that you specify with the
values stored in a specific document
field. Documents are selected only if the
search elements specified appear in the
same sequential and contiguous order in
the field value.

• In a document field named
TITLE, to retrieve documents
whose titles contain music,
musical, or musician, search
for TITLE <CONTAINS>
Musi*.

• To retrieve CFML and HTML
pages whose meta tags
contain Framingham as a
content word, search for
KEYWORD <CONTAINS>
Framingham.

MATCHES Selects documents by matching the
query string with values stored in a
specific document field. Documents are
selected only if the search elements
specified match the field value exactly. If
a partial match is found, a document is
not selected. When you use the
MATCHES operator, you specify the
field name to search, and the word,
phrase, or number to locate. You can use
? and * to represent individual and
multiple characters, respectively, within a
string.

See the text immediately after
this table for examples.

STARTS Selects documents by matching the
character string that you specify with the
starting characters of the values stored
in a specific document field.

In a document field named
REPORTER, to retrieve
documents written by Clark,
Clarks, and Clarkson, search for
REPORTER <STARTS> Clark.

ENDS Selects documents by matching the
character string that you specify with the
ending characters of the values stored in
a specific document field.

In a document field named
OFFICER, to retrieve arrest
reports written by Tanner,
Garner, and Milner, search for
OFFICER <ENDS> ner.

SUBSTRING Selects documents by matching the
query string that you specify with any
portion of the strings in a specific
document field.

In a document field named
TITLE, to retrieve documents
whose titles contain words such
as solution, resolution, solve,
and resolve, search for TITLE
<SUBSTRING> sol.
566 Chapter 25 Using Verity Search Expressions

To locate documents whose source is Computer, enter the following:

SOURCE <MATCHES> computer

To locate documents whose source is Computer, Computerworld, and Computer
Currents, enter the following:

SOURCE <MATCHES> computer*

To locate documents whose source is Computer, Computerworld, Computer Currents,
and PC Computing, enter the following:

SOURCE <MATCHES> *comput*

For an example of ColdFusion code that uses the CONTAINS relational operator, see
“Field searches,” on page 574.

You can use the SUBSTRING operator to match a character string with data stored in a
specified data source. In the example described in this section, a data source called
TEST1 contains the table YearPlaceText, which contains three columns: Year, Place, and
Text. Year and Place make up the primary key. The following table shows the TEST1
schema:

The following application page matches records that have 1990 in the TEXT column
and are in the Place Utah. The search operates on the collection that contains the TEXT
column and then narrows further by searching for the string “Utah” in the CF_TITLE
document field. Document fields are defaults defined in every collection corresponding
to the values that you define for URL, TITLE, and KEY in the cfindex tag.

<cfquery name="GetText"
datasource="TEST1">
SELECT Year+Place AS Identifier, text

FROM YearPlaceText
</cfquery>

<cfindex collection="testcollection"
action="Update"
type="Custom"
title="Identifier"
key="Identifier"
body="TEXT"
query="GetText">

<cfsearch name="GetText_Search"
collection="testcollection"
type="Explicit"
criteria="1990 and CF_TITLE <SUBSTRING> Utah">

Year Place Text

1990 Utah Text about Utah 1990

1990 Oregon Text about Oregon 1990

1991 Utah Text about Utah 1991

1991 Oregon Text about Oregon 1991

1992 Utah Text about Utah 1992
Composing search expressions 567

<cfoutput>
Record Counts:

#GetText.RecordCount#

#GetText_Search.RecordCount#

</cfoutput>

Query Results --- Should be 5 rows

<cfoutput query="Gettext">

#Identifier#

</cfoutput>

Search Results -- should be 1 row

<cfoutput query="GetText_Search">

#GetText_Search.TITLE#

</cfoutput>

Evidence operators

Evidence operators let you specify a basic word search or an intelligent word search. A
basic word search finds documents that contain only the word or words specified in the
query. An intelligent word search expands the query terms to create an expanded word
list so that the search returns documents that contain variations of the query terms.

Documents retrieved using evidence operators are not ranked by relevance unless you use
the MANY modifier.

The following table describes the evidence operators:

Operator Description Example

STEM Expands the search to include the
word that you enter and its variations.
The STEM operator is automatically
implied in any simple query.

<STEM>believe retrieves
matches such as “believe,”
“believing,” and “believer”.

WILDCARD Matches wildcard characters included
in search strings. Certain characters
automatically indicate a wildcard
specification, such as apostrophe (*)
and question mark(?).

spam* retrieves matches such
as, spam, spammer, and
spamming.

WORD Performs a basic word search,
selecting documents that include one
or more instances of the specific word
that you enter. The WORD operator is
automatically implied in any SIMPLE
query.

<WORD> logic retrieves logic,
but not variations such as logical
and logician.

THESAURUS Expands the search to include the
word that you enter and its synonyms.
Collections do not have a thesaurus by
default; to use this feature you must
build one.

<THESAURUS> altitude
retrieves documents containing
synonyms of the word altitude,
such as height or elevation.
568 Chapter 25 Using Verity Search Expressions

The following example uses an evidence operator:

<cfsearch name = "quick_search"
collection="bbb"
type = "explicit"
criteria="<WORD>film">

Proximity operators

Proximity operators specify the relative location of specific words in the document. To
retrieve a document, the specified words must be in the same phrase, paragraph, or
sentence. In the case of NEAR and NEAR/N operators, retrieved documents are ranked
by relevance based on the proximity of the specified words. Proximity operators can be
nested; phrases or words can appear within SENTENCE or PARAGRAPH operators,
and SENTENCE operators can appear within PARAGRAPH operators.

The following table describes the proximity operators:

SOUNDEX Expands the search to include the
word that you enter and one or more
words that “sound like,” or whose letter
pattern is similar to, the word specified.
Collections do not have sound-alike
indexes by default; to use this feature
you must build sound-alike indexes.

<SOUNDEX> sale retrieves
words such as sale, sell, seal,
shell, soul, and scale.

TYPO/N Expands the search to include the
word that you enter plus words that are
similar to the query term. This operator
performs “approximate pattern
matching” to identify similar words.
The optional N variable in the operator
name expresses the maximum number
of errors between the query term and a
matched term, a value called the error
distance. If N is not specified, the
default error distance is 2.

<TYPO> swept retrieves kept.

Operator Description Example

NEAR Selects documents containing specified
search terms. The closer the search terms
are to one another within a document, the
higher the document’s score. The
document with the smallest possible
region containing all search terms always
receives the highest score. Documents
whose search terms are not within 1000
words of each other are not selected.

war <NEAR> peace retrieves
documents that contain
stemmed variations of these
words within close proximity
to each other (as defined by
Verity). To control search
proximity, use NEAR/N.

Operator Description Example
Composing search expressions 569

NEAR/N Selects documents containing two or
more search terms within N number of
words of each other, where N is an integer
between 1 and 1024. NEAR/1 searches
for two words that are next to each other.
The closer the search terms are within a
document, the higher the document's
score.

You can specify multiple search terms
using multiple instances of NEAR/N as
long as the value of N is the same.

commute <NEAR/10> bicycle
<NEAR/10> train <NEAR/10>
retrieves documents that
contain stemmed variations of
these words within 10 words
of each other.

PARAGRAPH Selects documents that include all of the
words you specify within the same
paragraph. To search for three or more
words or phrases in a paragraph, you must
use the PARAGRAPH operator between
each word or phrase.

<PARAGRAPH> (mission,
goal, statement) retrieves
documents that contain these
terms within a paragraph.

PHRASE Selects documents that include a phrase
you specify. A phrase is a grouping of two
or more words that occur in a specific
order.

<PHRASE> (mission, oak)
returns documents that
contain the phrase mission
oak.

SENTENCE Selects documents that include all of the
words you specify within the same
sentence.

<SENTENCE> (jazz, musician)
returns documents that
contain these words in the
same sentence.

IN Selects documents that contain specified
values in one or more document zones. A
document zone represents a region of a
document, such as the document’s
summary, date, or body text. To search for
a term only within the one or more zones
that have certain conditions, you qualify
the IN operator with the WHEN operator.

Chang <IN> author searches
document zones named
author for the word Chang.

Operator Description Example
570 Chapter 25 Using Verity Search Expressions

The following example uses a proximity operator:

<cfsearch name = "quick_search"
collection="bbb"
type = "explicit"
criteria="red<near>socks">

For an example using the IN proximity operator to search XML documents , see “Zone
searches,” on page 573.

Score operators

Score operators control how the search engine calculates scores for retrieved documents.
The maximum score that a returned search element can have is 1.000. You can set the
score to display a maximum of four decimal places.

When you use a score operator, the search engine first calculates a separate score for each
search element found in a document, and then performs a mathematical operation on the
individual element scores to arrive at the final score for each document.

The document’s score is available as a result column. You can use the SCORE result
column to get the relevancy score of any document retrieved; for example:

<cfoutput>
#Search1.Title#

Document Score=#Search1.SCORE#

</cfoutput>

The following table describes the score operators:

Operator Description Example

YESNO Forces the score of an element to 1 if
the element’s score is nonzero.

<YESNO>mainframe. If the
retrieval result of the search on
mainframe is 0.75, the YESNO
operator forces the result to 1.
You can use YESNO to avoid
relevance ranking.

PRODUCT Multiplies the scores for the search
elements in each document
matching a query.

<PRODUCT>(computers,
laptops) takes the product of the
resulting scores.

SUM Adds the scores for the search
element in each document matching
a query, up to a maximum value of 1.

<SUM>(computers, laptops)
takes the sum of the resulting
scores.

COMPLEMENT Calculates scores for documents
matching a query by taking the
complement (subtracting from 1) of
the scores for the query’s search
elements. The new score is 1 minus
the search element’s original score.

<COMPLEMENT>computers. If
the search element’s original
score is .785, the
COMPLEMENT operator
recalculates the score as .215.
Composing search expressions 571

Modifiers

You combine modifiers with operators to change the standard behavior of an operator in
some way. The following table describes the available modifiers:

Modifier Description Example

CASE Specifies a case-sensitive search.
Normally, Verity searches are
case-insensitive for search text
entered in all uppercase or all
lowercase, and case-sensitive for
mixed-case search strings.

<CASE>Java OR <CASE>java
retrieves documents that contain
Java or java, but not JAVA.

MANY Counts the density of words,
stemmed variations, or phrases in
a document and produces a
relevance-ranked score for
retrieved documents. Use with the
following operators:

• WORD

• WILDCARD

• STEM

• PHRASE

• SENTENCE

• PARAGRAPH

<PARAGRAPH><MANY>javascript
<AND> vbscript.

You cannot use the MANY
modifier with the following
operators:

• AND

• OR

• ACCRUE

• Relational operators

NOT Excludes documents that contain
the specified word or phrase. Use
only with the AND and OR
operators.

Java <AND> programming <NOT>
coffee retrieves documents that
contain Java and programming,
but not coffee.

ORDER Specifies that the search
elements must occur in the same
order in which you specify them in
the query. Use with the following
operators:

• PARAGRAPH

• SENTENCE

• NEAR/N
Place the ORDER modifier before
any operator.

<ORDER><PARAGRAPH>
("server", "Java") retrieves
documents that contain server
before Java.
572 Chapter 25 Using Verity Search Expressions

Refining your searches with zones and fields
One of the strengths of Verity is its ability to perform full-text searches on documents of
many formats. However, there are often times when you want to restrict a search to
certain portions of a document, to improve search relevance. If a Verity collection
contains some documents about baseball and other documents about caves, then a search
for the word bat might retrieve several irrelevant results.

If the documents are structured documents, you can take advantage of the ability to
search zones and fields. The following are some examples of structured documents:
• Documents created with markup languages (XML, SGML, HTML)
• Internet Message Format documents
• Documents created by many popular word-processing applications

Note: Although your word processor might open with what appears to be a blank page, the
document has many regions such as title, subject, and author. Refer to your application’s
documentation or online help system for how to view a document’s properties.

Zone searches

You can perform zone searches on markup language documents. The Verity zone filter
includes built-in support for HTML and several file formats; for a list of supported file
formats, see “Building a Search Interface” on page 521. Verity searches XML files by
treating the XML tags as zones. When you use the zone filter, the Verity engine builds
zone information into the collection’s full-word index. This index, enhanced with zone
information, permits quick and efficient searches over zones. The zone filter can
automatically define a zone, or you can define it yourself in the style.zon file. You can use
zone searching to limit your search to a particular zone. This can produce more accurate,
but not necessarily faster, search results than searching an entire file.

Note: The contents of a zone cannot be returned in the results list of an application.

Examples

The following examples perform zone searching on XML files. In a list of rock bands,
you could have XML files with tags for the instruments and for comments. In the
following XML file, the word Pete appears in a comment field:

<band.xml>
 <Lead_Guitar>Dan</Lead_Guitar>
 <Rhythm_Guitar>Jake</Rhythm_Guitar>
 <Bass_Guitar>Mike</Bass_Guitar>
 <Drums>Chris</Drums>
 <COMMENT_A>Dan plays guitar, better than Pete.</COMMENT_A>
 <COMMENT_B>Jake plays rhythm guitar.</COMMENT_B>
</band.xml>

The following CFML code shows a search for the word Pete:

<cfsearch name = "band_search"
collection="my_collection"
type = "simple"

criteria=”Pete”>
Refining your searches with zones and fields 573

The above search for Pete returns this XML file because this search target is in the
COMMENT_A field. In contrast, Pete is the lead guitarist in the following XML file:

<band.xml>
 <Lead_Guitar>Pete</Lead_Guitar>
 <Rhythm_Guitar>Roger</Rhythm_Guitar>

<Bass_Guitar>John</Bass_Guitar>
 <Drums>Kenny</Drums>
 <COMMENT_A>Who knows who's better than this band?</COMMENT_A>
 <COMMENT_B>Ticket prices correlated with decibels.</COMMENT_B>
</band.xml>

To retrieve only the files in which Pete is the lead guitarist, perform a zone search using
the IN operator according to the following syntax:

(query) <IN> (zone1, zone2, ...)

Note: As with other operators, IN might be uppercase or lowercase. Unlike AND, OR, or
NOT, you must enclose IN within brackets.

Thus, the following explicit search retrieves files in which Pete is the lead guitarist:

(Pete) <in> Lead_Guitar

This is expressed in CFML as follows:

<cfsearch name = "band_search"
collection="my_collection"
type = "explicit"
criteria="(Pete) <in> Lead_Guitar">

To retrieve files in which Pete plays either lead or rhythm guitar, use the following explicit
search:

(Pete) <in> (Lead_Guitar,Rhythm_Guitar)

This is expressed in CFML as follows:

<cfsearch name = "band_search"
collection="bbb"
type = "explicit"
criteria="(Pete) <in> (Lead_Guitar,Rhythm_Guitar)">

Field searches

Fields are extracted from the document and stored in the collection for retrieval and
searching, and can be returned on a results list. Zones, on the other hand, are merely the
definitions of “regions” of a document for searching purposes, and are not physically
extracted from the document in the same way that fields are extracted.

You must define a region of text as a zone before it can be a field. Therefore, it can be
only a zone, or it can be both a field and a zone. Whether you define a region of text as a
zone only or as both a field and a zone depends on your particular requirements.

A field must be defined in the style file, style.ufl, before you create the collection. To map
zones to fields (to display field data), you must define and add these extra fields to
style.ufl.
574 Chapter 25 Using Verity Search Expressions

You can specify the values for the cfindex attributes TITLE, KEY, URL, and CUSTOM
as document fields for use with relational operators in the criteria attribute. (The
SCORE and SUMMARY attributes are automatically returned by a cfsearch; these
attributes are different for each record of a collection as the search criteria changes.) Text
comparison operators can reference the following document fields:
• cf_title
• cf_key
• cf_url
• cf_custom1
• cf_custom2

To explore how to use document fields to refine a search, consider the following database
table, named Calls. This table has four fields and three records, as the following table
shows:

A Verity search for the word certain returns three records. However, you can use the
document fields to restrict your search; for example, a search to retrieve HomeSite
problems with the word certain in the problem description.

These are the requirements to run this procedure:
• Create and populate the Calls table in a database of your choice
• Create a collection named Training (you can do this in CFML or in the ColdFusion

Administrator).

The following table shows the relationship between the database column and cfindex
attribute:

call_ID Problem_Description Short_Description Product

1 Can't bold text properly
under certain conditions

Bold Problem HomeSite

2 Certain optional
attributes are acting as
required attributes

Attributes Problem ColdFusion

3 Can’t do a File/Open in
certain cases

File Open Problem HomeSite

Database column
The cfindex
attribute Comment

call_ID key The primary key of a database table is often a key
attribute.

Problem_Description body This column is the information to be indexed.

Short_Description title A short description is conceptually equivalent to
a title, as in a running title of a journal article.

Product custom1 This field refines the search.
Refining your searches with zones and fields 575

You begin by selecting all data in a query:

<cfquery name = "Calls" datasource = "MyDSN">
Select * from Calls

</cfquery>

The following code shows the cfindex tag for indexing the collection (the type attribute
is set to custom for tablular data):

<cfindex
query = "Calls"
collection = "training"
action = "UPDATE"
type = "CUSTOM"
title = "Short_Description"
key = "Call_ID"
body = "Problem_Description"
custom1 = "Product">

To perform the refined search for HomeSite problems with the word certain in the
problem description, the cfsearch tag uses the CONTAINS operator in its criteria
attribute:

<cfsearch
collection = "training"
name = "search_calls"
criteria = "certain and CF_CUSTOM1 <CONTAINS> HomeSite">

The following code displays the results of the refined search:

<table border="1" cellspacing="5">
<tr>

<th align="LEFT">KEY</th>
<th align="LEFT">TITLE</th>
<th align="LEFT">CUSTOM1</th>

</tr>

<cfoutput query = "search_calls">
<tr>

<td>#KEY#</td>
<td>#TITLE#</td>
<td>#CUSTOM1#</td>

</tr>
</cfoutput>
</table>

In a browser, the follwing retrieved results appear:
576 Chapter 25 Using Verity Search Expressions

PART V

Requesting and Presenting

Information
This part describes how to dynamically request information from users
and display information on their browsers. It includes information on using
the HTML form tag, CFML cfform tag, and other ColdFusion tags to
request data from users; how to use the cfchart tag to graphically display
data; and how to use the Flash Remoting service to provide information to
Macromedia Flash applications for display.

The following chapters are included:

Retrieving and Formatting Data..579

Building Dynamic Forms.. 607

Charting and Graphing Data... 645

Using the Flash Remoting Service ..673

CHAPTER 26

Retrieving and Formatting Data
This chapter explains how to use HTML forms to control the data displayed by a
dynamic web page. It also describes how to populate an HTML table with query results
and how to use ColdFusion functions to format and manipulate data.

Contents

• Using forms to specify the data to retrieve ... 580

• Working with action pages... 585

• Working with queries and data .. 589

• Returning results to the user .. 593

• Dynamically populating list boxes ... 597

• Creating dynamic check boxes and multiple-selection list boxes........................... 599

• Validating form field data types ... 603
579

Using forms to specify the data to retrieve
In the examples in previous chapters, you retrieved all of the records from a database table
using a SQL query. However, there are many instances when you want to retrieve data
based on certain criteria. For example, you might want to retrieve records for everyone in
a particular department, everyone in a particular town whose last name is Smith, or
books by a certain author.

You can use forms in ColdFusion applications to allow users to specify what data they
retrieve in a query. When you submit a form, you pass the variables to an associated page,
called an action page, where some type of processing takes place.

The following figure shows a form, defined by FormPage.cfm, and its associated action
page, ActionPage.cfm:

Note: Because forms are standard HTML, the syntax and examples that follow provide you
with just enough detail to begin using ColdFusion. For information on using ColdFusion
forms defined by the cfform tag, see Chapter 27, “Building Dynamic Forms” on page 607.

HTML form tag syntax
Use the following syntax for the HTML form tag:

<form action="actionpage.cfm" method="post">
...

</form>

You can override the server request timeout (set on the ColdFusion Administrator Server
Settings page) by adding a RequestTimeout parameter to the action page URL. Requests
that take longer than the specified time are terminated. The following example specifies a
request time-out of two minutes:

<form name="getReportCriteria"
action="runReport.cfm?RequestTimeout=120" method="post">

FormPage.cfm ActionPage.cfm

Attribute Description

action Specifies an action page to which you pass form variables for processing.

method Specifies how the variables are submitted from the browser to the action
page on the server. All ColdFusion forms must be submitted with an attribute
setting of method=“post”.
580 Chapter 26 Retrieving and Formatting Data

Form controls
Within the form, you describe the form controls needed to gather and submit user input.
There are a variety of form controls types available. You select form control input types
based on the type input you want to user to provide.

The following figure shows an example form containing different form controls:

The following table shows the format of form control tags:

Use the following procedure to create the form in the previous figure.

Control Code

Text control <input type="Text" name="ControlName" size="Value" maxlength="Value">

Radio buttons <input type="Radio" name="ControlName" value="Value1">DisplayName1
<input type="Radio" name="ControlName" value="Value2">DisplayName2
<input type="Radio" name="ControlName" value="Value3">DisplayName3

List box <select name="ControlName">
<option value="Value1">DisplayName1
<option value="Value2">DisplayName2
<option value="Value3">DisplayName3

</select>

Check box <input type="Checkbox" name="ControlName" value="Yes|No">Yes

Reset button <input type="Reset" name="ControlName" value="DisplayName">

Submit button <input type="Submit" name="ControlName" value="DisplayName">
Using forms to specify the data to retrieve 581

To create a form:

1 Create a ColdFusion page with the following content:
<html>
<head>
<title>Input form</title>
</head>
<body>
<!--- define the action page in the form tag. The form variables will

pass to this page when the form is submitted --->

<form action="actionpage.cfm" method="post">

<!-- text box -->
<p>
First Name: <input type="Text" name="FirstName" size="20" maxlength="35">

Last Name: <input type="Text" name="LastName" size="20" maxlength="35">

Salary: <input type="Text" name="Salary" size="10" maxlength="10">
</p>

<!-- list box -->
<p>
City
<select name="City">

<option value="Arlington">Arlington
<option value="Boston">Boston
<option value="Cambridge">Cambridge
<option value="Minneapolis">Minneapolis
<option value="Seattle">Seattle

</select>
</p>

<!-- radio buttons -->
<p>
Department:

<input type="radio" name="Department" value="Training">Training

<input type="radio" name="Department" value="Sales">Sales

<input type="radio" name="Department"

value="Marketing">Marketing

</p>

<!-- check box -->
<p>
Contractor? <input type="checkbox" name="Contractor"

value="Yes" checked>Yes
</p>

<!-- reset button -->
<input type="Reset" name="ResetForm" value="Clear Form">
<!-- submit button -->
<input type="Submit" name="SubmitForm" value="Submit">

</form>
</body>
</html>
582 Chapter 26 Retrieving and Formatting Data

2 Save the page as formpage.cfm within the myapps directory under your web root
directory.

3 View the form in a browser.

The form appears in the browser.

Do not click the Submit button yet. Remember that you need an action page in order
to submit values; you create one later in this chapter in “Creating action pages” on
page 586.

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

<form action="actionpage.cfm"
method="post">

Gathers the information from this form using
the Post method, and do something with it on
the page actionpage.cfm.

<input type="Text" name="FirstName"
size="20" maxlength="35">

Creates a text box called FirstName where
users can enter their first name. Makes it 20
characters wide, but allows input of up to 35
characters.

<input type="Text" name="LastName"
size="20" maxlength="35">

Creates a text box called LastName where
users can enter their first name. Makes it 20
characters wide, but allows input of up to 35
characters.

<input type="Text" name="Salary"
size="10" maxlength="10">

Creates a text box called Salary where users
can enter a salary to look for. Makes it 10
characters wide, and allows input of up to 10
characters.

<select name="City">
<option value="Arlington">

Arlington
<option value="Boston">Boston
<option value="Cambridge">

Cambridge
<option value="Minneapolis">

Minneapolis
<option value="Seattle">Seattle

</select>

Creates a drop-down list box named City and
populate it with the values “Arlington,”
“Boston,” “Cambridge,” “Minneapolis,” and
“Seattle.”

<input type="checkbox" name=
"Contractor" value="Yes" checked>Yes

Creates a check box that allows users to
specify whether they want to list employees
who are contractors. Box selected by default.

<input type="Reset"
name="ResetForm"
value="Clear Form">

Creates a reset button to allow users to clear
the form. Puts the text Clear Form on the
button.

<input type="Submit"
name="SubmitForm"
value="Submit">

Creates a submit button to send the values that
users enter to the action page for processing.
Puts the text Submit on the button.
Using forms to specify the data to retrieve 583

Form notes and considerations
When using forms, keep the following guidelines in mind:
• To make the coding process easy to follow, name form controls the same as target

database fields.
• For ease of use, limit radio buttons to between three and five mutually exclusive

options. If you need more options, consider a drop-down list.
• Use list boxes to allow the user to choose from many options or to chose multiple

items from a list.
• All the data that you collect on a form is automatically passed as form variables to the

associated action page.
• Check boxes, radio buttons, and multiple select boxes do not pass to action pages

unless they are selected on a form. If you try to reference these variables on the action
page, you receive an error if they are not present. For information on how to
determine if a variable exists on the action page, see “Testing for a variable's
existence” on page 587.

• You can dynamically populate drop-down lists using query data. For more
information, see “Dynamically populating list boxes” on page 597.
584 Chapter 26 Retrieving and Formatting Data

Working with action pages
A ColdFusion action page is just like any other application page except that you can use
the form variables that are passed to it from an associated form. The following sections
describe how to create effective action pages.

Processing form variables on action pages
The action page gets a form variable for every form control that contains a value when
the form is submitted.

Note: If multiple controls have the same name, one form variable is passed to the action
page with a comma-delimited list of values.

A form variable's name is the name that you assigned to the form control on the form
page. Refer to the form variable by name within tags, functions, and other expressions on
an action page.

Because form variables extend beyond the local page—their scope is the action
page—prefix them with “Form.” to explicitly tell ColdFusion that you are referring to a
form variable. For example, the following code references the LastName form variable for
output on an action page:

<cfoutput>
#Form.LastName#

</cfoutput>

The Form scope also contains a list variable called Form.fieldnames. It contains a list of all
form variables submitted to the action page. If no form variables are passed to the action
page, ColdFusion does not create the Form.fieldnames list.

Dynamically generating SQL statements
As described in previous chapters, you can retrieve a record for every employee in a
database table by composing a query like the following:

<cfquery name="GetEmployees" datasource="CompanyInfo">
SELECT FirstName, LastName, Contract
FROM Employee

</cfquery>

But when you want to return information about employees that matches user search
criteria, you use the SQL WHERE clause with a SQL SELECT statement. When the
WHERE clause is processed, it filters the query data based on the results of the
comparison.

For example, to return employee data for only employees with the last name of Smith,
you build a query that looks like the following:

<cfquery name="GetEmployees" datasource="CompanyInfo">
SELECT FirstName, LastName, Contract
FROM Employee
WHERE LastName = 'Smith'

</cfquery>
Working with action pages 585

However, instead of putting the LastName directly in the SQL WHERE clause, you can
use the text that the user entered in the form for comparison:

<cfquery name="GetEmployees" datasource="CompanyInfo">
SELECT FirstName, LastName, Salary
FROM Employee
WHERE LastName=<cfqueryparam value="#Form.LastName#"

CFSQLType="CF_SQL_VARCHAR">
</cfquery>

For security, this example encapsulates the form variable within the cfqueryparam tag to
ensure that the user passed a valid string value for the LastName. For more information
on using the cfqueryparam tag with queries and on Dynamic SQL, see Chapter 20,
“Accessing and Retrieving Data” on page 433.

Creating action pages
Use the following procedure to create an action page for the page formpage.cfm that you
created in the previous example.

To create an action page for the form:

1 Create a ColdFusion page with the following content:
<html>
<head>
<title>Retrieving Employee Data Based on Criteria from Form</title>
</head>

<body>
<cfquery name="GetEmployees" datasource="CompanyInfo">

SELECT FirstName, LastName, Salary
FROM Employee
WHERE LastName=<cfqueryparam value="#Form.LastName#"

CFSQLType="CF_SQL_VARCHAR">
</cfquery>
<h4>Employee Data Based on Criteria from Form</h4>
<cfoutput query="GetEmployees">
#FirstName#
#LastName#
#Salary#

</cfoutput>

<cfoutput>Contractor: #Form.Contractor#</cfoutput>
</body>
</html>

2 Save the page as actionpage.cfm within the myapps directory.

3 View formpage.cfm in your browser.

4 Enter data, for example, Smith, in the Last Name box and submit the form.

The browser displays a line with the first and last name and salary for each entry in
the database that match the name you typed, followed by a line with the text
“Contractor: Yes”

5 Click Back in your browser to redisplay the form.
586 Chapter 26 Retrieving and Formatting Data

6 Remove the check mark from the check box and submit the form again.

This time an error occurs because the check box does not pass a variable to the action
page. For information on modifying actionpage.cfm to fix the error, see “Testing for a
variable's existence” on page 587.

Reviewing the code

The following table describes the highlighted code and its function:

Testing for a variable's existence
Before relying on a variable’s existence in an application page, you can test to see if it
exists using the ColdFusion IsDefined function. A function is a named procedure that
takes input and operates on it. For example, the IsDefined function determines whether a
variable exists. CFML provides a large number of functions, which are documented in
CFML Reference.

The following code prevents the error in the previous example by checking to see if the
Contractor Form variable exists before using it:

<cfif IsDefined("Form.Contractor")>
<cfoutput>Contractor: #Form.Contractor#</cfoutput>

</cfif>

The argument passed to the IsDefined function must always be enclosed in double
quotation marks. For more information on the IsDefined function, see CFML Reference.

Code Description

<cfquery name="GetEmployees"
datasource="CompanyInfo">

Queries the data source CompanyInfo and names
the query GetEmployees.

SELECT FirstName, LastName, Salary
FROM Employee
WHERE LastName=<cfqueryparam

value="#Form.LastName#"
CFSQLType="CF_SQL_VARCHAR">

Retrieves the FirstName, LastName, and Salary
fields from the Employee table, but only if the value
of the LastName field matches what the user
entered in the LastName text box in the form on
formpage.cfm.

<cfoutput query="GetEmployees"> Displays results of the GetEmployees query.

#FirstName#
#LastName#
#Salary#

Displays the value of the FirstName, LastName,
and Salary fields for a record, starting with the first
record, then goes to the next line. Keeps displaying
the records that match the criteria you specified in
the SELECT statement, followed by a line break,
until you run out of records.

</cfoutput> Closes the cfoutput block.

<cfoutput>Contractor: #Form.Contractor#
</cfoutput>

Displays a blank line followed by the text
Contractor: and the value of the form Contractor
check box.

A more complete example would test to ensure the
existence of the variable and would use the variable
in the query.
Working with action pages 587

If you attempt to evaluate a variable that you did not define, ColdFusion cannot process
the page and displays an error message. To help diagnose such problems, turn on
debugging in the ColdFusion MX Administrator. The Administrator debugging
information shows which variables are being passed to your application pages.

Requiring users to enter values in form fields
One of the limitations of HTML forms is the inability to define input fields as required.
Because this is a particularly important requirement for database applications,
ColdFusion provides a server-side mechanism for requiring users to enter data in fields.

To require entry in an input field, use a hidden field that has a name attribute composed of
the field name and the suffix "_required." For example, to require that the user enter a
value in the FirstName field, use the following syntax:

<input type="hidden" name="FirstName_required">

If the user leaves the FirstName field empty, ColdFusion rejects the form submittal and
returns a message informing the user that the field is required. You can customize the
contents of this error message using the value attribute of the hidden field. For example,
if you want the error message to read “You must enter your first name.” use the following
syntax:

<input type="hidden"
name="FirstName_required"
value="You must enter your first name.">

Form variable notes and considerations
When using form variables, keep the following guidelines in mind:
• A form variable's scope is the action page.
• Prefix form variables with "Form." when referencing them on the action page.
• Surround variable values with pound signs (#) for output.
• Variables for check boxes, radio buttons, and multiple select list boxes only get passed

to the action page if you select an option. Text boxes, passwords, and textareas pass an
empty string if you do not enter text.

• An error occurs if the action page tries to use a variable that was not passed.
• If multiple controls have the same name, one form variable is passed to the action

page with a comma-delimited list of values.
588 Chapter 26 Retrieving and Formatting Data

Working with queries and data
The ability to generate and display query data is one of the most important and flexible
features of ColdFusion. The following sections describe more about using queries and
displaying their results. Some of these tools are effective for presenting any data, not just
query results.

Using HTML tables to display query results
You can use HTML tables to specify how the results of a query appear on a page. To do
so, you put the cfoutput tag inside the table tags. You can also use the HTML th tag to
put column labels in a header row. To create a row in the table for each row in the query
results, put the tr block inside the cfoutput tag.

In addition, you can use CFML functions to format individual pieces of data, such as
dates and numeric values.

To put the query results in a table:

1 Open the ColdFusion page actionpage.cfm in your editor.

2 Modify the page so that it appears as follows:
<html>
<head>
<title>Retrieving Employee Data Based on Criteia from Form</title>
</head>

<body>
<cfquery name="GetEmployees" datasource="CompanyInfo">

SELECT FirstName, LastName, Salary
FROM Employee
WHERE LastName=<cfqueryparam value="#Form.LastName#"

CFSQLType="CF_SQL_VARCHAR">
</cfquery>
<h4>Employee Data Based on Criteria from Form</h4>
<table>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Salary</th>
</tr>
<cfoutput query="GetEmployees">
<tr>
<td>#FirstName#</td>
<td>#LastName#</td>
<td>#Salary#</td>
</tr>
</cfoutput>
</table>

<cfif IsDefined("Form.Contractor")>

<cfoutput>Contractor: #Form.Contractor#</cfoutput>
</cfif>
</body>
</html>
Working with queries and data 589

3 Save the page as actionpage.cfm within the myapps directory.

4 View formpage.cfm in your browser.

5 Enter Smith in the Last Name text box and submit the form.

6 The records that match the criteria specified in the form appear in a table.

Reviewing the code

The following table describes the highlighted code and its function:

Formatting individual data items
You can format individual data items. For example, you can format the Salary field as a
monetary value. To format the Salary using the dollar format, you use the CFML
expression DollarFormat(number).

To change the format of the Salary:

1 Open the file actionpage.cfm in your editor.

2 Change the following line:
<td>#Salary#</td>

to
<td>#DollarFormat(Salary)#</td>

3 Save the page.

Code Description

<table> Puts data into a table.

<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Salary</th>

</tr>

In the first row of the table, includes three columns, with the
headings: First Name, Last Name, and Salary.

<cfoutput query="GetEmployees"> Gets ready to display the results of the GetEmployees
query.

<tr>
<td>#FirstName#</td>
<td>#LastName#</td>
<td>#Salary#</td>

</tr>

Creates a new row in the table, with three columns. For a
record, puts the value of the FirstName field, the value of
the LastName field, and the value of the Salary field.

</cfoutput> Keeps getting records that matches the criteria, and
displays each row in a new table row until you run out of
records.

</table> End of table.
590 Chapter 26 Retrieving and Formatting Data

Building flexible search interfaces
One option with forms is to build a search based on the form data. For example, you
could use form data as part of the WHERE clause to construct a database query.

To give users the option to enter multiple search criteria in a form, you can wrap
conditional logic around a SQL AND clause as part of the WHERE clause. The
following action page allows users to search for employees by department, last name, or
both.

Note: ColdFusion provides the Verity search utility that you can also use to perform a
search. For more information, see Chapter 24, “Building a Search Interface” on page 521.

To build a more flexible search interface:

1 Open the ColdFusion page actionpage.cfm in your editor.

2 Modify the page so that it appears as follows:
<html>
<head>
<title>Retrieving Employee Data Based on Criteia from Form</title>
</head>
<body>
<cfquery name="GetEmployees" datasource="CompanyInfo">

SELECT Departmt.Dept_Name,
Employee.FirstName,
Employee.LastName,
Employee.StartDate,
Employee.Salary

FROM Departmt, Employee
WHERE Departmt.Dept_ID = Employee.Dept_ID
<cfif IsDefined("Form.Department")>

AND Departmt.Dept_Name=<cfqueryparam value="#Form.Department#"
CFSQLType="CF_SQL_VARCHAR">

</cfif>
<cfif Form.LastName IS NOT "">

AND Employee.LastName=<cfqueryparam value="#Form.LastName#"
CFSQLType="CF_SQL_VARCHAR">

</cfif>
</cfquery>

<h4>Employee Data Based on Criteria from Form</h4>
<table>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Salary</th>
</tr>
<cfoutput query="GetEmployees">
<tr>
<td>#FirstName#</td>
<td>#LastName#</td>
<td>#Salary#</td>
</tr>
</cfoutput>
Working with queries and data 591

</table>
</body>
</html>

3 Save the file.

4 View formpage.cfm in your browser.

5 Select a department, optionally enter a last name, and submit the form.

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

SELECT Departmt.Dept_Name,
Employee.FirstName,
Employee.LastName,
Employee.StartDate,
Employee.Salary
FROM Departmt, Employee
WHERE Departmt.Dept_ID =

Employee.Dept_ID

Retrieves the fields listed from the Departmt and
Employee tables, joining the tables based on the
Dept_ID field in each table.

<cfif IsDefined("FORM.Department")>
AND Departmt.Dept_Name = <cfqueryparam

value="#Form.Department#"
CFSQLType="CF_SQL_VARCHAR">

</cfif>

If the user specified a department on the form,
only retrieves records where the department
name is the same as the one the user specified.
You must use pound signs in the SQL AND
statement to identify Form.Department as a
ColdFusion variable, but not in the IsDefined
function.

<cfif Form.LastName IS NOT "">
AND Employee.LastName = <cfqueryparam

value="#Form.LastName#"
CFSQLType="CF_SQL_VARCHAR">

</cfif>

If the user specified a last name in the form, only
retrieves the records in which the last name is the
same as the one the user entered in the form.
592 Chapter 26 Retrieving and Formatting Data

Returning results to the user
When you return your results to the user, you must make sure that your pages respond to
the user’s needs and are appropriate for the type and amount of information. In particular
you must consider the following situations:
• When there are no query results
• When you return partial results

Handling no query results
Your code must accommodate the cases where a query does not return any records. To
determine whether a search has retrieved records, use the RecordCount query variable. You
can use the variable in a conditional logic expression that determines how to display
search results appropriately to users.

For more information on query variables, including RecordCount, see Chapter 20,
“Accessing and Retrieving Data” on page 433.

For example, to inform the user when no records were found by the GetEmployees query,
insert the following code before displaying the data:

<cfif GetEmployees.RecordCount IS "0">
No records match your search criteria.

<cfelse>

You must do the following:
• Prefix RecordCount with the query name.
• Add a procedure after the cfif tag that displays a message to the user.
• Add a procedure after the cfelse tag to format the returned data.
• Follow the second procedure with a </cfif> tag end to indicate the end of the

conditional code.

To return search results to users:

1 Edit the page actionpage.cfm.

2 Change the page so that it appears as follows:
<html>
<head>
<title>Retrieving Employee Data Based on Criteia from Form</title>
</head>

<body>
<cfquery name="GetEmployees" datasource="CompanyInfo">

SELECT Departmt.Dept_Name,
Employee.FirstName,
Employee.LastName,
Employee.StartDate,
Employee.Salary

FROM Departmt, Employee
WHERE Departmt.Dept_ID = Employee.Dept_ID
<cfif isdefined("Form.Department")>

AND Departmt.Dept_Name = <cfqueryparam value="#Form.Department#"
CFSQLType="CF_SQL_VARCHAR">

</cfif>
Returning results to the user 593

<cfif Form.LastName is not "">
AND Employee.LastName = <cfqueryparam value="#Form.LastName#"

CFSQLType="CF_SQL_VARCHAR">
</cfif>

</cfquery>

<cfif GetEmployees.recordcount is "0">
No records match your search criteria.

Please go back to the form and try again.
<cfelse>
<h4>Employee Data Based on Criteria from Form</h4>
<table>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Salary</th>
</tr>
<cfoutput query="GetEmployees">
<tr>
<td>#FirstName#</td>
<td>#LastName#</td>
<td>#Salary#</td>
</tr>
</cfoutput>
</cfif>
</table>
</body>
</html>

3 Save the file.

4 Return to the form, enter search criteria, and submit the form.

5 If no records match the criteria you specified, the message appears.

Returning results incrementally
You can use the cfflush tag to incrementally output long-running requests to the browser
before a ColdFusion page is fully processed. This allows you to give the user quick
feedback when it takes a long time to complete processing a request. For example, when a
request takes time to return results, you can use cfflush to display the message,
“Processing your request -- please wait.”. You can also use it to incrementally display a
long list as it gets retrieved.

The first time you use the cfflush tag on a page, it sends to the browser all of the HTML
headers and any other available HTML. Subsequent cfflush tags on the page send only
the output that ColdFusion generates since the previous flush.

You can specify an interval attribute to tell ColdFusion to flush the output each time
that at least the specified number of bytes become available. (The count does not include
HTML headers and any data that is already available when you make this call.) You can
use the cfflush tag in a cfloop to incrementally flush data as it becomes available. This
format is particularly useful when a query responds slowly with large amounts of data.
594 Chapter 26 Retrieving and Formatting Data

When you flush data, make sure that a sufficient amount of information is available,
because some browsers might not respond if you flush only a very small amount.
Similarly, if you use an interval attribute, set it for a reasonable size, such as a few
hundred bytes or more but not many thousands of bytes.

Caution: After you use the cfflush tag on a page, any CFML function or tag on the page
that modifies the HTML header causes an error. These include the cfcontent, cfcookie,
cfform, cfheader, cfhtmlhead, and cflocation tags. You also get an error if you use the
cfset tag to set a Cookie scope variable. You can catch all errors, except Cookie errors, with
a cfcatch type="template" tag. Catch cookie errors with cfcatch type="Any".

The following example uses the cfloop tag and the rand() random number generating
function to artificially delay the generation of data for display. It simulates a situation in
which it takes time to retrieve the first data and additional information becomes available
slowly.

<html>
<head>

<title>Your Magic numbers</title>
</head>

<body>
<h1>Your Magic numbers</h1>
<P>It will take us a little while to calculate your ten magic numbers.
It takes a lot of work to find numbers that truly fit your personality.
So relax for a minute or so while we do the hard work for you.</P>
<h2>We are sure you will agree it was worth the short wait!</h2>
<cfflush>

<cfflush interval=10>
<!--- Delay Loop to make is seem harder --->
<cfloop index="randomindex" from="1" to="200000" step="1">

<cfset random=rand()>
</cfloop>

<!--- Now slowly output 10 random numbers --->
<cfloop index="Myindex" from="1" to="10" step="1">

<cfloop index="randomindex" from="1" to="100000" step="1">
<cfset random=rand()>

</cfloop>
<cfoutput>

Magic number number #Myindex# is: #RandRange(
100000, 999999)#

</cfoutput>
</cfloop>
</body>
</html>
Returning results to the user 595

Reviewing the code

The following table describes the code and its function:

Code Description

<h2>We are sure you will agree it was
worth the short wait!</h2>

<cfflush>

Sends the HTML header and all HTML
output to the cfflush tag to the user. This
displays the explanatory paragraph and H2
tag contents.

<cfflush interval=10> Flushes additional data to the user every
time at least 10 bytes are available.

<cfloop index="randomindex" from="1"
to="200000" step="1">

<cfset random=Rand()>
</cfloop>

Inserts an artificial delay by using the Rand
function to calculate many random
numbers.

<cfloop index="Myindex" from="1"
to="10" step="1">

<cfloop index="randomindex"
from="1" to="100000" step="1">

<cfset random=rand()>
</cfloop>
<cfoutput>
Magic number number #Myindex#

is: #RandRange
(100000,999999)#

</cfoutput>
</cfloop>

Generates and displays 10 random
numbers. This code uses two loops. The
outer loop repeats ten times, once for each
number to display. The inner loop uses the
rand function to create another delay by
generating more (unused) random
numbers. It then calls the RandRange
function to generate a six-digit random
number for display.
596 Chapter 26 Retrieving and Formatting Data

Dynamically populating list boxes
In “Form controls” on page 581, you hard-coded a form's list box options. Instead of
manually entering the information on a form, you can dynamically populate a list box
with database fields. When you code this way, the form page automatically reflects the
changes that you make to the database.

You use two tags to dynamically populate a list box:
• Use the cfquery tag to retrieve the column data from a database table.
• Use the cfoutput tag with the query attribute within the select tag to dynamically

populate the options of this form control.

To dynamically populate a list box:

1 Open the file formpage.cfm in ColdFusion Studio.

2 Modify the file so that it appears as follows:
<html>
<head>
<title>Input form</title>
</head>
<body>
<cfquery name="GetDepartments" datasource="CompanyInfo">
SELECT DISTINCT Location
FROM Departmt
</cfquery>

<!--- Define the action page in the form tag.
The form variables will pass to this page
when the form is submitted --->

<form action="actionpage.cfm" method="post">

<!-- text box -->
<p>
First Name: <input type="Text" name="FirstName" size="20" maxlength="35">

Last Name: <input type="Text" name="LastName" size="20" maxlength="35">

Salary: <input type="Text" name="Salary" size="10" maxlength="10">
</p>

<!-- list box -->
City

<select name="City">
<cfoutput query="GetDepartments">
<option value="#GetDepartments.Location#">
#GetDepartments.Location#
</option>
</cfoutput>
</select>

<!-- radio buttons -->
<p>
Department:

<input type="radio" name="Department" value="Training">Training

Dynamically populating list boxes 597

<input type="radio" name="Department" value="Sales">Sales

<input type="radio" name="Department" value="Marketing">Marketing

<input type="radio" name="Department" value="HR">HR

</p>

<!-- check box -->
<p>
Contractor? <input type="checkbox" name="Contractor" value="Yes" checked>Yes
</p>

<!-- reset button -->
<input type="reset" name="ResetForm" value="Clear Form">

<!-- submit button -->
<input type="submit" name="SubmitForm" value="Submit">
</form>
</body>
</html>

3 Save the page as formpage.cfm.

4 View formpage.cfm in a browser.

The changes that you just made appear in the form.

Remember that you need an action page to submit values.

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

<cfquery name="GetDepartments"
datasource="CompanyInfo">
SELECT DISTINCT Location
FROM Departmt
</cfquery>

Get the locations of all departments in the
Departmt table. The DISTINCT clause
eliminates duplicate location names from
the returned query results.

<select name="City">
<cfoutput query="GetDepartments">
<option
value="#GetDepartments.Location#">
#GetDepartments.Location#
</option>
</cfoutput>
</select>

Populate the City selection list from the
Location column of the GetDepartments
query. The control has one option for each
row returned by the query.
598 Chapter 26 Retrieving and Formatting Data

Creating dynamic check boxes and multiple-selection
list boxes

When an HTML form contains either a list of check boxes with the same name or a
multiple-selection list box (that is, where users can select multiple items from the list),
the user's entries are made available as a comma-delimited list with the selected values.
These lists can be very useful for a wide range of inputs.

Note: If the user does not select a check box or make a selection from a list box, no variable
is created. The cfinsert and cfupdate tags do not work correctly if there are no values. To
correct this problem, make the form fields required, use Dynamic SQL, or use cfparam to
establish a default value for the form field.

Check boxes
When you put a series of check boxes with the same name in an HTML form, the
variable that is created contains a comma-delimited list of values. The values can be either
numeric values or alphanumeric strings. These two types of values are treated slightly
differently.

Handling numeric values

Suppose you want a user to select one or more departments using check boxes. You then
query the database to retrieve detailed information on the selected department(s). The
code for a simple set of check boxes that lets the user select departments looks like the
following:

<input type="checkbox"
name="SelectedDepts"
value="1">
Training

<input type="checkbox"
name="SelectedDepts"
value="2">
Marketing

<input type="checkbox"
name="SelectedDepts"
value="3">
HR

<input type="checkbox"
name="SelectedDepts"
value="4">
Sales

</html>

The user sees the name of the department, but the value attribute of each check box is a
number that corresponds to the underlying database primary key for the department's
record.
Creating dynamic check boxes and multiple-selection list boxes 599

If the user checks the Marketing and Sales items, the value of the SelectedDept form field
is "2,4" and you use the SelectedDepts in the following SQL statement:

SELECT *
FROM Departmt
WHERE Dept_ID IN (#Form.SelectedDepts#)

The ColdFusion Server sends the following statement to the database:

SELECT *
FROM Departmt
WHERE Dept_ID IN (2,4)

Handling string values

To search for a database field containing string values (instead of numeric), you must
modify the checkbox and cfquery syntax.

The first example searched for department information based on a numeric primary key
field called Dept_ID. Suppose, instead, that the primary key is a database field called
Dept_Name that contains string values. In that case, your code for check boxes should
look like the following:

<input type="checkbox"
name="SelectedDepts"
value="Training">
Training

<input type="checkbox"
name="SelectedDepts"
value="Marketing">
Marketing

<input type="checkbox"
name="SelectedDepts"
value="HR">
HR

<input type="checkbox"
name="SelectedDepts"
value="Sales">
Sales

If the user checked Marketing and Sales, the value of the SelectedDepts form field would
be the list Marketing,Sales and you use the following SQL statement:

SELECT *
FROM Departmt
WHERE Dept_Name IN
(#ListQualify(Form.SelectedDepts,"'")#)

Note: In SQL, all strings must be surrounded in single quotes. The ListQualify function
returns a list with the specified qualifying character (here, a single quote) around each item in
the list.
600 Chapter 26 Retrieving and Formatting Data

If you select the second and fourth check boxes in the form, the following statement gets
sent to the database:

SELECT *
FROM Departmt
WHERE Dept_Name IN ('Marketing','Sales')

Multiple selection lists
ColdFusion treats the result when a user selects multiple choices from a list box (HTML
input type select with attribute multiple) just like results of selecting multiple check
boxes. The data made available to your page from any multiple selection list box is a
comma-delimited list of the entries selected by the user; for example, a list box could
contain the four entries: Training, Marketing, HR, and Sales. If the user selects
Marketing and Sales, the form field variable value is Marketing,Sales.

You use multiple selection lists to search a database in the same way that you use check
boxes.

Handling numeric values

Suppose you want the user to select departments from a multiple-selection list box. The
query retrieves detailed information on the selected department(s):

Select one or more companies to get more information on:
<select name="SelectDepts" multiple>

<option value="1">Training
<option value="2">Marketing
<option value="3">HR
<option value="4">Sales

</select>

If the user selects the Marketing and Sales items, the value of the SelectDepts form field is
2,4. If this parameter is used in the following SQL statement:

SELECT *
FROM Departmt
WHERE Dept_ID IN (#form.SelectDepts#)

the following statement is sent to the database:

SELECT *
FROM Departmt
WHERE Dept_ID IN (2,4)

Handling string values

Suppose you want the user to select departments from a multiple selection list box. The
database search field is a string field. The query retrieves detailed information on the
selected department(s):

<select name="SelectDepts" multiple>
<option value="Training">Training
<option value="Marketing">Marketing
<option value="HR">HR
<option value="Sales">Sales

</select>
Creating dynamic check boxes and multiple-selection list boxes 601

If the user selects the Marketing and Sales items, the SelectDepts form field value is
Marketing,Sales.

Just as you did when using check boxes to search database fields containing string values,
use the ColdFusion ListQualify function with multiple-selection list boxes:

SELECT *
FROM Departmt
WHERE Dept_Name IN (#ListQualify(Form.SelectDepts,"'")#)

The following statement is sent to the database:

SELECT *
FROM Departmt
WHERE Dept_Name IN ('Marketing','Sales')
602 Chapter 26 Retrieving and Formatting Data

Validating form field data types
One limitation of standard HTML forms is that you cannot validate that users input the
type or range of data you expect. ColdFusion enables you to do several types of data
validation by adding hidden fields to forms.

The following table describes the hidden field suffixes that you can use to do validation:

Note: Adding a validation rule to a field does not make it a required field. You need to add a
separate _required hidden field if you want to ensure user entry.

The following procedure creates a simple form for entering a start date and a salary. It
uses hidden fields to ensure that you enter data and that the data is in the right format.

This example illustrates another concept that might seem surprising. You can use the
same ColdFusion page as both a form page and its action page. Because the only action is
to display the values of the two variables that you enter, the action is on the same page as
the form.

Using a single page for both the form and action provides the opportunity to show the
use of the IsDefined function to check that data exists. This way, the form does not show
any results until you submit the input.

To validate the data that users enter in the insert form:

1 Create a new page with the following text:
<html>
<head>

<title>Simple Data Form</title>
</head>
<body>
<h2>Simple Data Form</h2>

<!--- Form part --->

Field suffix Value attribute Description

_integer Custom error
message

Verifies that the user entered a number. If the user enters
a floating point value, it is rounded to an integer.

_float Custom error
message

Verifies that the user entered a number. Does not do any
rounding of floating point values.

_range MIN=MinValue

MAX=MaxValue

Verifies that the numeric value entered is within the
specified boundaries. You can specify one or both of the
boundaries separated by a space.

_date Custom error
message

Verifies that the user entered a date and converts the
date into the proper ODBC date format. Will accept
most common date forms; for example,
9/1/98; Sept. 9, 1998.

_time Custom error
message

Verifies that the user correctly entered a time and
converts the time to the proper ODBC time format.

_eurodate Custom error
message

Verifies that the user entered a date in a standard
European date format and converts into the proper
ODBC date format.
Validating form field data types 603

<form action="datatest.cfm" method="Post">
<input type="hidden"

name="StartDate_required"
value="You must enter a start date.">

<input type="hidden"
name="StartDate_date"
value="Enter a valid date as the start date.">

<input type="hidden"
name="Salary_required"
value="You must enter a salary.">

<input type="hidden"
name="Salary_float"
value="The salary must be a number.">

Start Date:
<input type="text"

name="StartDate" size="16"
maxlength="16">

Salary:
<input type="text"

name="Salary"
size="10"
maxlength="10">

<input type="reset"
name="ResetForm"
value="Clear Form">

<input type="submit"
name="SubmitForm"
value="Insert Data">

</form>

<!--- Action part --->
<cfif isdefined("Form.StartDate")>

<cfoutput>
Start Date is: #DateFormat(Form.StartDate)#

Salary is: #DollarFormat(Form.Salary)#

</cfoutput>
</cfif>
</html>

2 Save the file as datatest.cfm.

3 View the file in your browser, omit a field or enter invalid data, and click the Submit
button.

When the user submits the form, ColdFusion scans the form fields to find any validation
rules you specified. The rules are then used to analyze the user's input. If any of the input
rules are violated, ColdFusion sends an error message to the user that explains the
problem. The user then must go back to the form, correct the problem, and resubmit the
form. ColdFusion does not accept form submission until the user enters the entire form
correctly.

Because numeric values often contain commas and dollar signs, these characters are
automatically deleted from fields with _integer, _float, or _range rules before the form
field is validated and the data is passed to the form's action page.
604 Chapter 26 Retrieving and Formatting Data

Reviewing the code

The following table describes the code and its function:

Code Description

<form action="datatest.cfm"
method="post">

Gather the information from this form using
the Post method, and do something with it on
the page dataform.cfm, which is this page.

<input type="hidden"
name="StartDate_required"
value="You must enter a start date.">

<input type="hidden"
name="StartDate_date"
value="Enter a valid date as the
start date.">

Require input into the StartDate input field. If
there is no input, display the error information
“You must enter a start date.” Require the
input to be in a valid date format. If the input is
not valid, display the error information “Enter
a valid date as the start date.”

<input type="hidden"
name="Salary_required"
value="You must enter a salary.">

<input type="hidden"
name="Salary_float"
value="The salary must be a number.">

Require input into the Salary input field. If
there is no input, display the error information
“You must enter a salary.” Require the input to
be in a valid number. If it is not valid, display
the error information “The salary must be a
number.”

Start Date:
<input type="text"

name="StartDate" size="16"
maxlength="16">

Create a text box called StartDate in which
users can enter their starting date. Make it
exactly 16 characters wide.

Salary:
<input type="text"

name="Salary"
size="10"
maxlength="10">

Create a text box called Salary in which users
can enter their salary. Make it exactly ten
characters wide.

<cfif isdefined("Form.StartDate")>
<cfoutput>

Start Date is:
#DateFormat(Form.StartDate)#

Salary is:
#DollarFormat(Form.Salary)#

</cfoutput>
</cfif>

Output the values of the StartDate and Salary
form fields only if they are defined. They are
not defined until you submit the form, so they
do not appear on the initial form. Use the
DateFormat function to display the start date
in the default date format. Use the
DollarFormat function to display the salary
with a dollar sign and commas.
Validating form field data types 605

606 Chapter 26 Retrieving and Formatting Data

CHAPTER 27

Building Dynamic Forms
This chapter describes how to use the cfform tag to enrich your HTML forms with
sophisticated graphical controls, including several Java applet-based controls. You can use
these controls without writing a line of Java code.

Contents

• Creating forms with the cfform tag.. 608

• Building tree controls with cftree ... 611

• Building drop-down list boxes ... 619

• Building text input boxes... 620

• Building slider bar controls .. 621

• Creating data grids with cfgrid... 622

• Embedding Java applets ... 633

• Input validation with cfform controls .. 637

• Input validation with JavaScript... 642
607

Creating forms with the cfform tag
You already learned how to use HTML forms to gather user input (see Chapter 26,
“Retrieving and Formatting Data” on page 579). This chapter shows you how to use the
cfform tag to create dynamic forms in CFML. In addition to standard HTML form
controls, the cfform tag allows you to create forms that contain the following controls:
• Text boxes in which you can specify the appearance, such as fonts and colors
• Text inputs that allow you to validate the data entered into the control
• Predefined ColdFusion Java applet based controls, including trees, sliders, and grids
• Custom Java applets that act as form elements

Most cfform controls offer input validation attributes that you can use to validate user
entry, selection, or interaction. This means you do not have to write separate CFML code
specifically for input validation, as you do in HTML forms.

Using HTML and cfform
ColdFusion dynamically generates HTML forms from cfform tags and passes to the
browser any HTML code that it finds in the form. As a result, you can also do the
following:
• You can use the passthrough attribute of the cfform, cfinput, and cfselect tags to

enter any HTML attributes that are not explicitly allowed in these tags. The attribute
values are passed through to the HTML generated by these form tags.

• You can replace your existing HTML form tags with cfform and your forms will work
fine.

• ColdFusion passes to the action page of the cfform the variable Form.fieldnames
which contains the names of the form fields submitted from the form.

The cfform controls
The following table describes the ColdFusion controls that you use in forms created
using cfform. You can use these tags only inside a cfform tag.

Control Description For more information

cfgrid Java applet-based control that creates a
data grid that you can populate from a
query or by defining the contents of
individual cells. You can also use grids to
insert, update, and delete records from a
data source.

“Creating data grids with cfgrid”
on page 622.

cfslider Java applet-based control that defines a
slider.

“Building slider bar controls” on
page 621.

cfinput Places radio buttons, check boxes, text
input boxes, and password entry boxes.
Equivalent to the HTML input tag with the
addition of input validation.

“Input validation with cfform
controls” on page 637.
608 Chapter 27 Building Dynamic Forms

Preserving input data with preservedata
The cfform attribute preservedata tells ColdFusion to continue displaying the data that a
user entered in the form after the user submits the form. Data is preserved in the cfinput,
cfslider, cftextinput, and cftree controls and in cfselect controls populated by
queries. If you specify a default value for a control, and a user overrides that default in the
form, the user input is preserved.

You can retain data on the form when the form’s action posts to the same ColdFusion
page as the form itself, and the control names are the same.

For example, if you save this form as preserve.cfm, it continues to display any text that
you enter after you submit it, as follows:

<cfform action="preserve.cfm" preservedata="Yes">
<p>Please enter your name:
<cfinput type="Text" name="UserName" required="Yes"><p>
<input type="Submit" name=""> <input type="RESET">

</cfform>

Usage notes for the preservedata attribute

When using the preservedata attribute, follow these guidelines:
• In cftree, the preservedata attribute causes the tree to expand the tree to the

previously selected element. For this to work correctly, you must also set the
completePath attribute to True.

• The preservedata attribute has no effect on cfgrid. If you populate the control from
a query, you must update the data source with the new data (typically by using
cfgridupdate) before redisplaying the grid. The grid then displays the updated
database information.

cftree Java applet-based controls that define a
tree control and individual tree control
items.

“Building tree controls with
cftree” on page 611.

cftextinput Java applet-based control that defines a
text input box.

“Building text input boxes” on
page 620.

cfselect Drop-down list box not a Java applet).
Equivalent to the HTML select tag with
the addition of input validation and data
binding.

“Building drop-down list boxes”
on page 619.

cfapplet Embed your own Java applets in the form. “Embedding Java applets” on
page 633.

Control Description For more information
Creating forms with the cfform tag 609

Browser considerations
The applet-based controls for cfform—cfgrid, cfslider, cftextinput, and cftree—use
JavaScript and Java to display their content. To allow them to display consistently across
a variety of browsers, these applets use the Java plug-in. As a result, they are independent
of the level of Java support provided by the browser.

ColdFusion downloads and installs the browser plug-in if necessary. Some browsers
display a single permission dialog box asking you to confirm the plug-in install. Other
browsers, particularly older versions of Netscape, require you to navigate some simple
option screens.

Because the controls use JavaScript to return data to ColdFusion, if you disable JavaScript
in your browser, it cannot properly run forms that contain these controls. In that case,
the controls still display, but data return and validation does not work and you can
receive a JavaScript error.

Because Java is handled by the plug-in and not directly by the browser, disabling Java
execution in the browser does not affect the operation of the controls. If for some other
reason, however, the browser is unable to render the controls as requested, a
"notsupported" message appears in place of the control.

You can use the cfform tag’s notsupported attribute to specify an alternate error message.
610 Chapter 27 Building Dynamic Forms

Building tree controls with cftree
The cftree tag lets you display hierarchical information within a form in a space-saving
collapsible tree populated from data source queries. To build a tree control with cftree,
you use individual cftreeitem tags to populate the control. You can specify one of six
built-in icons to represent individual items in the tree control, or supply a file path or
URL to your GIF image.

Note: The cftree tag requires the client to download a Java applet. Downloading an applet
takes time; therefore, using cftree can be slightly slower than using an HTML form element
to retrieve the same information. In addition, browsers must be Java-enabled for cftree to
work properly.

To create and populate a tree control from a query:

1 Create a ColdFusion page with the following content:
<cfquery name="engquery" datasource="CompanyInfo">

SELECT FirstName + ' ' + LastName AS FullName
FROM Employee

</cfquery>
<cfform name="form1" action="submit.cfm">
<cftree name="tree1"

required="Yes"
hscroll="No">
<cftreeitem value="FullName"

query="engquery"
queryasroot="Yes"
img="folder,document">

</cftree>
</cfform>

2 Save the page as tree1.cfm and view it in your browser.

The following figure shows the output of this code:
Building tree controls with cftree 611

Reviewing the code

The following table describes the highlighted code and its function:

Grouping output from a query
In a query that you display using a cftree control, you might want to organize your
employees by the department. In this case, you separate column names with commas in
the cftreeitem value attribute.

To organize the tree based on ordered results of a query:

1 Create a ColdFusion page named tree2.cfm with the following content:
<!--- CFQUERY with an ORDER BY clause --->
<cfquery name="deptquery" datasource="CompanyInfo">

SELECT Dept_ID, FirstName + ' ' + LastName
AS FullName
FROM Employee
ORDER BY Dept_ID

</cfquery>

<!--- Build the tree control --->
<cfform name="form1" action="submit.cfm">

<cftree name="tree1"
hscroll="No"
border="Yes"
height="350"
required="Yes">

<cftreeitem value="Dept_ID, FullName"
query="deptquery"
queryasroot="Dept_ID"
img="cd,folder">

</cftree>

Code Description

<cftree name="tree1" Creates a tree and name it tree1.

required="Yes" Specifies that a user must select an item in the tree.

hscroll="No" Does not allow horizontal scrolling.

<cftreeitem value="FullName"
query="engquery"

Creates an item in the tree and put the results of the query
named engquery in it. Because this tag uses a query, it puts
one item on the tree per query entry.

queryasroot="Yes" Specifies the query name as the root level of the tree
control.

img="folder,document" Uses the images "folder" and "document" that ship with
ColdFusion in the tree structure.

When populating a cftree with data from a cfquery, you
can specify images or filenames for each level of the tree as
a comma-separated list.
612 Chapter 27 Building Dynamic Forms

<input type="Submit" value="Submit">
</cfform>

2 Save the page and view it in your browser.

Reviewing the code

The following table describes the highlighted code and its function:

The cftreeitem comma-separated img and the value attributes both correspond to the
tree level structure. If you leave out the img attribute, ColdFusion uses the folder image
for all levels in the tree except the individual items, which have bullets.

The cftree form variables
The cftree tag lets you force a user to select an item from the tree control by setting the
required attribute to Yes. With or without the required attribute, ColdFusion passes two
form variables to the application page specified in the cfform action attribute:
• Form.treename.path Returns the complete path of the user selection, in the form:

[root]\node1\node2\node_n\value
• Form.treename.node Returns the node of the user selection.

Code Description

ORDER BY Dept_ID Order the query results by department.

<cftreeitem value="Dept_ID,FullName" Populate the tree with the Department ID, and under
each department, the Full Name for each employee
in the department.

queryasroot="Dept_ID" Label the root "Dept_ID".

img="cd,folder"> Use the ColdFusion-supplied CD image for the root
level and Folder image for the department IDs. The
names are preceded by a bullet.
Building tree controls with cftree 613

To return the root part of the path, set the completepath attribute of cftree to Yes;
otherwise, the path value starts with the first node. If you specify a root name for a tree
item using queryasroot, that value is returned as the root. If you do not specify a root
name, ColdFusion returns the query name as the root. If there is no query name,
ColdFusion returns the tree name as the root.

In the previous example, if the user selects the name "John Allen" in the tree, ColdFusion
returns the following form variables:

Form.tree1.path = Dept_ID\3\John Allen
Form.tree1.node = John Allen

You can specify the character used to delimit each element of the path form variable in
the cftree delimiter attribute. The default is a backslash character.

Input validation
Although the cftree does not include a validate attribute, you can use the required
attribute to force a user to select an item from the tree control. In addition, you can use
the onvalidate attribute to specify your own JavaScript code to perform validation.

Structuring tree controls
Tree controls built with cftree can be very complex. Knowing how to specify the
relationship between multiple cftreeitem entries helps you handle the most complex of
cftree constructs.

Creating a one-level tree control

The following example consists of a single root and a number of individual items:

<cfquery name="deptquery" datasource="CompanyInfo">
SELECT Dept_ID, FirstName + ' ' + LastName
AS FullName
FROM Employee
ORDER BY Dept_ID
</cfquery>

<cfform name="form1" action="submit.cfm">
<cftree name="tree1">

<cftreeitem value="FullName"
query="deptquery"
queryasroot="Department">

</cftree>

<input type="submit" value="Submit">
</cfform>
614 Chapter 27 Building Dynamic Forms

Creating a multilevel tree control

The following figure shows an example of a multilevel tree:

When populating a cftree, you create the multilevel structure of the tree by specifying a
parent for each cftreeitem in the tree. The parent attribute of cftreeitem allows your
cftree to show relationships between elements in the tree.

In this example, every cftreeitem, except the top level Divisions, specifies a parent. For
example, the cftreeitem Development specifies a parent of Divisions.

The following code populates the tree directly, not from a query:

<cfform name="form2" action="cfform_submit.cfm">
<cftree name="tree1" hscroll="No" vscroll="No"

border="No">
<cftreeitem value="Divisions">
<cftreeitem value="Development"

parent="Divisions" img="folder">
<cftreeitem value="Product One"

parent="Development">
<cftreeitem value="Product Two"

parent="Development">
<cftreeitem value="GUI"

parent="Product Two" img="document">
<cftreeitem value="Kernel"

parent="Product Two" img="document">
<cftreeitem value="Product Three"

parent="Development">
<cftreeitem value="QA"

parent="Divisions" img="folder">
<cftreeitem value="Product One"

parent="QA">
<cftreeitem value="Product Two" parent="QA">
Building tree controls with cftree 615

<cftreeitem value="Product Three"
parent="QA">

<cftreeitem value="Support"
parent="Divisions" img="fixed">

<cftreeitem value="Product Two"
parent="Support">

<cftreeitem value="Sales"
parent="Divisions" img="cd">

<cftreeitem value="Marketing"
parent="Divisions" img="document">

<cftreeitem value="Finance"
parent="Divisions" img="element">

</cftree>

</cfform>

Image names in a cftree
The default image displayed in a tree is a folder. However, you can use the img attribute of
cftreeitem to specify a different image.

When you use the img attribute, ColdFusion displays the specified image beside the tree
items. You can specify a built-in ColdFusion image name, the file path to an image file,
or the URL of an image of your choice, such as http://localhost/Myapp/Images/
Level3.gif. As a general rule, make the height of your custom images less than 20 pixels.

When populating a cftree with data from a cfquery, you can use the img attribute of
cftreeitem to specify images or filenames for each level of the tree as a comma-separated
list.

The following are the ColdFusion built-in image names:
• cd
• computer
• document
• element
• folder
• floppy
• fixed
• remote

Note: You can also control the tree appearance by using the lookAndFeel attribute to
specify a Windows, Motif, or Metal look.
616 Chapter 27 Building Dynamic Forms

Embedding URLs in a cftree
The href attribute in the cftreeitem tag lets you designate tree items as links. To use this
feature in a cftree, you define the destination of the link in the href attribute of
cftreeitem. The URL for the link can be a relative URL or an absolute URL as in the
following examples.

To embed links in a cftree:

1 Create a ColdFusion page named tree3.cfm with the following contents:
<cfform action="submit.cfm">

<cftree name="oak"
highlighthref="Yes"
height="100"
width="200"
hspace="100"
vspace="6"
hscroll="No"
vscroll="No"
border="No">

<cftreeitem value="Important Links">
<cftreeitem value="Macromedia Home"

parent="Important Links"
img="document"
href="http://www.macromedia.com">

<cftreeitem value="ColdFusion Home"
parent="Important Links"
img="document"
href="http://www.coldfusion.com">

</cftree>
</cfform>

2 Save the page and view it in your browser. The following figure shows the output of
this code:

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

href="http://
www.macromedia.com">

Makes the node of the tree a link.

href="http://
www.coldfusion.com">

Makes the node of the tree a link.

Although this example does not show it, href can refer to the name
of a column in a query if that query populates the tree item.
Building tree controls with cftree 617

Specifying the tree item in the URL
When a user clicks on a tree item to link to a URL, the cftreeItemKey variable, which
identifies the selected value, is appended to the URL in the following form:

http://myserver.com?cftreeitemkey =selected_value

Automatically passing the name of the selected tree item as part of the URL makes it easy
to implement a basic "drill down" application that displays additional information based
on the selection. For example, if the specified URL is another ColdFusion page, it can
access the selected value as the variable URL.cftreeitemkey.

To disable this behavior, set the appendkey attribute in the cftree tag to No.
618 Chapter 27 Building Dynamic Forms

Building drop-down list boxes
The drop-down list box that you can create in a cfform tag with cfselect is similar to the
HTML select tag. However, cfselect gives you more control over user inputs, provides
error handling, and, most importantly, allows you to automatically populate the selection
list from a query.

You can populate the drop-down list box from a query, or using lists of option elements
created by the option tag. The syntax for the option tag with cfselect is the same as for
the HTML option tag.

When you populate a cfselect with data from a query, you only need to specify the
name of the query that is supplying data for the cfselect and the query column name for
each list element to display.

To populate a drop-down list box with query data using cfselect:

1 Create a ColdFusion page with the following content:
<cfquery name="getNames"

datasource="CompanyInfo">
SELECT * FROM Employee

</cfquery>

<cfform name="Form1" action="submit.cfm">

<cfselect name="employees"
query="getNames"
value="Emp_ID"
display="FirstName"
required="Yes"
multiple="Yes"
size="8">

</cfselect>

<input type="Submit" value="Submit">
</cfform>

2 Save the file as selectbox.cfm and view it in your browser. The following figure shows
the output of this code:

Because the tag includes the multiple attribute, the user can select multiple entries in the
list box. Also, because the value tag specifies Emp_ID, the primary key for the Employee
table, Employee IDs (not first names) get passed in the Form.Employee variable to the
application page specified in the cfform action attribute.
Building drop-down list boxes 619

Building text input boxes
The cftextinput tag in a cfform tag is similar to the HTML input type=text tag or the
CFML cfinput type=text tag. With cftextinput, however, you can also specify font and
alignment options, use the validate attribute to enable input validation using
ColdFusion validation methods or your own JavaScript validation function, and use the
required attribute to force the user to enter or change text.

The following example shows a basic cftextinput control. This example validates a date
entry, which means that a user must enter a valid date in the form mm/dd/yy (the year can
be up to four digits). For a complete list of validation formats, see CFML Reference.

1 Create a ColdFusion page with the following content:
Please enter a date:

<cfform name="Form1"

action="submit.cfm">

<cftextinput name="entertext"
value="mm/dd/yy"
maxlength="10"
validate="date"
width=100
font="Trebuchet MS">

<input type="Submit"

value="Submit">

</cfform>

2 Save the file as textentry.cfm and view it in your browser. The following figure shows
the output of this code:

To get the value of the input text in the action page, use the variable
Form.textinput_name; in this case, Form.entertext.
620 Chapter 27 Building Dynamic Forms

Building slider bar controls
You can use the cfslider control in a cfform tag to create a slider control and define a
wide range of formatting options for slider label text, label font name, size, boldface,
italics, and color, as well as slider scale increments, range, positioning, tick marks, and
behavior. Slider bars are useful because they are highly visual and users cannot enter
invalid values.

To create a slider control:

1 Create a ColdFusion page with the following content:
<cfform name="Form1" action="submit.cfm">

<cfslider name="myslider"
bgcolor="cyan"
bold="Yes"
range="0,1000"
scale="100"
value="600"
fontsize="14"
label="Slider %value%"
height="60"
tickmarkmajor="True"
width="400">

</cfform>

2 Save the file as slider.cfm and view it in your browser. The following figure shows the
output of this code:

To get the value of the slider in the action page, use the variable Form.slider_name; in this
case, Form.myslider.
Building slider bar controls 621

Creating data grids with cfgrid
The cfgrid tag creates a cfform grid control that resembles a spreadsheet table and can
contain data populated from a cfquery or from other sources of data. As with other
cfform tags, cfgrid offers a wide range of data formatting options as well as the option of
validating user selections with a JavaScript validation script.

You can also do the following tasks with cfgrid:
• Sort data in the grid alphanumerically
• Update, insert, and delete data
• Display images in the grid

Users can sort the grid entries in ascending order by double-clicking any column header.
Double-clicking again sorts the grid in descending order. You can also add sort buttons to
the grid control.

When users select grid data and submit the form, ColdFusion passes the selection
information as form variables to the application page specified in the cfform action
attribute.

Just as the cftree tag uses cftreeitem, cfgrid uses the cfgridcolumn and cfgridrow tags.
You can define a wide range of row and column formatting options, as well as a column
name, data type, selection options, and so on. You use the cfgridcolumn tag to define
individual columns in the grid or associate a query column with a grid column.

Use the cfgridrow tag to define a grid that does not use a query as the source for row data.
If a query attribute is specified in cfgrid, the cfgridrow tags are ignored.

The cfgrid tag provides many attributes that control grid behavior and appearance. This
chapter describes only the most important of these attributes. For detailed information
on these attributes, see CFML Reference.

Working with a data grid and entering data
The following figure shows an example grid created using the cfgrid tag:
622 Chapter 27 Building Dynamic Forms

The following table describes some navigating tips:

To populate a grid from a query:

1 Create a new ColdFusion page named grid1.cfm with the following contents:
<cfquery name="empdata" datasource="CompanyInfo">

SELECT * FROM Employee
</cfquery>

<cfform name="Form1" action="submit.cfm" >

<cfgrid name="employee_grid" query="empdata"
selectmode="single">

<cfgridcolumn name="Emp_ID">
<cfgridcolumn name="LastName">
<cfgridcolumn name="Dept_ID">

</cfgrid>

<input type="Submit" value="Submit">
</cfform>

Note: Use the cfgridcolumn display="No" attribute to hide columns that you want to
include in the grid but not expose to an end user. You typically use this attribute to include
columns such as the table’s primary key column in the results returned by cfgrid.

Action Procedure

Sorting grid rows Double-click the column header to sort a column in ascending
order. Double-click again to sort the rows in descending order.

Rearranging columns Click any column heading and drag the column to a new position.

Determining editable
grid areas

When you click an editable cell, it is surrounded by a yellow box.

Determining noneditable
grid areas

When you click a cell (or row or column) that you cannot edit, its
background color changes. The default color is salmon pink.

Editing a grid cell Double-click the cell. You must press Return when you finish
entering the data.

Deleting a row Click any cell in the row and click the Delete button.

Inserting a row Click the Insert button. An empty row appears at the bottom of
the grid. To enter a value in each cell, double-click the cell, enter
the value, and click Return.
Creating data grids with cfgrid 623

2 Save the file and view it in your browser. The following figure shows the output of
this code:

Reviewing the code

The following table describes the highlighted code and its function:

Creating an editable grid
You can build grids to allow users to edit data within them. Users can edit individual cell
data, as well as insert, update, or delete rows. To enable grid editing, you specify
selectmode="edit" in the cfgrid tag.

Code Description

<cfgrid name="employee_grid"
query="empdata"

Create a grid named "employee_grid" and populate it
with the results of the query "empdata".

If you specify a cfgrid tag with a query attribute defined
and no corresponding cfgridcolumn attributes, the grid
contains all the columns in the query.

selectmode="single"> Allow the user to select only one cell. Other modes are
row, column, and edit.

<cfgridcolumn name="Emp_ID"> Put the contents of the Emp_ID column in the query
results in the first column of the grid.

<cfgridcolumn name="LastName"> Put the contents of the LastName column in the query
results in the second column of the grid.

<cfgridcolumn name="Dept_ID"> Put the contents of the Dept_ID column in the query
results in the third column of the grid.
624 Chapter 27 Building Dynamic Forms

To let users add or delete grid rows, you also have to set the insert or delete attributes in
cfgrid to Yes. Setting insert or delete to Yes causes the cfgrid tag to display insert and
delete buttons as part of the grid, as the following figure shows:

You can use a grid in two ways to make changes to your ColdFusion data sources:
• Create a page to which you pass the cfgrid form variables. In that page perform

cfquery operations to update data source records base on the form values returned by
cfgrid.

• Pass grid edits to a page that includes the cfgridupdate tag, which automatically
extracts the form variable values and passes that data directly to the data source.

Using cfquery gives you complete control over interactions with your data source. The
cfgridupdate tag provides a much simpler interface for operations that do not require the
same level of control.

Controlling cell contents

The value, valuesDisplay, and valuesDelimiter attributes of the cfgridcolumn tag let you
control the data that a user can enter into a cfgrid cell in the following ways:
• By default, a cell is not editable. Use the cfgrid attribute selectmode="edit" to edit

cell contents.
• Use the type attribute to control sorting order, to make the fields check boxes, or to

display an image.
• Use the values attribute to specify a drop-down list of values from which the user can

chose. You can use the valuesDisplay attribute to provide a list of items to display
that differs from the actual values that you enter in the database. You can use the
valuesDelimiter attribute to specify the separator between values in the values
valuesDisplay lists.

• While cfgrid does not have a validate attribute, it does have an onvalidate attribute
that lets you specify a JavaScript function to perform validation.

For more information on controlling the cell contents, see the attribute descriptions in
CFML Reference.
Creating data grids with cfgrid 625

How user edits are returned

ColdFusion creates the following arrays as Form variables to return edits to grid rows and
cells:

When a user selects and changes data in a row, ColdFusion creates arrays to store the
following information for rows that are updated, inserted, or deleted:
• The original values for all columns
• The new column values
• The type of change

For example, the following arrays are created if you update a cfgrid called "mygrid"
consisting of two displayable columns, (col1, col2) and one hidden column (col3):

Form.mygrid.col1[change_index]
Form.mygrid.col2[change_index]
Form.mygrid.col3[change_index]
Form.mygrid.original.col1[change_index]
Form.mygrid.original.col2[change_index]
Form.mygrid.original.col3[change_index]
Form.mygrid.RowStatus.Action[change_index]

The value of change_index increments for each row that changes, and does not indicate
the specific row number. When the user updates data or inserts or deletes rows, the action
page gets one array for each changed column, and the RowStatus.Action array. The
action page does not get arrays for unchanged columns.

If the user makes a change to a single cell in col2, you can access the edit operation, the
original cell value, and the edited cell value in the following arrays:

Form.mygrid.RowStatus.Action[1]
Form.mygrid.col2[1]
Form.mygrid.original.col2[1]

If the user changes the values of the cells in col1 and col3 in one row and the cell in col2
in another row, the information about the original and changed values is in the following
array entries:

Form.mygrid.RowStatus.Action[1]
Form.mygrid.col1[1]
Form.mygrid.original.col1[1]
Form.mygrid.col3[1]
Form.mygrid.original.col3[1]

Form.mygrid.RowStatus.Action[2]
Form.mygrid.col2[2]
Form.mygrid.original.col2[2]

Array reference Description

gridname.colname[change_index] Stores the new value of an edited cell.

gridname.Original.colname [change_index] Stores the original value of the edited grid cell.

gridname.RowStatus.Action [change_index] Stores the edit type made to the edited grid row: D
for delete, I for insert, or U for update.
626 Chapter 27 Building Dynamic Forms

Editing data in cfgrid

To enable grid editing, specify the selectmode="edit" attribute. When enabled, a user can
edit cell data and insert or delete grid rows. When the user submits a cfform tag
containing a cfgrid tag, data about changes to grid cells gets returned in the
one-dimensional arrays described in the preceding section. You can reference these arrays
as you would any other ColdFusion array.

Note: For code brevity, the following example handles only three of the fields in the
Employee table. A more realistic example would include, at a minimum, all seven table fields.
You might also consider hiding the contents of the Emp_ID column and automatically
generating its value for new records, and displaying the Department name, from the
Departmt table, in place of the Department ID.

To make the grid editable:

1 Create a new ColdFusion page with the following contents:
<cfquery name="empdata" datasource="CompanyInfo">

SELECT * FROM Employee
</cfquery>

<cfform name="GridForm"
action="handle_grid.cfm">

<cfgrid name="employee_grid"
height=425
width=300
vspace=10
selectmode="edit"
query="empdata"
insert="Yes"
delete="Yes">

<cfgridcolumn name="Emp_ID"
header="Emp ID"
width=50
headeralign="center"
headerbold="Yes"
select="No">

<cfgridcolumn name="LastName"
header="Last Name"
width=100
headeralign="center"
headerbold="Yes">

<cfgridcolumn name="Dept_ID"
header="Dept"
width=35
headeralign="center"
headerbold="Yes">

</cfgrid>

<input type="Submit" value="Submit">

</cfform>
Creating data grids with cfgrid 627

2 Save the file as grid2.cfm and view it in your browser.

The following figure shows the output of this code:

The following sections describe how to write handle_grid.cfm to process user edits to the
grid.

Reviewing the code

The following table describes the code and its function:

Code Description

<cfgrid name="employee_grid"
height=425
width=300
vspace=10
selectmode="edit"
query="empdata"
insert="Yes"
delete="Yes">

Populates a cfgrid control with data from the empdata
query. Selecting a grid cell enables you to edit it. You can
insert and delete rows. The grid is 425 X 300 pixels and
has 10 pixels of space above and below it.

<cfgridcolumn name="Emp_ID"
header="Emp ID"
width=50
headeralign="center"
headerbold="Yes"
select="No">

Creates a 50-pixel wide column for the data in the
Emp_ID column of the data source. Center a header
named Emp ID and make it bold.

Does not allow users to select fields in this column for
editing. Since this field is the table’s primary key, users
should not be able to change it for existing records and
the DBMS should generate this field as an
automincrement value.
628 Chapter 27 Building Dynamic Forms

Updating the database with cfgridupdate

The cfgridupdate tag provides a simple mechanism for updating the database, including
inserting and deleting records. It can add, update, and delete records simultaneously. It is
particularly convenient because it automatically handles collecting the cfgrid changes
from the various form variables and generates appropriate SQL statements to update
your data source.

In most cases, use the cfgridupdate tag to update your database. However, this tag does
not provide the complete SQL control that cfquery provides. In particular, using the
cfgridupdate tag, you can make the following changes:
• Update only a single table.
• Rows are deleted first, then rows are inserted, then any changes are made to existing

rows. You cannot modify the order of changes.
• Updating stops when an error occurs. It is possible that some database changes are

made, but the tag does not provide any information on them.

To update the data source with cfgridupdate:

1 Create a file ColdFusion page with the following contents:
<html>
<head>

<title>Update grid values</title>
</head>
<body>

<h3>Updating grid using cfgridupdate tag.</h3>

<cfgridupdate grid="employee_grid"
datasource="CompanyInfo"
tablename="Employee">

Click here to display updated grid.

</body>
</html>

2 Save the file as handle_grid.cfm.

3 View grid2.cfm in your browser, make changes to the grid, and then submit them.

Note: To update a grid cell, modify the cell contents, then press Return.

<cfgridcolumn name="LastName"
header="Last Name"
width=100
headeralign="center"
headerbold="Yes">

Creates a 100-pixel wide column for the data in the
LastName column of the data source. Center a header
named Last Name and make it bold.

<cfgridcolumn name="Dept_ID"
header="Dept"
width=35
headeralign="center"
headerbold="Yes">

Creates a 35-pixel wide column for the data in the
Dept_ID column of the data source. Center a header
named Dept and make it bold.

Code Description
Creating data grids with cfgrid 629

Reviewing the code

The following table describes the highlighed code and its function:

Updating the database with cfquery

You can use the cfquery tag to update your database from the cfgrid changes. This
provides you with full control over how the updates are made and lets you handle any
errors that arise.

To update the data source with cfquery:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>Catch submitted grid values</title>
</head>
<body>

<h3>Grid values for Form.employee_grid row updates</h3>

<cfif isdefined("Form.employee_grid.rowstatus.action")>

<cfloop index = "Counter" from = "1" to =
#arraylen(Form.employee_grid.rowstatus.action)#>

<cfoutput>
The row action for #Counter# is:
#Form.employee_grid.rowstatus.action[Counter]#

</cfoutput>

<cfif Form.employee_grid.rowstatus.action[counter] is "D">

<cfquery name="DeleteExistingEmployee"
datasource="CompanyInfo">
DELETE FROM Employee
WHERE Emp_ID=

<cfqueryparam
value="#Form.employee_grid.original.Emp_ID[Counter]#"
CFSQLType="CF_SQL_INTEGER" >

</cfquery>

<cfelseif Form.employee_grid.rowstatus.action[counter] is "U">

<cfquery name="UpdateExistingEmployee"
datasource="CompanyInfo">
UPDATE Employee
SET

Code Description

<cfgridupdate grid="employee_grid" Update the database from the Employee_grid grid.

datasource="CompanyInfo" Update the CompanyInfo data source.

tablename="Employee" Update the Employee table.
630 Chapter 27 Building Dynamic Forms

LastName=
<cfqueryparam

value="#Form.employee_grid.LastName[Counter]#"
CFSQLType="CF_SQL_VARCHAR" >,

Dept_ID=
<cfqueryparam

value="#Form.employee_grid.Dept_ID[Counter]#"
CFSQLType="CF_SQL_INTEGER" >

WHERE Emp_ID=
<cfqueryparam value="#Form.employee_grid.original.Emp_ID[Counter]#"

CFSQLType="CF_SQL_INTEGER">
</cfquery>

<cfelseif Form.employee_grid.rowstatus.action[counter] is "I">

<cfquery name="InsertNewEmployee"
datasource="CompanyInfo">
INSERT into Employee (LastName, Dept_ID)
VALUES

(<cfqueryparam
value="#Form.employee_grid.LastName[Counter]#"
CFSQLType="CF_SQL_VARCHAR" >,

<cfqueryparam value="#Form.employee_grid.Dept_ID[Counter]#"
CFSQLType="CF_SQL_INTEGER" >)

</cfquery>

</cfif>
</cfloop>

</cfif>

Click here to display updated grid.

</body>
</html>

2 Rename your existing handle_grid.cfm file as handle_grid2.cfm to save it, then save
this file as handle_grid.cfm.

3 View grid2.cfm in your browser, make changes to the grid, and then submit them.

Reviewing the code

The following table describes the code and its function:

Code Description

<cfif isdefined
("Form.employee_grid.rowstatus.action")>
<cfloop index = "Counter" from = "1" to =
#arraylen(Form.employee_grid.rowstatus.action)#>

If there is an array of edit types, then change
the table. Otherwise, do nothing. Loops
through the remaining code once for each
row to be changed. Counter is the common
index into the arrays of change information
for the row being changed.

<cfoutput>
The row action for #Counter# is:
#Form.employee_grid.rowstatus.action[Counter]#

</cfoutput>

Displays the action code for this row:
U, I, or D.
Creating data grids with cfgrid 631

<cfif Form.employee_grid.rowstatus.action[counter] is "D">
<cfquery name="DeleteExistingEmployee"
datasource="CompanyInfo">
DELETE FROM Employee
WHERE Emp_ID=#Form.employee_grid.original.Emp_ID[Counter]#

</cfquery>

If the action is to delete a row, generates a
SQL DELETE query specifying the Emp_ID
(the primary key) of the row to be deleted.

<cfelseif Form.employee_grid.rowstatus.action
[counter] is "U">

<cfquery name="UpdateExistingEmployee"
datasource="CompanyInfo">
UPDATE Employee
SET LastName='#Form.employee_grid.LastName[Counter]#',
Dept_ID=#Form.employee_grid.Dept_ID[Counter]#

WHERE Emp_ID=#Form.employee_grid.original.Emp_ID[Counter]#
</cfquery>

Otherwise, if the action is to update a row,
generates a SQL UPDATE query to update
the LastName and Dept_ID fields for the row
specified by the Emp_ID primary table key.

<cfelseif Form.employee_grid.rowstatus.action[counter] is "I">

<cfquery name="InsertNewEmployee"
datasource="CompanyInfo">
INSERT into Employee (LastName, Dept_ID)
VALUES
('#Form.employee_grid.LastName[Counter]#',
#Form.employee_grid.Dept_ID[Counter]#)

</cfquery>

Otherwise, if the action is to insert a row,
generates a SQL INSERT query to insert the
employee’s last name and department ID
from the grid row into the database. The
INSERT assumes that the DBMS
automatically increments the Emp_ID
primary key. If you use the Dbase version of
the CompanyInfo database that is provided
for UNIX installations, the record is inserted
without an Emp_ID number.

</cfif>
</cfloop>
</cfif>

Closes the cfif tag used to select among
deleting, updating, and inserting.

Closes the loop used for each row to be
changed.

Closes the cfif tag that surrounds all the
active code.

Code Description
632 Chapter 27 Building Dynamic Forms

Embedding Java applets
The cfapplet tag lets you embed Java applets either on a ColdFusion page or in a cfform.
To use cfapplet, you must first register your Java applet using the ColdFusion
Administrator Java Applets page (under Extensions on the Server tab). In the
Administrator, you define the interface to the applet, encapsulating it so that each
invocation of the cfapplet tag is very simple.

The cfapplet tag within a form offers several advantages over using the HTML applet
tag:
• Return values Since cfapplet requires a form field name attribute, you can avoid

coding additional JavaScript to capture the applet’s return values. You can reference
return values like any other ColdFusion form variable: Form.variablename.

• Ease of use Since the applet’s interface is defined in the Administrator, each
instance of the cfapplet tag in your pages only needs to reference the applet name
and specify a form variable name.

• Parameter defaults ColdFusion uses the parameter value pairs that you defined in
the Administrator. You can override these values by specifying parameter value pairs
in cfapplet.

When an applet is registered, you enter just the applet source and the form variable
name:

<cfapplet appletsource="Calculator"
name="calc_value">

By contrast, with the HTML applet tag, you must declare all the applet’s parameters
every time you want to use it in a ColdFusion page.

Registering a Java applet
Before you can use a Java applet in your ColdFusion pages, you must register the applet
in the Administrator.

To register a Java applet:

1 Open the ColdFusion Administrator by clicking on the Administrator icon in the
ColdFusion Program group and entering the Administrator password.

2 Under Extensions, click Java Applets.

The Java Applets page appears.

3 Click the Register New Applet button.

The Add/Registered Java Applet page appears.

4 Enter options for the following settings:

Setting Description

Applet Name Applet name.

Code Name of the file that contains the applet subclass. Must be relative to
the code base URL. The class extension is optional.
Embedding Java applets 633

5 Click Submit.

Applet registration fields

The following table explains the applet registration fields:

Code Base Base URL of the applet: directory that contains the applet
components. The applet class files must be located within the web
server root directory, such as http://servername/classes .

Archive File name for the applet archive.

Method Method name in the applet that returns a string value. You use the
name in the NAME attribute of the cfapplet tag to populate a form
variable with the method value. If the applet has no method, leave this
field blank.

Height Applet height, in pixels.

Width Applet width, in pixels.

VSpace Measurement, in pixels, for the space above and below the applet.

HSpace Measurement, in pixels, for the space on each side of the applet.

Align Applet alignment.

Not Supported
Message

Message to display if the user’s web browser does not support Java
applets. To override this message, specify a different one in the
cfapplet tag notsupported attribute.

Parameter
Name

Name for a required applet parameter, typically provided by the
applet.

Value Default value for the parameter.

Setting Description

Field Description

Codebase Enter the base URL of the applet: the directory that contains the
applet components. The applet class files must be located within
the web browser root directory; for example:

http://servername/classes

Code The name of the file that contains the compiled applet. The
filename is relative to the code base URL. The *.class file
extension is not required.

Method Enter the name of a method in the applet that returns a string
value. If you specify the method name in the cfapplet tag name
attribute, the value returned by the method is available in the
form’s action page as Form.name. If the applet has no method,
leave this field blank.

Height Enter a measurement in pixels for the vertical space for the
applet.

Width Enter a measurement in pixels for the horizontal space for the
applet.
634 Chapter 27 Building Dynamic Forms

Using cfapplet to embed an applet
After you register an applet, you can use the cfapplet tag to place the applet in a
ColdFusion page. The cfapplet tag has two required attributes: appletsource and name.
Because you registered the applet and you defined each applet parameter with a default
value, you can invoke the applet with a very simple form of the cfapplet tag:

<cfapplet appletSource="appletname" name="form_variable">

Overriding alignment and positioning values

To override any of the values defined in the ColdFusion Administrator for the applet, you
can use the optional cfapplet parameters to specify custom values. For example, the
following cfapplet tag specifies custom spacing and alignment values:

<cfapplet appletSource="myapplet"
name="applet1_var"
height=400
width=200
vspace=125
hspace=125
align="left">

Overriding parameter values

You can also override the values that you assigned to applet parameters in the ColdFusion
Administrator by providing new values for any parameter. In order to override a
parameter, you must have already defined the parameter and a default value for it in the
ColdFusion Administrator Applets page, as follows:

<cfapplet appletSource="myapplet"
name="applet1_var"
Param1="registered parameter1"
Param2="registered parameter2">

Vspace Enter a measurement in pixels for the space above and below
the applet.

Hspace Enter a measurement in pixels for the space on each side of the
applet.

Align Select the alignment.

Not Supported Message This message is displayed by browsers that do not support Java
applets. To override this message, you specify a different
message in the cfapplet notsupported attribute.

Parameter Name Enter a name for a required applet parameter. Your Java applet
typically provides the parameter name needed to use the applet.
Enter each parameter in a separate parameter field.

Value For every parameter that you enter, define a default value. Your
applet documentation provides guidelines on valid entries.

Field Description
Embedding Java applets 635

Handling form variables from an applet
The cfapplet tag requires you to specify a form variable name for the applet. This
variable, referenced like other ColdFusion form variables, Form.variable_name holds the
value the applet method returns when it is executed in the cfform.

Not all Java applets return values. For instance, many graphical widgets do not return a
specific value; they do their flipping, spinning, fading, exploding, and that is all. For this
kind of applet, the method field in the Administrator remains empty. Other applets,
however, do have a method that returns a value. You can only use one method for each
applet that you register. If an applet includes more than one method that you want to
access, you can register the applet with a unique name for each additional method you
want to use.

To reference a Java applet return value in your application page:

1 Specify the name of the method in the Add/Registered Java Applet page of the
ColdFusion Administrator.

2 Specify the method name in the name attribute of the cfapplet tag when you code
your cfform.

When your page executes the applet, ColdFusion creates a form variable with the name
that you specified. If you do not specify a method, ColdFusion does not create a form
variable.
636 Chapter 27 Building Dynamic Forms

Input validation with cfform controls
The cfinput and cftextinput tags include the validate attributes, which lets you specify
a valid data entry type for the control. You can validate user entries on the following data
types:

When you specify an input type in the validate attribute, ColdFusion tests for the
specified input type when you submit the form, and submits form data only on a
successful match. A successful form submission returns the value True and returns the
value False if validation fails.

Validating with regular expressions
You can use regular expressions to match and validate the text that users enter in cfinput
and cftextinput tags. Ordinary characters are combined with special characters to define
the match pattern. The validation succeeds only if the user input matches the pattern.

Regular expressions allow you to check input text for a wide variety of conditions. For
example, if a date field must only contain dates between 1950 and 2050, you can create a
regular expression that matches only numbers in that range. You can concatenate simple
regular expressions into complex search criteria to validate against complex patterns, such
as any of several words with different endings.

Data type Description

Date Verifies US date entry in the form mm/dd/yyyy (where the year
can have one through four digits).

Eurodate Verifies valid European date entry in the form dd/mm/yyyy
(where the year can have one through four digits).

Time Verifies a time entry in the form hh:mm:ss.

Float Verifies a floating point entry.

Integer Verifies an integer entry.

Telephone Verifies a telephone entry. You must enter telephone data as
###-###-####. You can replace the hyphen separator (-) with
a blank. The area code and exchange must begin with a digit
between 1 and 9.

Zipcode (U.S. formats only) Number can be a five-digit or nine-digit zip
in the form #####-####. You can replace the hyphen separator
(-) with a blank.

Creditcard Blanks and dashes are stripped and the number is verified using
the mod10 algorithm.

Social_security_number You must enter the number as ###-##-####. You can replace
the hyphen separator (-) with a blank.

Regular_expression Matches the input against a JavaScript regular expression
pattern. You must use the pattern attribute to specify the
regular expression. Any entry containing characters that
matches the pattern is valid.
Input validation with cfform controls 637

You can use ColdFusion variables and functions in regular expressions. The ColdFusion
Server evaluates the variables and functions before the regular expression is evaluated. For
example, you can validate against a value that you generate dynamically from other input
data or database values.

Note: The rules listed in this section are for JavaScript regular expressions, and apply to the
regular expressions used in cfinput and cftextinput tags only. These rules differ from those
used by the ColdFusion functions REFind, REReplace, REFindNoCase, and REReplaceNoCase.
For information on regular expressions used in ColdFusion functions, see Chapter 7, “Using
Regular Expressions in Functions” on page 133.

Special characters

Because special characters are the operators in regular expressions, in order to represent a
special character as an ordinary one, you must precede it with a backslash. For example,
use double backslash characters (\\) to represent a backslash character.

Single-character regular expressions

The following rules govern regular expressions that match a single character:
• Special characters are: + * ? . [^ $ () { | \
• Any character that is not a special character or escaped by being preceded by the

backslash (\) matches itself.
• A backslash (\) followed by any special character matches the literal character itself,

that is, the backslash escapes the special character.
• A period (.) matches any character except newline.
• A set of characters enclosed in brackets ([]) is a one-character regular expression that

matches any of the characters in that set. For example, "[akm]" matches an "a", "k",
or "m". If you include] (closing square bracket) in square brackets, it must be the
first character. Otherwise, it does not work, even if you use \].

• A dash can indicate a range of characters. For example, "[a-z]" matches any lowercase
letter.

• If the first character of a set of characters in bracket is the caret (^), the expression
matches any character except those in the set. It does not match the empty string. For
example: [^akm] matches any character except "a", "k", or "m". The caret loses its
special meaning if it is not the first character of the set.

• You can make regular expressions case insensitive by substituting individual
characters with character sets, for example, [Nn][Ii][Cc][Kk].

• You can use the following escape sequences to match specific characters or character
classes:

Escape
seq Matches

Escape
seq Meaning

[\b] Backspace \s Any of the following white space
characters: space, tab, form feed,
and line feed.

\b A word boundary such as a
space

\S Any character except the white
space characters matched by \s
638 Chapter 27 Building Dynamic Forms

Multicharacter regular expressions

Use the following rules to build a multicharacter regular expression:
• Parentheses group parts of regular expressions together into a subexpression that can

be treated as a single unit. For example, (ha)+ matches one or more instances of "ha".
• A one-character regular expression or grouped subexpression followed by an asterisk

(*) matches zero or more occurrences of the regular expression. For example, [a-z]*
matches zero or more lowercase characters.

• A one-character regular expression or grouped subexpression followed by a plus (+)
matches one or more occurrences of the regular expression. For example, [a-z]+
matches one or more lowercase characters.

• A one-character regular expression or grouped subexpression followed by a question
mark (?) matches zero or one occurrences of the regular expression. For example, xy?z
matches either "xyz" or "xz".

• The carat (^) at the beginning of a regular expression matches the beginning of the
field.

• The dollar sign ($) at the end of a regular expression matches the end of the field.
• The concatenation of regular expressions creates a regular expression that matches the

corresponding concatenation of strings. For example, [A-Z][a-z]* matches any
capitalized word.

• The OR character (|) allows a choice between two regular expressions. For example,
jell(y|ies) matches either "jelly" or "jellies".

\B A non-word boundary \t Tab

\cX The control character Ctrl-x. For
example, \cv matches Ctrl-v, the
usual control character for
pasting text.

\v Vertical tab

\d A digit character [0-9] \w An alphanumeric character or
underscore. The equivalent of
[A-Za-z0-9_]

\D Any character except a digit \W Any character not matched by \w.
The equivalent of [^A-Za-z0-9_]

\f Form feed \n Backreference to the nth
expression in parentheses. See
“Backreferences”

\n Line feed \ooctal The character represented in the
ASII character table by the
specified octal number

\r Carriage return \xhex The character represented in the
ASCII character table by the
specified hexadecimal number

Escape
seq Matches

Escape
seq Meaning
Input validation with cfform controls 639

• Braces ({}) are used to indicate a range of occurrences of a regular expression, in the
form {m, n} where m is a positive integer equal to or greater than zero indicating the
start of the range and n is equal to or greater than m, indicating the end of the range.
For example, (ba){0,3} matches up to three pairs of the expression "ba". The form
{m,} requires at least m occurrences of the preceding regular expression. The form
{m} requires exactly m occurrences of the preceding regular expression. The syntax
{,n} is not allowed.

Backreferences

Backreferencing lets you match text in previously matched sets of parentheses. A slash
followed by a digit n (\n) refers to the nth parenthesized subexpression.

One example of how you can use backreferencing is searching for doubled words; for
example, to find instances of ‘the the’ or ‘is is’ in text. The following example shows the
syntax you use for backreferencing in regular expressions:

(\b[A-Za-z]+)[]+\1

This code matches text that contains a word (specified by the \b word boundary special
character and the [A-Za-z]+) followed by one or more spaces []+, followed by the first
matched subexpression in parentheses. For example, it would match “is is, or “This is is”,
but not “This is”.

Exact and partial matches

Entered data is normally valid if any of it matches the regular expression pattern. Often
you might ensure that the entire entry matches the pattern. If so, you must “anchor” it to
the beginning and end of the field as follows:
• If a caret (^) is at the beginning of a pattern, the field must begin with a string that

matches the pattern.
• If a dollar sign ($) is at the end of pattern, the field must end with a string that

matches the pattern.
• If the expression starts with a caret and ends with a dollar sign, the field must exactly

match the pattern.

Expression examples

The following examples show some regular expressions and describe what they match:

Expression Description

[\?&]value= Any string containing a URL parameter value.

^[A-Z]:(\\[A-Z0-9_]+)+$ An uppercase DOS/Windows directory path that is
not the root of a drive and has only letters, numbers,
and underscores in its text.

^(\+|-)?[1-9][0-9]*$ An integer that does not begin with a zero and has an
optional sign.

^(\+|-)?[1-9][0-9]*(\.[0-9]*)?$ A real number.

^(\+|-)?[1-9]\.[0-9]*E(\+|-)?[0-9]+$ A real number in engineering notation.
640 Chapter 27 Building Dynamic Forms

Resources

An excellent reference on regular expressions is Mastering Regular Expressions by Jeffrey
E.F. Friedl, published by O'Reilly & Associates, Inc.

a{2,4} A string containing two to four occurrences of 'a': aa,
aaa, aaaa; for example aardvark, but not automatic.

(ba){2,} A string containing least two 'ba' pairs; for example
Ali baba, but not Ali Baba.

Expression Description
Input validation with cfform controls 641

Input validation with JavaScript
In addition to native ColdFusion input validation using the validate attribute of the
cfinput and cftextinput tags, the following tags support the onvalidate attribute, which
lets you specify a JavaScript function to handle your cfform input validation:
• cfgrid

• cfinput
• cfslider

• cftextinput
• cftree

ColdFusion passes the following arguments to the JavaScript function you specify in the
onvalidate attribute:
• The form object
• The JavaScript input object corresponding to the tag whose value is being validated
• The value of the control to validate

For example, if you code the cfinput tag as the following:

<cfinput type="text"
...

<!--- Do not include () in JavaScript function name --->
onvalidate="handleValidation"
...

>

You define the JavaScript function as the following:

<script>
<!--
function handleValidation(form_object, input_object, object_value) {
...
}
//-->
</script>

Handling failed validation
The onerror attribute lets you specify a JavaScript function to execute if a validation fails.
For example, if you use the onvalidate attribute to specify a JavaScript function to handle
input validation, you can also use the onerror attribute to specify a JavaScript function to
handle a failed validation (that is, when onvalidate returns a false value). If you use the
validate attribute, you can also use the onerror attribute to specify a JavaScript function
handle validation errors. The following cfform tags support the onerror attribute:
• cfgrid
• cfinput

• cfselect
• cfslider
• cftextinput
• cftree

ColdFusion passes the following JavaScript objects to the function in the onerror
attribute:
• form_object
642 Chapter 27 Building Dynamic Forms

• input_object
• object_value

• error message text

Example: validating an e-mail address
The following example validates an e-mail entry. If the string is invalid, it displays a
message box. If the address is valid, it redisplays the page. To be valid, the e-mail address
must not be an empty string, contain an at sign (@) that is at least the second character,
and contain a period (.) that is at least the fourth character.

To use JavaScript to validate form data:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>JavaScript Validation</title>

<script>
<!--
function testbox(form, ctrl, value) {

if (value == "" || value.indexOf ('@', 1) == -1 ||
value.indexOf ('.', 3) == -1)

{
return (false);

}
else
{

return (true);
}

}
//-->
</script>

</head>

<body>
<h2>JavaScript validation test</h2>

<p>Please enter your email address:</p>
<cfform name="UpdateForm" preservedata="Yes"

action="validjs.cfm" >

<cfinput type="text"
name="inputbox1"
required="YES"
onvalidate="testbox"
message="Sorry, your entry is not a valid email address."
size="15"
maxlength="30">

<input type="Submit" value=" Update... ">
</cfform>

</body>
Input validation with JavaScript 643

</html>

2 Save the page as validjs.cfm.

3 View validjs.cfm in your browser.

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

<script>
<!--
function testbox(form) {
Ctrl = Form.inputbox1;

if (Ctrl.value == "" ||
Ctrl.value.indexOf ('@', 1) == -1 ||
Ctrl.value.indexOf ('.', 3) == -1)

{
return (false);

}
else
{

return (true);
}

}
//-->
</script>

JavaScript code that tests for valid entry
in the text box. The if statement checks to
making sure that the field is not empty
and contains an at sign (@) that at least
the second character and a period (.) that
is at least the fourth character.

onvalidate="testbox" Calls the JavaScript testbox function to
validate entries in this control.

message="Sorry, your entry is not a valid
email address."

Displays a message if the validation
function returns a false value.
644 Chapter 27 Building Dynamic Forms

CHAPTER 28

Charting and Graphing Data
This chapter explains how to use the cfchart tag to display charts and graphs. It
describes ways that you can chart data and gives you the tools you need to create effective
charts.

Contents

• Creating a chart ... 646

• Administering charts.. 649

• Charting data .. 650

• Controlling chart appearance... 658

• Linking charts to URLs ... 667
645

Creating a chart
The ability to display data in a chart or graph can make data interpretation much easier.
Rather than present a simple table of numeric data, you can display a bar, pie, line, or
other applicable type of chart using colors, captions, and a two-dimensional or
three-dimensional representation of your data.

The cfchart tag, along with the tags cfchartseries and cfchartdata, provide many
different chart types. The attributes to these tags let you customize your chart
appearance.

Chart types
You can create 11 types of charts in ColdFusion in two and three dimensions. The
following figure shows a sample of each type of chart in two dimensions.

Note: Horizontal bar charts are bar charts rotated 90 degrees. In two dimensions, bar and
cylinder charts appear the same, as do cone and pyramid charts.

bar, cylinder, and
horizontal bar

line

step

pie cone and pyramid

scatter

area

curve
646 Chapter 28 Charting and Graphing Data

Creating a basic chart
To create a chart, you use the cfchart tag along with at least one cfchartseries tag.
You can optionally include one or more cfchartdata tags within a cfchartseries tag.
The following table describes these tags:

The following shows the basic code you use to create a chart:

<cfchart
<!--- optional attributes to cfchart --->
>

<!--- one or more cfchartseries tags --->
<cfchartseries

type="type"
<!--- optional attributes to cfchartseries --->
/>

<cfchartseries
type="type"
<!--- optional attributes to cfchartseries --->
>

<!--- zero or more cfchartdata tags --->
<cfchartdata

value="number"
<!--- optional attributes to cfchartdata --->
>

</cfchartseries>

</chart>

Often, you use these tags to chart the data stored in a ColdFusion query. If you have a
query that contains average salary information by department, the following code
displays a bar chart that shows the data in the query:

<cfchart
xAxisTitle="Department"
yAxisTitle="Salary Average"

>
<cfchartseries

type="bar"
query="DataTable"
valueColumn="AvgByDept"

Tag Description

cfchart Specifies the container in which the chart appears. This container defines
the height, width, background color, labels, fonts, and other
characteristics of the chart.

You must include at least one cfchartseries tag within the cfchart
tag.

cfchartseries Specifies a database query that supplies the data to the chart and/or one
or more cfchartdata tags specifying individual data points. Specifies
the chart type, colors for the chart, and other optional attributes.

cfchartdata Optionally specifies individual data point to the cfchartseries tag.
Creating a chart 647

itemColumn="Dept_Name"
/>

</cfchart>

In this example, the data from the query column AvgByDept supplies the data for the
y-axis, and the query column Dept_Name provides the data for the x-axis.

The resulting chart looks like the following:
648 Chapter 28 Charting and Graphing Data

Administering charts
Use the ColdFusion Administrator to administer charts. In the Administrator, you can
choose to save cached charts in memory or to disk. You can also specify the number of
charts to cache, the number of charting threads, and the disk file for caching images to
disk.

ColdFusion caches charts as they are created. In that way, repeated requests of the same
chart load the chart from the cache rather than having ColdFusion render the chart over
and over again.

Note: You do not have to perform any special coding to reference a cached chart.
Whenever you use the cfchart tag, ColdFusion inspects the cache to see if the chart has
already been rendered. If so, ColdFusion loads the chart from the cache.

The following table describes the settings for the ColdFusion charting and graphing
engine:

Option Description

Cache Type Set the cache type. Charts can be cached in memory or to disk.
Caching in memory is faster, but more memory intensive.

Maximum number of
images in cache

Specify the maximum number of charts to store in the cache.
When the limit is reached, the oldest chart in the cache is deleted
to make room for a new one.

The maximum number of charts you can store in the cache is 250.

Max number of
charting threads

Specify the maximum number of chart requests that can be
processed concurrently. The minimum number is 1 and the
maximum is 5. Higher numbers are more memory intensive.

Disk cache location When caching to disk, specify the directory in which to store the
generated charts.
Administering charts 649

Charting data
One of the most important considerations when you chart data is the way you supply the
data to the cfchart tag. You can supply data in the following ways:
• Provide all the data in a single query using cfchartseries tags.
• Specify individual data points using cfchartdata tags.
• Combine data from a query with additional data points from cfchartdata tags.

Note: The cfchart tag charts numeric data only. As a result, you must convert any dates,
times, or preformatted currency values, such as $3,000.53, to integers or real numbers.

Charting a query
When you chart a query, you specify the query name using the query attribute of the
cfchartseries tag. For example, the code for a simple bar chart might be as follows:

<cfchart
xAxisTitle="Department"
yAxisTitle="Salary Average"

>

<cfchartseries
type="bar"
query="DataTable"
valueColumn="AvgByDept"
itemColumn="Dept_Name"
/>

</cfchart>

This example displays the values in the AvgByDept column of the DataTable query. It
displays the Dept_Name column value as the item label by each bar.

You use the following attributes of the cfchartseries tag when working with queries:

Using queries of queries provides significant power in generating the data for the chart.
For example, you can use aggregating functions such as SUM, AVG, and GROUP BY to
create a query of queries with statistical data based on a raw database query. For more
information, see Chapter 22, “Using Query of Queries” on page 461.

You can also take advantage of the ability to reference and modify query data
dynamically. For example, you can loop through the entries in a query column and
reformat the data to show whole dollar values.

Attribute Description

query The query that contains the data. You must also specify valueColumn
and itemColumn.

valueColumn The query column that contains the values to be charted.

itemColumn The query column that contains the description for this data point. The
item normally appears on the horizontal axis of bar and line charts, on
the vertical axis of horizontal bar charts, and in the legend in pie charts.
650 Chapter 28 Charting and Graphing Data

The example in the following procedure analyzes the salary data in the CompanyInfo
database using a query of queries and displays the data as a bar chart.

To chart a query of queries:

1 Create a new ColdFusion page with the following content:
<!-- Get the raw data from the database. -->
<cfquery name="GetSalaries" datasource="CompanyInfo">

SELECT Departmt.Dept_Name,
Employee.Salary

FROM Departmt, Employee
WHERE Departmt.Dept_ID = Employee.Dept_ID

</cfquery>

<!-- Generate a query with statistical data for each department. -->
<cfquery dbtype = "query" name = "DeptSalaries">

SELECT
Dept_Name,
AVG(Salary) AS AvgByDept

FROM GetSalaries
GROUP BY Dept_Name

</cfquery>

<!--- Reformat the generated numbers to show only thousands --->
<cfloop index="i" from="1" to="#DeptSalaries.RecordCount#">

<cfset DeptSalaries.AvgByDept[i]=Round(DeptSalaries.AvgByDept[i]/1000)*1000>
</cfloop>

<html>
<head>

<title>Employee Salary Analysis</title>
</head>

<body>
<h1>Employee Salary Analysis</h1>

<!--- Bar chart, from DeptSalaries Query of Queries --->
<cfchart

xAxisTitle="Department"
yAxisTitle="Salary Average"
font="Arial"
gridlines=6
showXGridlines="yes"
showYGridlines="yes"
showborder="yes"
show3d="yes"

>

<cfchartseries
type="bar"
query="DeptSalaries"
valueColumn="AvgByDept"
itemColumn="Dept_Name"
seriesColor="olive"
paintStyle="plain"

/>
Charting data 651

</cfchart>

</body>
</html>

2 Save the page as chartdata.cfm in myapps under the web root directory. For example,
the directory path on Windows might be C:\Inetpub\wwwroot\myapps.

3 Return to your browser and enter the following URL to view chartdata.cfm:

http://127.0.0.1/myapps/chartdata.cfm

The following figure appears:

Note: If a query contains two rows with the same value for the itemColumn, ColdFusion
graphs the last row in the query for that value. For the previous example, if the query contains
two rows for the Sales department, ColdFusion graphs the value for the last row in the query
for Sales.

Reviewing the code

The following table describes the code and its function:

Code Description

<cfquery name="GetSalaries"
datasource="CompanyInfo">

SELECT Departmt.Dept_Name,
Employee.Salary

FROM Departmt, Employee
WHERE Departmt.Dept_ID =

Employee.Dept_ID
</cfquery>

Query the CompanyInfo database to get the
Dept_Name and Salary for each employee. Because
the Dept_Name is in the Departmt table and the
Salary is in the Employee table, you need a table join
in the WHERE clause. The raw results of this query
could be used elsewhere on the page.

<cfquery dbtype = "query"
name = "DeptSalaries">

SELECT
Dept_Name,
AVG(Salary) AS AvgByDept

FROM GetSalaries
GROUP BY Dept_Name

</cfquery>

Generate a new query from the GetSalaries query.
Use the AVG aggregating function to get statistical
data on the employees. Use the GROUP BY
statement to ensure that there is only one row for
each department.
652 Chapter 28 Charting and Graphing Data

You can also rewrite this example to use the cfoutput and cfchartdata tags within the
cfchartseries tag, instead of using the loop, to round the salary data, as the following
code shows:

<cfchartseries
type="bar"
seriesColor="olive"
paintStyle="plain">

<cfoutput query="deptSalaries">
<cfchartdata item="#dept_name#" value=#Round(AvgByDept/1000)*1000#>

</cfoutput>

</cfchartseries>

Charting individual data points
When you chart individual data points, you specify each data point by inserting a
cfchartdata tag in the cfchartseries tag body. For example, the following code
creates a simple pie chart:

<cfchart>
<cfchartseries type="pie">

<cfchartdata item="New Vehicle Sales" value=500000>
<cfchartdata item="Used Vehicle Sales" value=250000>
<cfchartdata item="Leasing" value=300000>
<cfchartdata item="Service" value=400000>

</cfchartseries>
</cfchart>

<cfloop index="i" from="1"

to="#DeptSalaries.RecordCount#">
<cfset DeptSalaries.AvgByDept[i]=
Round(DeptSalaries.AvgByDept[i]
/1000)*1000>

</cfloop>

Loop through all the rows in DeptSalaries query and
round the salary data to the nearest thousand. This
loop uses the query variable RecordCount to get the
number of rows and changes the contents of the
query object directly.

<cfchart
xAxisTitle="Department"
yAxisTitle="Salary Average"
font="Arial"
gridlines=6
showXGridlines="yes"
showYGridlines="yes"
showborder="yes"
show3d="yes" >

<cfchartseries
type="bar"
query="DeptSalaries"
valueColumn="AvgByDept"
itemColumn="Dept_Name"
seriesColor="olive"
paintStyle="plain"/>

</cfchart>

Create a bar chart using the data from the AvgByDept
column of the DeptSalaries query. Label the bars with
the Department names.

Code Description
Charting data 653

This pie chart displays four types of revenue for a car dealership. Each cfchartdata tag
specifies a department’s income and description for the legend.

Note: If two data points have the same item name, ColdFusion graphs the value for the last
one specified within the cfchart tag.

The cfchartdata tag lets you specify the following information about a data point:

Combining a query and data points
To chart data from both query and individual data values, you specify the query name,
and related attributes, in the cfchartseries tag, and provide additional data points
using the cfchartdata tag.

ColdFusion displays the chart data specified by a cfchartdata tag before the data from a
query; for example, to the left on a bar chart. You can use the sortXAxis attribute of
cfchart to sort data alphabetically long the x-axis.

One use of combining queries and data points could be if the database is missing data for
one department, you can add the information manually. The following example adds
data for the Facilities and Documentation departments to the salary data obtained from
the query shown in the previous section:

<cfchart

<cfchartseries
type="bar"
query="DataTable"
itemColumn ="Dept_Name"
valueColumn="AvgByDept"
>

<cfchartdata item="Facilities" value="35000">
<cfchartdata item="Documentation" value="725000">

</cfchartseries>
</cfchart>

Charting multiple data collections
Sometimes, you might have more than one series of data to display on a single chart, or
you want to compare two sets of data on the same chart. In some cases, you might want
to use different charting types on the same chart. For example, you might want to
include a line chart on a bar chart.

Attribute Description

value The data value to be charted. This attribute is required.

item (Optional) The description for this data point. The item appears on the horizontal
axis of bar and line charts, on the vertical axis of horizontal bar charts, and in the
legend in pie charts.
654 Chapter 28 Charting and Graphing Data

To combine multiple data series into a single chart, insert multiple cfchartseries tags
within a single cfchart tag. You control how the multiple data collections are charted
using the seriesPlacement attribute of the cfchart tag. Using this attribute, you can
specify the following options:
• default Let ColdFusion determine the best mehtod for combining the data.
• cluster Place corresponding chart elements from each series next to each other.
• stacked Combine the corresponding elements of each series.
• percent Show the elements of each series as a percentage of the total of all

corresponding elements.

The following figure shows these options for combining two bar charts:

You can also combine chart types. The following is a combination bar and line chart:

The only chart type that you cannot mix with others is the pie chart. If you define one of
the data series to use a pie chart, no other chart will appear.

The following example creates the previous figure showing a bar chart with a line chart
added to it. In this example, you chart the salary of permanent employees (bar) against
contract employees (line).

Note: The layering of multiple series depends on the order that you specify the
cfchartseries tags. For example, if a bar chart is specified first and a line chart second, the
bar chart appears in front of the line chart in the final chart.

To create a combination bar and a line chart:

1 Open chartdata.cfm in your editor.

2 Edit the cfchart tag so that it appears as follows:
<cfchart

backgroundColor="white"
xAxisTitle="Department"
yAxisTitle="Salary Average"

clustered stacked percent
Charting data 655

font="Arial"
gridlines=6
showXGridlines="yes"
showYGridlines="yes"
showborder="yes"

>

<cfchartseries
type="line"
seriesColor="blue"
paintStyle="plain"
seriesLabel="Contract Salaries"
>

<cfchartdata item="HR" value=70000>
<cfchartdata item="Marketing" value=95000>
<cfchartdata item="Sales" value=80000>
<cfchartdata item="Training" value=93000>

</cfchartseries>

<cfchartseries
type="bar"
query="DeptSalaries"
valueColumn="AvgByDept"
itemColumn="Dept_Name"
seriesColor="gray"
paintStyle="plain"
seriesLabel="Dept. Average Salaries"
/>

</cfchart>

3 Save the page as chart2queries.cfm in myapps under the web root directory. For
example, the directory path on Windows might be C:\Inetpub\wwwroot\myapps.

4 Return to your browser and enter the following URL to view chart2queries.cfm:

http://127.0.0.1/myapps/chart2queries.cfm

Writing a chart to a variable
In some cases, your application might have charts that are static or charts that, because of
the nature of the data input, take a long time to render. In this scenario, you can create a
chart and write it to a variable.

Once written to a variable, other ColdFusion pages can access the variable to display the
chart, or you can write the variable to disk to save the chart to a file. This lets you create
or update charts only as needed, rather than every time someone requests a page
containing a chart.

You use the name attribute of the cfchart tag to write a chart to a variable. If you specify
the name attribute, the chart is not rendered in the browser but is written to the variable.

You can save the chart as a Flash movie (.swf file), or as a JPG or PNG image file. If you
save the image as a Flash movie, you can pass the variable back to a Flash client using
ColdFusion Flash Remoting. For more information, see Chapter 29, “Using the Flash
Remoting Service” on page 673.
656 Chapter 28 Charting and Graphing Data

Note: If you write the chart to a JPG or PNG file, mouseover tips and URLs embedded in
the chart for data drill-down will not work when you redisplay the image from the file.
However, if you save the image a Flash movie, both tips and drill-down URLs will work. For
more information on data drill-down, see “Linking charts to URLs” on page 667.

To write a chart to a variable and a file:

1 Create a new ColdFusion page with the following content:
<cfchart

name="myChart"
format="jpg"
>

<cfchartseries type="pie">
<cfchartdata item="New Vehicle Sales" value=500000>
<cfchartdata item="Used Vehicle Sales" value=250000>
<cfchartdata item="Leasing" value=300000>
<cfchartdata item="Service" value=400000>

</cfchartseries>

</cfchart>

<cffile
action="WRITE"
charset="ISO-8859-1"
file="c:\inetpub\wwwroot\charts\vehicle.jpg"
output="#myChart#">

<img src="c:\inetpub\wwwroot\charts\vehicle.jpg"
height=240

width=320>

2 Save the page as chartToFile.cfm in myapps under the web root directory.

3 Return to your browser and enter the following URL to view chartToFile.cfm:

http://127.0.0.1/myapps/chartToFile.cfm

The chart is saved to disk as c:\inetpub\wwwroot\charts\vehicle.jpg

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

<cfchart
name="myChart"
format="jpg">

Define a chart written to the variable myChart
using the JPG format.

<cffile
action="WRITE"
charset="ISO-8859-1"
file=

"c:\inetpub\wwwroot\charts\vehicle.jpg"
output="#myChart#">

Use cffile to write the chart to a file.

You must specify a charset of ISO-8859-1
when writing binary chart data to a file.

<img
src=

"c:\inetpub\wwwroot\charts\vehicle.jpg"
height=240
width=320>

Use the HTML img tag to display the chart.
Charting data 657

Controlling chart appearance
Use the cfchart and cfchartseries tags to customize the appearance of your charts.

Common chart characteristics
You can optionally specify the following characteristics to cfchart on all types of charts:

Chart
characteristic Attributes used Description

File type format Whether to send the chart to the user as a JPG,
PNG, or Flash Movie (.swf) file. Flash is the
default format.

Dimensions chartWidth
chartHeight

The width and height, in pixels, of the chart. This
size defines the entire chart area, including the
legend and background area around the chart.

The default height is 240 pixels; the default width
is 320 pixels.

Column labels sortXAxis Specifies to display the column labels along the
x-axis in alphabetical order. The default is no.

Foreground and
background
color

foregroundColor
dataBackgroundColor
backgroundColor

The colors used for foreground and background
objects.

The default foreground color is black; the default
background colors are white.

You can specify 16 color names or use any valid
HTML color format. If you use the numeric
format, you must use double pound signs, for
example, blue or ##FF33CC. For the complete
list of colors, see Administering ColdFusion MX.

Border showBorder Specifies to draw a border around the chart. The
border color is the same as specified by the
foregroundColor attribute. Default is no.

Labels font
fontSize
fontBold
frontItalic
labelFormat
xAxisTitle
yAxisTitle

font specifies the font for all text. Default is Arial.
If you are using a double-byte character set on
UNIX, or using a double-byte character set on
Windows with a file type of Flash, you must
specify ArialUnicodeMs as the font.

fontSize speciofies an Integer font size used for
all text. Default is 11.

fontBold specifies to display all text as bold.
Default is no.

fontItalic specifies to display all text as italic.
Default is no.

labelFormat specifies the format of the y-axis
labels, number, currency, percent, or date.
Default is number.

xAxisTitle and yAxisTitle specify the title for
each axis.
658 Chapter 28 Charting and Graphing Data

3-D
Appearance

show3D
xOffset
yOffset

show3D displays the chart in 3-D. Default is no.

xOffset and yOffset specify the amount to
which the chart should be rotated on a horizontal
axis (xOffset) or vertical axis (yOffset). 0 is flat
(no rotation), -1 and 1 are for a full 90 degree
rotation left (-1) or right (1). Default is .1

Rotation rotated Rotates the entire chart 90 degrees. Set to yes to
create a horizontal chart, such as a horizontal bar
chart. Default is no.

Multiple series showLegend
seriesPlacement

showLegend specifies to display the chart’s
legend when the chart contains more than one
series of data. Default is yes.

seriesPlacement specifies the location of each
series relative to the others. By default,
ColdFusion determines the best placement
based on the graph type of each series.

Tips tipStyle
tipBGColor

tipStyle specifies to display a small popup
window that shows information about the chart
element pointed to by the curser. Options are
none, mousedown, or mouseover. Default is
mouseover.

tipBGColor specifies the background color of
the tip window for Flash format only. Default is
white.

Markers showMarkers
markerSize

showMarkers specifies to show markers at the
data points for 2-D line, curve, and scatter charts.
Default is yes.

markerSize specifies an integer number of
pixels for the marker size. ColdFusion determines
default.

Chart
characteristic Attributes used Description
Controlling chart appearance 659

You can also use the cfchartseries tag to specify attributes of chart appearance. The
following table describes these attributes:

Setting x-axis and y-axis characteristics
You can specify the following additional characteristics to control the look of the x-axis
and y-axis of charts, except for pie charts:

Chart
characteristic Attributes used Description

Multiple series seriesLabel
seriesColor

seriesLabel specifies the text displayed for the series
label.

seriesColor specifies a single color of the bar, line,
pyramid, and so on. For pie charts, this is the first slice's
color. Subsequent slices are automatically colored
based on the specified initial color, or use the
colorList attribute.

Paint paintStyle Specifies the way color is applied to a data series. You
can specify solid color, buttonized look, linear gradient
fill with a light center and darker outer edge, and
gradient fill on lighter version of color. Default is solid.

Data markers markerStyle For line, curve, and scatter charts, specifies the shape
used to mark the data point. Supported for
2-dimensional charts. Default is rectangle.

Chart
characteristic Attributes used Description

Value axis scaleFrom
scaleTo

The minimum and maximum points on the data axis.

By default the minimum is 0 or the lowest negative chart
data value, and the maximum is the largest data value.

Grid lines showXGridlines
showYGridlines
gridLines

showXGridlines and showYGridlines specify to
display x-axis and y-axis grid lines. Default no for x-axis
gridlines, and yes for y-axis gridlines.

gridLines specifies the total number of grid lines on
the value axis, including the axis itself. The value of each
grid line appears along the value axis. The cfchart tag
displays horizontal grid lines only. A value of 0 (the
default) means no grid lines.
660 Chapter 28 Charting and Graphing Data

Creating a bar chart
The example in the following procedure adds a title to the bar chart and changes its
appearance from the default, flat look, to a 3-D look. It adds grid lines, sets the
maximum y-axis value to 100,000, and uses a custom set of colors.

To enhance the bar chart:

1 Open the chartdata.cfm file in your editor.

2 Edit the cfchart tag so that it appears as follows:
<!--- Bar chart, from Query of Queries --->
<cfchart
scaleTo = 100000
fontSize=16
gridLines = 4
show3D="yes"
>

<cfchartseries
type="bar"
query="DeptSalaries"
valueColumn="AvgByDept"
itemColumn="Dept_Name"
/>

</cfchart>

3 Save the file.

4 Return to your browser and enter the following URL to view chartdata.cfm:

http://127.0.0.1/myapps/chartdata.cfm

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

scaleTo = 100000 Set the maximum value of the vertical axis to 100000. The
minimum value is the default, 0.

fontSize=16 Make the point size of the labels 16 points.

gridLines = 4 Display four grid lines between the top and bottom of the chart.

show3D = "yes" Show the chart in 3-D.
Controlling chart appearance 661

Setting pie chart characteristics
You can specify the following additional characteristics for pie charts:

The example in the following procedure adds a pie chart to the page.

To create a pie chart:

1 Open chartdata.cfm in your editor.

2 Edit the DeptSalaries query and the cfloop code so that it appears as follows:
<!--- A query to get statistical data for each department. --->
<cfquery dbtype = "query" name = "DeptSalaries">

SELECT
Dept_Name,
SUM(Salary) AS SumByDept,
AVG(Salary) AS AvgByDept

FROM GetSalaries
GROUP BY Dept_Name

</cfquery>

<!--- Reformat the generated numbers to show only thousands --->
<cfloop index="i" from="1" to="#DeptSalaries.RecordCount#">

<cfset DeptSalaries.SumByDept[i]=Round(DeptSalaries.SumByDept[i]/
1000)*1000>

<cfset DeptSalaries.AvgByDept[i]=Round(DeptSalaries.AvgByDept[i]/
1000)*1000>

</cfloop>

3 Add the following cfchart tag:
<!--- Pie chart, from DeptSalaries Query of Queries --->
<cfchart

tipStyle="mousedown"
font="Times"
fontsize=14
fontBold="yes"
backgroundColor = "##CCFFFF"
show3D="yes"
>

Chart
characteristic

Attributes used Description

Slice style

(cfchart tag)

pieSliceStyle Display pie chart as solid or sliced. Default is sliced.

Data point colors

(cfchartseries
tag)

colorList A comma-separated list of colors to use for each pie
slice.

You can specify 16 color names or use any valid
HTML color format. If you use the numeric format,
you must use double pound signs, for example, blue
or ##FF33CC. For the complete list of colors, see
Administering ColdFusion MX.

If you specify fewer colors than data points, the colors
repeat. If you specify more colors than data points,
the extra colors are not used.
662 Chapter 28 Charting and Graphing Data

<cfchartseries
type="pie"
query="DeptSalaries"
valueColumn="SumByDept"
itemColumn="Dept_Name"
colorlist="##6666FF,##66FF66,##FF6666,##66CCCC"
/>

</cfchart>

4 Save the file.

5 Return to your browser and enter the following URL to view chartdata.cfm:

http://127.0.0.1/myapps/chartdata.cfm

The following figure appears:

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

SUM(Salary) AS SumByDept, In the DeptSalaries query, add a SUM
aggregation function to get the sum of all
salaries per department.

<cfset DeptSalaries.SumByDept[i]=
Round(DeptSalaries.SumByDept[i]/
1000)*1000>

In the cfloop tag, round the salary sums to
the nearest thousand.
Controlling chart appearance 663

Creating an area chart
The example in the following procedure adds an area chart showing the average salary by
start date to the salaries analysis page. It shows the use of a second query of queries to
generate a new analysis of the raw data from the GetSalaries query. It also shows the use
of additional cfchart attributes.

To create an area chart:

1 Open chartdata.cfm your editor.

2 Edit the GetSalaries query so that it appears as follows:
<!-- Get the raw data from the database. -->
<cfquery name="GetSalaries" datasource="CompanyInfo">

SELECT Departmt.Dept_Name,
Employee.StartDate,
Employee.Salary

FROM Departmt, Employee
WHERE Departmt.Dept_ID = Employee.Dept_ID

</cfquery>

3 Add the following code before the html tag:
<!--- Convert start date to start year. --->
<!--- You must explicitly convert the date to a number for the query to work

--->
<cfloop index="i" from="1" to="#GetSalaries.RecordCount#">
<cfset GetSalaries.StartDate[i]=NumberFormat(DatePart("yyyy",

GetSalaries.StartDate[i]) ,9999)>
</cfloop>

<!--- Query of Queries for average salary by start year --->
<cfquery dbtype = "query" name = "HireSalaries">

SELECT
StartDate,

<cfchart
tipStyle="mousedown"
font="Times"
fontBold="yes"
backgroundColor = "##CCFFFF"
show3D="yes"
>

Show a tip only when a user clicks on the
chart, display text in Times Bold font, set the
background color to light blue, and display
the chart in 3-D.

<cfchartseries
type="pie"
query="DeptSalaries"
valueColumn="SumByDept"
itemColumn="Dept_Name"
colorlist=

"##6666FF,##66FF66,##FF6666,##66CCCC"
/>

Create a pie chart using the SumByDept
salary sum values from the DeptSalares
query.

Use the contents of the Dept_Name column
for the item labels displayed in the chart
legend.

Get the pie slice colors from a custom list,
which uses hexadecimal color numbers. The
double pound signs prevent ColdFusion from
trying to interpret the color data as variable
names.

Code Description
664 Chapter 28 Charting and Graphing Data

AVG(Salary) AS AvgByStart
FROM GetSalaries
GROUP BY StartDate

</cfquery>

<!--- Round average salaries to thousands --->
<cfloop index="i" from="1" to="#HireSalaries.RecordCount#">

<cfset
HireSalaries.AvgByStart[i]=Round(HireSalaries.AvgByStart[i]/
1000)*1000>

</cfloop>

4 Add the following cfchart tag before the end of the body tag block:
<!--- Area-style Line chart, from HireSalaries Query of Queries --->
<cfchart

chartWidth=400
BackgroundColor="##FFFF00"
show3D="yes"

>
<cfchartseries

type="area"
query="HireSalaries"
valueColumn="AvgByStart"
itemColumn="StartDate"

 />
</cfchart>

5 Save the page.

6 Return to your browser and enter the following URL to view chartdata.cfm:

http://127.0.0.1/myapps/chartdata.cfm

Reviewing the code

The following table describes the highlighted code and its function:

Code Description

Employee.StartDate, Add the employee start date to the data in
the GetSalaries query.

<cfloop index="i" from="1"
to="#GetSalaries.RecordCount#">

<cfset GetSalaries.StartDate[i]=
NumberFormat(DatePart("yyyy",
GetSalaries.StartDate[i]) ,9999)>

</cfloop>

Use a cfloop tag to extract the year of hire
from each employee’s hire data, and
convert the result to a four-digit number.

<cfquery dbtype = "query" name =
"HireSalaries">
SELECT
StartDate,
AVG(Salary) AS AvgByStart

FROM GetSalaries
GROUP BY StartDate

</cfquery>

Create a second query from the GetSalaries
query. This query contains the average
salary for each start year.
Controlling chart appearance 665

Setting curve chart characteristics
Curves use the attributes already discussed. However, you should be aware that curve
charts require a large amount of processing to render. For fastest performance, create
them offline, write them to a file or variable, then reference them in your application
pages. For information on creating offline charts, see “Writing a chart to a variable” on
page 656.

<cfloop index="i" from="1"
to="#HireSalaries.RecordCount#">
<cfset HireSalaries.AvgByStart[i]
=Round(HireSalaries.AvgByStart[i]
/1000)*1000>

</cfloop>

Round the salaries to the nearest thousand.

<cfchart
chartWidth=400
BackgroundColor="##FFFF00"
show3D="yes" >

<cfchartseries
type="area"
query="HireSalaries"
valueColumn="AvgByStart"
itemColumn="StartDate"

 />
</cfchart>

Create a line chart using the HireSalaries
query. Chart the average salaries against
the start date.

Limit the chart width to 400 pixels, show
the chart in 3-D, and set the background
color to white.

Code Description
666 Chapter 28 Charting and Graphing Data

Linking charts to URLs
ColdFusion provides a data drill-down capability with charts. This means you can click
on an area of a chart, both the data and the legend areas, to request a URL. For example,
if you have a pie chart and want a user to be able to select a pie wedge for more
information, you can build that functionality into your chart.

You use the url attribute of the cfchart tag to specify the URL to open when a user
clicks anywhere on the chart. For example, define a chart that opens the page
moreinfo.cfm when a user clicks on the chart using the following code:

<cfchart
xAxisTitle="Department"
yAxisTitle="Salary Average"
url="moreinfo.cfm"
>

<cfchartseries
seriesLable="Department Salaries"

...
/>

</cfchart>

You can use the following variables in the url attribute to pass additional information to
the target page:
• $VALUE$ The value of the selected item, or an empty string
• $ITEMLABEL$ The label of the selected item, or an empty string
• $SERIESLABEL$ The label of the selected series, or empty string

For example, to let users click on the graph to open the page moreinfo.cfm, and pass all
three values to the page, you code the url attribute as follows:

url="moreinfo.cfm?Series=$SERIESLABEL$&Item=$ITEMLABEL$&Value=$VALUE$"

The variables are not enclosed in # signs like ordinary ColdFusion variables. They are
enclosed in dollar signs. Clicking on a chart that uses this url attribute value could
generate a URL in the following form:

http://localhost:8500/tests/charts/moreinfo.cfm?
Series=Department%20Salaries&Item=Training&Value=86000

You can also use JavaScript in the URL to execute client-side scripts. For an example, see
“Linking to JavaScript from a pie chart” on page 670.

Dynamically linking from a pie chart
In the following example, when you click a pie wedge, ColdFusion displays a table that
contains the detailed salary information for the departments represented by the wedge.
The example is divided into two parts: creating the detail page and making the pie chart
dynamic.
Linking charts to URLs 667

Part 1: creating the detail page

This page displays salary information for the department you selected when you click on
a wedge of the pie chart. The department name is passed to this page using the
$ITEMLABEL$ variable.

To create the detail page:

1 Create a new application page with the following content:
<cfquery name="GetSalaryDetails" datasource="CompanyInfo">

SELECT Departmt.Dept_Name,
Employee.FirstName,
Employee.LastName,
Employee.StartDate,
Employee.Salary,
Employee.Contract

FROM Departmt, Employee
WHERE Departmt.Dept_Name = '#URL.Item#'
AND Departmt.Dept_ID = Employee.Dept_ID
ORDER BY Employee.LastName, Employee.Firstname

</cfquery>

<html>
<head>

<title>Employee Salary Details</title>
</head>

<body>

<h1><cfoutput>#GetSalaryDetails.Dept_Name[1]# Department
Salary Details</cfoutput></h1>

<table border cellspacing=0 cellpadding=5>
<tr>

<th>Employee Name</th>
<th>StartDate</th>
<th>Salary</th>
<th>Contract?</th>

</tr>
<cfoutput query="GetSalaryDetails" >
<tr>

<td>#FirstName# #LastName#</td>
<td>#dateFormat(StartDate, "mm/dd/yyyy")#</td>
<td>#numberFormat(Salary, "$999,999")#</td>
<td>#Contract#</td>

</tr>
</cfoutput>
</table>
</body>
</html>

2 Save the page as Salary_details.cfm in myapps under the web root directory.
668 Chapter 28 Charting and Graphing Data

Reviewing the code

The following table describes the code and its function:

Part 2: making the chart dynamic

1 Open chartdata.cfm in your editor.

2 Edit the cfchart tag for the pie chart so it appears as follows:
<cfchart

font="Times"
fontBold="yes"
backgroundColor="##CCFFFF"
show3D="yes"
url="Salary_Details.cfm?Item=$ITEMLABEL$"
>

<cfchartseries
type="pie"
query="DeptSalaries"
valueColumn="SumByDept"
itemColumn="Dept_Name"

Code Description

<cfquery name="GetSalaryDetails"
datasource="CompanyInfo">

SELECT
Departmt.Dept_Name,
Employee.FirstName,
Employee.LastName,
Employee.StartDate,
Employee.Salary,
Employee.Contract

FROM Departmt, Employee
WHERE

Departmt.Dept_Name =
'#URL.Item#'

AND Departmt.Dept_ID =
Employee.Dept_ID

ORDER BY Employee.LastName,
Employee.Firstname

</cfquery>

Get the salary data for the
department whose name was
passed in the URL parameter string.
Sort the data by the employee’s last
and first names.

<table border cellspacing=0 cellpadding=5>
<tr>

<th>Employee Name</td>
<th>StartDate</td>
<th>Salary</td>
<th>Contract?</td>

</tr>
<cfoutput query="GetSalaryDetails" >
<tr>

<td>#FirstName# #LastName#</td>
<td>#dateFormat(StartDate,

"mm/dd/yyyy")#</td>
<td>#numberFormat(Salary, "$999,999")#</td>
<td>#Contract#</td>

</tr>
</cfoutput>
</table>

Display the data retrieved by the
query as a table. Format the start
date into standard month/date/year
format, and format the salary with a
leading dollar sign comma separator,
and no decimal places.
Linking charts to URLs 669

colorlist="##6666FF,##66FF66,##FF6666,##66CCCC"
/>

</cfchart>

3 Save the file.

4 Return to your browser and enter the following URL to view chartdata.cfm:

http://127.0.0.1/myapps/chartdata.cfm

5 Click the slices of the pie chart to request Salary_details.cfm and pass in the
department name of the wedge you clicked. The salary information for that
department appears.

Reviewing the code

The following table describes the highlighted code and its function:

Linking to JavaScript from a pie chart
In the following example, when you click a pie wedge, ColdFusion uses JavaScript to
display a pop-up window about the wedge.

Create a dynamic chart using JavaScript

1 Create a new application page with the following content:
<script>
function Chart_OnClick(theSeries, theItem, theValue){
alert("Series: " + theSeries + ", Item: " + theItem + ", Value: " + theValue);

}
</script>

<cfchart
xAxisTitle="Department"
yAxisTitle="Salary Average"
tipstyle=none
url="javascript:Chart_OnClick('$SERIESLABEL$','$ITEMLABEL$','$VALUE$');"

>
<cfchartseries type="bar" seriesLabel="Average Salaries by Department">

<cfchartData item="Finance" value="75000">
<cfchartData item="Sales" value="120000">
<cfchartData item="IT" value="83000">
<cfchartData item="Facilities" value="45000">

</cfchartseries>
</cfchart>

2 Save the page as chartdata_withJS.cfm in myapps under the web root directory.

Code Description

url=
"Salary_Details.cfm?Item=$ITEMLABEL$"

When the user clicks a wedge of the pie chart, call
the Salary_Details.cfm page in the current
directory, and pass it the parameter named Item
containing the department name of the selected
wedge.
670 Chapter 28 Charting and Graphing Data

3 Return to your browser and enter the following URL to view chartdata_withJS.cfm:

http://127.0.0.1/myapps/chartdata_withJS.cfm

4 Click the slices of the pie chart to display the pop-up window.
Linking charts to URLs 671

672 Chapter 28 Charting and Graphing Data

CHAPTER 29

Using the Flash Remoting Service
Using the Macromedia Flash Remoting service of Macromedia ColdFusion MX,
ColdFusion developers can work together with Macromedia Flash MX designers to build
dynamic Flash user interfaces for ColdFusion applications.

Contents

• About using the Flash Remoting service with ColdFusion 674

• Using the Flash Remoting service with ColdFusion pages 675

• Using Flash with ColdFusion components... 680

• Using the Flash Remoting service with server-side ActionScript........................... 682

• Using the Flash Remoting service with ColdFusion Java objects 683

• Handling errors with ColdFusion and Flash .. 684
673

About using the Flash Remoting service with ColdFusion
Using the Flash Remoting service of ColdFusion MX, ColdFusion developers can work
together with Macromedia Flash MX designers to build Flash UIs for ColdFusion
applications. Building Flash UIs requires the separation of UI code from business logic
code. User interface controls are built in Flash MX, while business logic is built in
ColdFusion.

The following figure displays a simplified representation of the relationship between
Flash and ColdFusion:

Planning your Flash application
When planning ColdFusion application development with Flash UIs, remember the
importance of separating display code from business logic. Separating display code, such
as HTML, from business logic, such as CFML, enables your ColdFusion applications to
interact with multiple client types, such as Flash movies, web browsers, and web services.

Building ColdFusion applications for multiple clients means that your ColdFusion pages
and components return common data types, including strings, integers, query objects,
structures, and arrays. Clients that receive the results can process the passed data
according to the client type, such as ActionScript with Flash or CFML with ColdFusion.

To use the Macromedia Flash Remoting service with Macromedia ColdFusion MX, you
build ColdFusion pages and components or deploy Java objects. In ColdFusion pages,
you use the Flash variable scope to interact with Flash applications. ColdFusion
components natively support Flash interaction. In addition, you can use the ColdFusion
674 Chapter 29 Using the Flash Remoting Service

server-side ActionScript functionality, which lets you query databases and perform
HTTP operations in ActionScript files on the server. The public methods of Java objects
are also available to the Flash Remoting service.

The remaining sections in this chapter explain developing Flash applications with
ColdFusion.

Using the Flash Remoting service with ColdFusion pages
When building a ColdFusion page that interacts with Flash movies, the directory name
that contains the ColdFusion pages translates to the Flash service name in ActionScript.
The individual ColdFusion page names contained in that directory translate to service
functions in ActionScript.

In your CFML, you use the Flash variable scope to access parameters passed from Flash
movies and return values to Flash movies. To access parameters passed from Flash movies,
you use the parameter name appended to the Flash variable or the Flash.Params array.
To return values to the Flash application, use the Flash.Result variable. To set an
increment value for records to be returned to the Flash application, use the
Flash.Pagesize variable.

The following table shows the variables contained in the Flash scope:

In addition, the following table compares the ColdFusion data types and their
ActionScript equivalents:

Variable Description For more information

Flash.Params A structure containing the
parameters passed from the Flash
movie.

See “Accessing parameters
passed from Flash” on page 676.

Flash.Result The variable returned to the Flash
movie that called the function.

See “Returning results to Flash” on
page 677.

Flash.Pagesize The number of records returned at a
time to Flash.

See “Returning records in
increments to Flash” on page 678.

ActionScript data type ColdFusion MX data type

Number (primitive data
type)

Number

boolean (primitive data
type)

boolean

String String

ActionScript (AS) object Structure

AS Object (as the only
argument passed to a
service function)

Arguments to the service function. ColdFusion pages (.cfm):
flash variable scope, ColdFusion components (.cfc): named
arguments

null null (ASC returns 0, which translates to not defined)

undefined null (ASC returns 0, which translates to not defined)
Using the Flash Remoting service with ColdFusion pages 675

Accessing parameters passed from Flash

To access variables passed from Flash movies, you append the parameter name to the
Flash scope or use the Flash.Params array. Depending on how the values were passed
from Flash, you refer to array values using ordered array syntax or structure name syntax.
Only ActionScript objects can pass named parameters.

For example, if you pass the parameters as an ordered array from Flash, array[1]
references the first value. If you pass the parameters as named parameters, you use
standard structure-name syntax like params.name.

You can use most of the CFML array and structure functions on ActionScript collections.
However, the StructCopy CFML function does not work with ActionScript collections.
The following table describes the collections and examples:

Ordered array Array

Named array Struct

Date object Date

XML object XML document

RecordSet Query object

ActionScript data type ColdFusion MX data type

Collection ActionScript example Notes

Strict array var myArray = new Array();
myArray[1] = "one";
myArray[2] = "two";
myService.myMethod(myArray);

The Flash Remoting service converts the
array argument to a ColdFusion MX array.
All CFML array operations work as
expected.

Named or
associative
array

var myStruct = new Array();
myStruct["one"] = "banana";
myStruct["two"] = "orange";

In ActionScript, named array keys are not
case-sensitive.
676 Chapter 29 Using the Flash Remoting Service

The Flash.Params array retains the order of the parameters as they were passed to the
function. You use standard structure name syntax to reference the parameters; for
example:

<cfquery name="flashQuery" datasource="exampleapps" dbtype="ODBC">
SELECT ItemName, ItemDescription, ItemCost
FROM tblItems
WHERE ItemName EQ '#Flash.paramName#'

</cfquery>

In this example, the query results are filtered by the value of Flash.paramName, which
references the first parameter in the array. If the parameters were passed as an ordered
array from Flash, you use standard structure name syntax; for example:

<cfset flash.result = "Variable 1:#Flash.params[1]#, Variable 2:
#Flash.params[2]#">

In this ActionScript example, notice that ActionScript starts the array index at zero.
ColdFusion array indexes start at one.

Returning results to Flash

In ColdFusion pages, only the value of Flash.Result variable is returned to the Flash
application. For more information about supported data types between ColdFusion and
Flash, see the data type table in “Using the Flash Remoting service with ColdFusion
pages” on page 675. The following procedure creates the service function helloWorld,
which returns a structure containing simple messages to the Flash application.

Mixed array var myMixedArray = new Array();
myMixedArray["one"] = 1;
myMixedArray[2] = true;

Treat this collection like a structure in
ColdFusion MX. However, keys that start
with numbers are invalid CFML variable
names. Depending on how you attempt
to retrieve this data, ColdFusion MX
might throw an exception. The following
ColdFusion component example throws
an exception:

<cfargument name="ca" type="struct">
<cfreturn ca.2>

The following ColdFusion component
example does not throw an exception:

<cfargument name="ca" type="struct">
<cfreturn ca["2"]>

Using an
ActionScript
object initializer
for named
arguments

myService.myMethod({ x:1, Y:2,
z:3 });

This notation provides a convenient way
of passing named arguments to a
ColdFusion MX-based Flash Remoting
service. You can access these arguments
in ColdFusion pages as members of the
Flash scope, or as normal named
arguments of a ColdFusion component
function

Collection ActionScript example Notes
Using the Flash Remoting service with ColdFusion pages 677

To create a ColdFusion page that passes a structure to Flash:

1 Create a folder in your web root, and name it helloExamples.

2 Create a ColdFusion page, and save it as helloWorld.cfm in the helloExamples
directory.

3 Modify helloWorld.cfm so that the CFML code appears as follows:
<cfset tempStruct = StructNew()>
<cfset tempStruct.timeVar = DateFormat(Now ())>
<cfset tempStruct.helloMessage = "Hello World">

4 In the example, two string variables are added to a structure, one with a formatted
date and one with a simple message. The structure is passed back to the Flash
application using the Flash.Result variable.

5 Save the file.

Remember, the directory name is used the service address, and the helloWorld.cfm file is
a method of the helloExamples Flash Remoting service. The following ActionScript
example calls the helloWorld ColdFusion page:

include "NetServices.as"
NetServices.setDefaultGatewayUrl("http://localhost:8500/flashservices/gateway");
gatewayConnection = NetServices.createGatewayConnection();
CFMService = gatewayConnection.getService("helloExamples", this);
CFMService.helloWorld();

Note: Due to ActionScript's automatic type conversion, do not return a boolean literal to
Flash from ColdFusion. Return 1 to indicate true, and return 0 to indicate false.

Returning records in increments to Flash

ColdFusion lets you return record set results to Flash in increments. For example, if a
query returns 20 records, you can set the Flash.Pagesize variable to return five records
at a time to Flash. Incremental record sets lets you minimize the time that Flash
application waits for the application server data to load.

To create a ColdFusion page that returns a incremental record set to Flash:

1 Create a ColdFusion page, and save it as getData.cfm in the helloExamples directory.

2 Modify getData.cfm so that the code appears as follows:
<cfparam name="pagesize" default="10">
<cfif IsDefined("Flash.Params")>

<cfset pagesize = Flash.Params[1]>
</cfif>
<cfquery name="myQuery" datasource="ExampleApps">

SELECT *
FROM tblParks

</cfquery>
<cfset Flash.Pagesize = pagesize>
<cfset Flash.Result = myQuery>
678 Chapter 29 Using the Flash Remoting Service

In this example, if a single parameter is passed from the Flash application, the
pagesize variable is set to the value of the Flash.Params[1] variable, otherwise the
default is set to 10. Next, a cfquery statement queries the database. After that, the
pagesize variable is assigned into the Flash.Pagesize variable. Finally, the query
results are assigned into the Flash.Result variable, which is returned to Flash.

3 Save your work.

When you assign a value to the Flash.Pagesize variable, you are specifying that if the
record set has more than a certain number of records, the record set becomes pageable
and returns the number of records specified in the Flash.Pagesize. For example:

include "NetServices.as"
NetServices.setDefaultGatewayUrl("http://localhost:8500/flashservices/gateway");
gatewayConnection = NetServices.createGatewayConnection();
CFMService = gatewayConnection.getService("helloExamples", this);
CFMService.getData();

After the initial delivery of records, the RecordSet ActionScript class becomes responsible
for fetching records. You can configure the client-side RecordSet object to fetch records
in various ways using the setDeliveryMode ActionScript function.
Using the Flash Remoting service with ColdFusion pages 679

Using Flash with ColdFusion components
ColdFusion components require little modification to work with Flash. The cffunction
tag names the function and contains the CFML logic, and the cfreturn tag returns the
result to Flash. The name of the ColdFusion component file (*.cfc) translates to the
service name in ActionScript.

Note: For ColdFusion component methods to communicate with Flash movies, you must
set the cffunction tag’s access attribute to remote.

The following example replicates the helloWorld function that was previously
implemented as a ColdFusion page. For more information, see “Using the Flash
Remoting service with ColdFusion pages” on page 675.

To create a ColdFusion component that interacts with a Flash movie:

1 Create a ColdFusion component, and save it as flashComponent.cfc in the
helloExamples directory.

2 Modify the code in flashComponent.cfc so that it appears as follows:
<cfcomponent name="flashComponent">

<cffunction name="helloWorld" access="remote" returnType="Struct">
 <cfset tempStruct = StructNew()>
 <cfset tempStruct.timeVar = DateFormat(Now ())>
 <cfset tempStruct.helloMessage = "Hello World">
 <cfreturn tempStruct>

</cffunction>
</cfcomponent>

In this example, the helloWorld function is created. The cfreturn tag returns the
result to the Flash movie.

3 Save the file.

The helloWorld service function is now available through the flashComponent service
to ActionScript. The following ActionScript example calls this function:

#include "NetServices.as"
NetServices.setDefaultGatewayUrl("http://localhost:8500/flashservices/gateway");
gatewayConnection = NetServices.createGatewayConnection();
CFCService = gatewayConnection.getService("flashExamples.flashComponent", this);
CFCService.helloWorld();

In this example, the getService references the flashComponent component in the
flashExamples directory. You can now call the CFCService object sayHello and getTime
functions.

For ColdFusion components, the component file name, including the directory structure
from the web root, serves as the service name. Remember to delimit the path directories
rather than backslashes.

Using component metadata with the Flash Remoting service

Flash MX designers can use the Service Browser in the Flash MX authoring environment
to discover business logic functionality built in ColdFusion. You use the description
attribute of the cffunction and cfargument tags to describe the ColdFusion
functionality to the Service Browser.
680 Chapter 29 Using the Flash Remoting Service

To create a ColdFusion component that describes itself to the Service Browser:

1 Open flashComponents.cfc, and modify the code so that it appears as follows:
<cfcomponent name="flashComponent">

<cffunction name="helloWorld" access="remote" returnType="Struct"
description="Returns hello message">
<cfset tempStruct = StructNew()>
<cfset tempStruct.timeVar = DateFormat(Now ())>
<cfset tempStruct.helloMessage = "Hello World">
<cfreturn tempStruct>

</cffunction>
</cfcomponent>

In this example, the description attribute of the cffunction tag supplies a short
text description of the component method.

2 Save the file.

3 Open the Flash MX authoring environment, and open the Service Browser.

4 If not already present, add your Flash Remoting service URL, such as
http://localhost:8500/flashservices/gateway.

5 To add the flashComponent service, enter helloExamples.flashComponent.

6 When you click the getTime folder, the description appears in the Service Browser as
shown in the following figure:
.

Using Flash with ColdFusion components 681

Using the Flash Remoting service with server-side
ActionScript

The ability to create server-side ActionScript provides a familiar way for Flash developers
to access ColdFusion query and HTTP features without learning CFML. You can place
ActionScript files (*.asr) on the server that you want to call from the Flash application
anywhere below the web server’s root directory. To specify subdirectories of the webroot
or a virtual directory, use package dot notation. For example, in the following assignment
code, the stockquotes.asr file lives in the mydir/stock/ directory:

stockService = gatewayConnnection.getService("mydir.stock.stockquotes", this);

You can also point to virtual mappings, such as cfsuite.asr.stock.stockquotes,
where cfsuite is a virtual mapping and asr.stock is a subdirectory of that mapping.
The CF.query and CF.http functions give you a well-defined interface for building SQL
queries and HTTP operations of ColdFusion.

For example, the following server-side ActionScript function definition returns a
RecordSet object:

function basicQuery()
{

mydata = CF.query({datasource:"customers",
sql:"SELECT * FROM myTable"});

return mydata;
}

Note: For more information about server-side ActionScript, see Using Server-Side
ActionScript in ColdFusion.
682 Chapter 29 Using the Flash Remoting Service

Using the Flash Remoting service with ColdFusion Java
objects

You can run various kinds of Java objects with ColdFusion MX, including JavaBeans,
Java classes, and Enterprise JavaBeans. You can use the ColdFusion Administrator to add
additional directories to the classpath.

To add a directory to ColdFusion classpath:

1 Open the ColdFusion Administrator.

2 In the Server Settings menu, click the Java and JVM link.

3 Add your directory to the Class Path form field.

4 Click Submit Changes.

5 Restart ColdFusion.

When you place your Java files in the classpath, the public methods of the class instance
are available to your Flash movie.

For example, assume the Java class utils.UIComponents exists in a directory in your
ColdFusion classpath. The Java file contains the following code:

package utils;

public class UIComponents
{
 public String sayHello()
 {
 return "Hello";
 }
}

Note: You cannot call constructors with Flash Remoting. You must use the default
constructor.

In ActionScript, the following getService call invokes the sayHello public method of
the utils.UIComponents class:

#include "NetServices.as"
NetServices.setDefaultGatewayUrl("http://localhost:8500/flashservices/gateway");
gatewayConnection = NetServices.createGatewayConnection();
javaService = gatewayConnection.getService("utils.UIComponents", this);
javaService.sayHello();
function sayHello_Result(result)
{

trace(result);
}

Note: For more information about using Java objects with ColdFusion, see Chapter 32,
“Using Java objects” on page 769.
Using the Flash Remoting service with ColdFusion Java objects 683

Handling errors with ColdFusion and Flash
To help with debugging, use the cftry and cfcatch tags to return error messages to the
Flash Player, as in the following example:

<cftry>
<cfset Flash.Result = undefinedVar>
<cfcatch>

<cfset Flash.Result="Failed">
</cfcatch>

</cftry>

In this example, the first cfset tag fails to assign the value into Flash.Result because of
an undefined variable.

Note: When you create a ColdFusion page that communicates with Flash, ensure that the
ColdFusion page works before using it with Flash.
684 Chapter 29 Using the Flash Remoting Service

PART VI

Using Web Elements and

External Objects
This part describes how you can use web elements such as XML, web
services, Enterprise JavaBeans (EJBs), JSP pages, and Java servlets in
ColdFusion applications. It also describes how to use external objects,
including Java, Component Object Model (COM) and Common Object
Request Broker Architecture (CORBA) objects in CFML applications.

The following chapters are included:

Using XML and WDDX ..687

Using Web Services ..729

Integrating J2EE and Java Elements in CFML Applications759

Integrating COM and CORBA Objects in CFML Applications785

CHAPTER 30

Using XML and WDDX
This chapter describes how to use ColdFusion to create, use, and manipulate XML
documents. This chapter also presents Web Distributed Data Exchange (WDDX), an
XML dialect for transmitting structured data, and describes how to use it to transfer data
between applications and between CFML and JavaScript.

This chapter does not present XML concepts. Before you read this chapter you should
become familiar with XML.

Contents

• About XML and ColdFusion... 688

• The XML document object ... 689

• ColdFusion XML tag and functions .. 694

• Using an XML object .. 696

• Creating and saving an XML document object .. 698

• Modifying a ColdFusion XML object .. 700

• Transforming documents with XSLT ... 710

• Extracting data with XPath .. 711

• Example: using XML in a ColdFusion application... 712

• Moving complex data across the web with WDDX.. 717

• Using WDDX ... 722
687

About XML and ColdFusion
In the last few years, XML has rapidly become the universal language for representing
documents and data on the web. These documents can extend beyond the traditional
concept of a paper document or its equivalent. For example, XML is often used to
represent database or directory information. XML is also commonly used to represent
transaction information, such as product orders or receipts, and for information such as
inventory records and employee data.

Because XML represents data in a tagged, textual format it is an excellent tool for
representing information that must be shared between otherwise-independent
applications such as order entry and inventory management. No application needs to
know anything about the other. Each application only needs to be prepared to get data in
a format that is structured according to the XML DTD or Schema. For example, in a
distributed order processing application, the order placement component, order
fulfilment component, inventory management component, and billing component can
all share information with each other in XML format. They could use a common XML
DTD, of different components could communicate with each other using different
DTDs.

After an application parses the XML document, it can then manipulate the information
in any way that is appropriate. For example, you can convert tabular XML data into a
ColdFusion recordset, perform queries on the data and then export the data an XML
document. For example, the code in “Example: using XML in a ColdFusion application”
on page 712 takes a customer order in XML, converts the data to a recordset, and uses a
query to determine the order cost. It then prepares a receipt as an XML document.

ColdFusion provides a comprehensive and easy-to-use set of tools for creating and using
XML documents. ColdFusion lets you do the following with XML documents:
• Convert XML text into ColdFusion XML document objects.
• Create new ColdFusion XML document objects.
• Modify ColdFusion XML document objects.
• Transform XML using XSLT.
• Extract data from XML documents using XPath expressions.
• Convert ColdFusion XML document objects to text and save them in files.
688 Chapter 30 Using XML and WDDX

The XML document object
ColdFusion represents an XML document as an object, called an XML document object,
that is much like a standard ColdFusion structure. In fact, most ColdFusion structure
functions, such as StructInsert, work with XML document objects. For a full list of
ColdFusion functions that work on XML document objects, see “Functions for XML
object management” on page 700.

You can look at the overall structure of an XML document in two ways: a basic view and
a DOM (Document Object Model)-based node view. The basic view presents all the
information in the document, but does not separate the data into as fine-grained units as
the node view. ColdFusion can access XML document contents using either view.

A simple XML document
The next sections describe the basic and node views of the following simple XML
document. This document is used in many of the examples in this chapter.

<?xml version="1.0" encoding="UTF-8"?>
<employee>
<!-- A list of employees -->
 <name EmpType="Regular">
 <first>Almanzo</first>
 <last>Wilder</last>
 </name>
 <name EmpType="Contract">
 <first>Laura</first>
 <last>Ingalls</last>
 </name>
</employee>
The XML document object 689

Basic view
The basic view of an XML document object presents the object as a container that holds
one root element structure. The root element can have any number of nested element
structures. Each element structure represents an XML tag (start tag/end tag set) and all its
contents; it can contain additional element structures. A basic view of the simple XML
document looks like the following:

DOM node view
The DOM node view presents the XML document object using the same format as the
document’s XML Document Object Model (DOM). In fact, an XML document object
is a representation of a DOM object.

The DOM is a World Wide Web Consortium (W3C) recommendation (specification)
for a platform- and language-neutral interface to dynamically access and update the
content, structure, and style of documents. ColdFusion conforms to the DOM Level 2
Core specification, available at http://www.w3.org/TR/DOM-Level-2-Core.

In the DOM node view, the document consists of a hierarchical tree of nodes. Each node
has a DOM node type, a node name, and a node value. Node types include Element,
Comment, Text, and so on. The DOM structures the document object and each of the
elements it contains into multiple nodes of different types, providing a finer-grained view
of the document structure than the basic view. For example, if an XML comment is in
the middle of a block of text, the DOM node view represents its position in the text
while the basic view does not.

ColdFusion also allows you to use the DOM objects, methods, and properties defined in
the W3C DOM Level 2 Core specification to manipulate the XML document object.

For more information on referencing DOM nodes, see “XML DOM node structure” on
page 693. This document does not cover the node view and using DOM methods and
properties in detail.
690 Chapter 30 Using XML and WDDX

XML document structures
An XML document object is a structure that contains a set of nested XML element
structures. The following figure shows the output of a cfdump tag that displays the
document object for the XML in “A simple XML document” on page 689. The following
figure shows the output of the cfdump tag:
The XML document object 691

The following code displays this output. It assumes that you save the code in a file under
your web root, such as C:\Inetpub\wwwroot\testdocs\employeesimple.xml

<cffile action="read" file="C:\Inetpub\wwwroot\testdocs\employeesimple.xml"
variable="xmldoc">

<cfset mydoc = XmlParse(xmldoc)>
<cfdump var="#mydoc#">

The document object structure

At the top level, the XML document object has the following three entries:

The element structure

Each XML element has the following entries:

Entry name Type Description

XmlRoot Element The root element of the document.

XmlComment String A string made of the concatenation of all comments on the
document, that is, comments in the document prologue and
epilog. This string does not include comments inside
document elements.

XmlDocType XmlNode The DocType attribute of the document. This entry only exists
if the document specifies a DocType.

This entry does not appear when cfdump displays an XML
element structure.

Entry name Type Description

XmlName String The name of the element.

XmlNsPrefix String The prefix of the Namespace.

XmlNsURI String The URI of the Namespace.

XmlText String A string made of the concatenation of all text and CData text
in the element, but not inside any child elements.

XmlComment String A string made of the concatenation of all comments inside the
XML element, but not inside any child elements.

XmlAttributes Structure All of this element’s attributes, as name-value pairs.

XmlChildren Array All this element’s children elements.

XmlParent XmlNode The parent DOM node of this element.

This entry does not appear when cfdump displays an XML
element structure.

XmlNodes Array An array of all the XmlNode DOM nodes contained in this
element.

This entry does not appear when cfdump displays an XML
element structure.
692 Chapter 30 Using XML and WDDX

XML DOM node structure

The following table lists the contents of an XML DOM node structure:

Note: The cfdump tag does not display XmlNode structures. If you try to dump an XmlNode
structure, the cfdump tag displays “Empty Structure”.

The following table lists the contents of the XmlName and XmlValue fields for each node
type that is valid in the XmlType entry. The node types correspond to the objects types in
the XML DOM hierarchy.

Note: Although XML attributes are nodes on the DOM tree, ColdFusion does not expose
them as XML DOM node data structures. To view an element’s attributes, use the element
structure’s XMLAttributes structure.

The XML document object and all its elements are exposed as DOM node structures.
For example, you can use the following variable names to reference nodes in the DOM
tree created from the XML example in “A simple XML document” on page 689:

mydoc.XmlName
mydoc.XmlValue
mydoc.XmlRoot.XmlName
mydoc.employee.XmlType
mydoc.employee.XmlNodes[1].XmlType

Entry name Type Description

XmlName String The node name. For nodes such as Element or Attribute, the node
name is the element or attribute name.

XmlType String The node XML DOM type, such as Element or Text.

XmlValue String The node value. This entry is used only for Attribute, CDATA,
Comment, and Text type nodes.

Node type XmlName xmlValue

CDATA #cdata-section Content of the CDATA section

COMMENT #comment Content of the comment

ELEMENT Tag name Empty string

ENTITYREF Name of entity referenced Empty string

PI (processing
instruction)

Target entire content excluding the
target

Empty string

TEXT #text Content of the text node

ENTITY Entity name Empty string

NOTATION Notation name Empty string

DOCUMENT #document Empty string

FRAGMENT #document-fragment Empty string

DOCTYPE Document type name Empty string
The XML document object 693

ColdFusion XML tag and functions
The following table lists the ColdFusion tag (cfxml) and functions that create and
manipulate XML documents:

Tag or function Description

<cfxml variable="objectName"

[caseSensitive="Boolean"]>

Creates a new ColdFusion XML document object
consisting of the markup in the tag body. The tag can
include XML and CFML tags. ColdFusion processes all
CFML in the tag body before converting the resulting text
to an XML document object.

If you specify the CaseSensitive="True"attribute, the case
of names of elements and attributes in the document is
meaningful. The default is False.

For more information on using the cfxml tag, see “Creating
a new XML document object using the cfxml tag” on page
698.

XmlParse("XMLStringVar"

[, caseSensitive])

Converts an XML document that is represented as a string
variable into an XML document object.

If you specify the optional second argument as True, the
case of names of elements and attributes in the document
is meaningful. The default is False.

For more information on using the XmlParse function, see
“Creating an XML document object from existing XML” on
page 699.

XmlNew([caseSensitive]) Returns a new, empty XML document object.

If you specify the optional argument as True, the case of
names of elements and attributes in the document is
meaningful. The default is False.

For more information on using the XmlNew function,
see“Creating a new XML document object using the
XmlNew function” on page 698.

XmlElemNew(objectName,

"elementName")

Returns a new XML document object element with the
specified name.

For more information on using the XmlElemNew function, see
“Adding an element” on page 704.

XmlChildPos(element,

"elementName", position)

Returns the position (index) in an XmlChildren array of the
Nth child with the specified element name. For example,
XmlChildPos(mydoc.employee, "name", 2) returns the
position in mydoc.employee.XmlChildren of the
mydoc.employee.name[2] element. This index can be used
in the ArrayInsertAt and ArrayDeleteAt functions. For more
information on using the XmlChildPos function, see
“Determining the position of a child element with a common
name” on page 704, “Adding an element” on page 704,
and “Deleting elements” on page 706.
694 Chapter 30 Using XML and WDDX

Note: The tags and functions that create XML document objects let you specify whether
ColdFusion will treat the object in a case-sensitive manner. If you do not specify
case-sensitivity, ColdFusion ignores the case of XML document object component
identifiers, such as element and attribute names. If you do specify case-sensitivity, names
with different cases refer to different components. For example, if you do not specify
case-sensitivity, the names mydoc.employee.name[1] and mydoc.employee.NAME[1]
always refer to the same element. If you specify case-sensitivity, these names refer to two
separate elements.

XMLTransform(XMLVar,

XSLTStringVar)

Applies an Extensible Stylesheet Language Transformation
(XSLT) to an XML document. The document can be
represented either as a string variable or as an XML
document object. The function returns the resulting XML
document as a string.

For more information on using the XmlTransform function,
see “Transforming documents with XSLT” on page 710.

XMLSearch(objectName,

"XPathExpression")

Uses an XPath expression to search an XML document
object and returns an array of XML elements that match the
search criteria.

For more information on using the XmlSearch. function, see
“Extracting data with XPath” on page 711

IsXmlDoc(objectName) Returns True if the function argument is an XML document
object.

IsXmlElem(elementName) Returns True if the function argument is an XML document
object element.

IsXMLRoot(elementName) Returns True if the function argument is the root element of
an XML document object.

ToString(objectName) Converts an XML document object to a string
representation.

Tag or function Description
ColdFusion XML tag and functions 695

Using an XML object
Because an XML document object is represented as a structure, you can access XML
document contents using either, or a combination of both, of the following ways:
• Using the element names, such as mydoc.employee.name[1]
• Using the corresponding structure entry names (that is, XmlChildren array entries),

such as mydoc.employee.XmlChildren[1]

Similarly, you can use either, or a combination of both, of the following notation
methods:
• Structure (dot) notation, such as mydoc.employee
• Associative array (bracket) notation, such as mydoc["employee"]

Referencing the contents of an XML object
Use the following rules when you reference the contents of an XML document object on
the right side of an assignment or as a function argument:
• By default, ColdFusion ignores element name case. As a result, it considers the

element name MyElement and the element name myELement to be equivalent. To
make element name matching case-sensitive, specify CaseSensitive="True" in the
cfxml tag, or specify True as a second argument in the XMLNew or XMLParse function
that creates the document object.

• Use an array index to specify one of multiple elements with the same name; for
example, #mydoc.employee.name[1] and #mydoc.employee.name[2].
If you omit the array index on the last component of an element identifier,
ColdFusion treats the reference as the array of all elements with the specified name.
For example, mydoc.employee.name refers to an array of two name elements.

• Use an array index into the XmlChildren array to specify an element without using its
name; for example, mydoc.XmlRoot.XmlChildren[1].

• Use associative array (bracket) notation to specify an element name that contains a
period or colon; for example, myotherdoc.XmlRoot["Type1.Case1"].

• You can use DOM methods in place of structure entry names.

For example, the following variables all refer to the XmlText value “Almanzo” in the
XML document created in “A simple XML document” on page 689:

mydoc.XmlRoot.XmlChildren[1].XmlChildren[1].XmlText
mydoc.employee.name[1].first.XmlText
mydoc.employee.name[1]["first"].XmlText
mydoc["employee"].name[1]["first"].XmlText
mydoc.XmlRoot.name[1].XmlChildren[1]["XmlText"]

The following variables all refer to the EmpType attribute of the first name element in
the XML document created in “A simple XML document”:

mydoc.employee.name[1].XmlAttributes.EmpType
mydoc.employee.name[1].XmlAttributes["EmpType"]
mydoc.employee.XmlChildren[1].EmpType
mydoc.XmlRoot.name[1].XmlAttributes["EmpType"]
mydoc.XmlRoot.XmlChildren[1].EmpType
696 Chapter 30 Using XML and WDDX

Neither of these lists contains a complete set of the possible combinations that can make
up a reference to the value or attribute.

Assigning data to an XML object
When you use an XML object reference on the left side of an expression, the preceding
rules apply to the reference up to the last element in the reference string.

For example, the rules in “Referencing the contents of an XML object” apply to
mydoc.employee.name[1].first in the following expression:

mydoc.employee.name[1].first.MyNewElement = XmlElemNew(mydoc, NewElement);

The following rules apply to the meaning of the last component on the left side of an
expression:
• The component name is an element structure key name (XML property name), such

as XmlComment, ColdFusion sets the value of the specified element structure entry to
the value of the right side of the expression. For example, the following line sets the
XML comment in the mydoc.employee.name[1].first element to “This is a
comment”:
mydoc.employee.name[1].first.XmlComment = "This is a comment";

• If the component name specifies an element name and does not end with a numeric
index, for example mydoc.employee.name, ColdFusion assigns the value on the right of
the expression to the first matching element.
For example, if both mydoc.employee.name[1] and mydoc.employee.name[2] exist, the
following expression replaces mydoc.employee.name[1] with a new element named
address, not an element named name:
mydoc.employee.name = XmlElemNew(mydoc, "address");

After executing this line, if there had been both mydoc.employee.name[1] and
mydoc.employee.name[2], there is now only one mydoc.employee.name element with the
contents of the original mydoc.employee.name[2].

• If the component name does not match an existing element, the element names on
the left and right sides of the expression must match. ColdFusion creates a new
element with the name of the element on the left of the expression. If the element
names do not match, it generates an error.
For example if there is no mydoc.employee.name.phoneNumber element, the following
expression creates a new mydoc.employee.name.phoneNumber element:
mydoc.employee.name.phoneNumber = XmlElemNew(mydoc, "phoneNumber");

The following expression causes an error:
mydoc.employee.name.phoneNumber = XmlElemNew(mydoc, "address");

• If the component name does not match an existing element and the component’s
parent or parents also do not exist, ColdFusion creates any parent nodes as specified
on the left side and use the previous rule for the last element. For example, if there is
no mydoc.employee.phoneNumber element, the following expression creates a
phoneNumber element containing an AreaCode element:
mydoc.employee.name.phoneNumber.AreaCode = XmlElemNew(mydoc, "AreaCode");
Using an XML object 697

Creating and saving an XML document object
The following sections show the ways you can create and save an XML document object.
The specific technique you use will depend on the application and your coding style.

Creating a new XML document object using the cfxml tag
The cfxml tag creates an XML document object that consists of the XML markup in the
tag body. The tag body can include CFML code. ColdFusion processes the CFML code
and includes the resulting output in the XML. The following example shows a simple
cfxml tag:

<cfset testVar = True>
<cfxml variable="MyDoc">

<MyDoc>
<cfif testVar IS True>

<cfoutput>The value of testVar is True.</cfoutput>
<cfelse>

<cfoutput>The value of testVar is False.</cfoutput>
</cfif>
<cfloop index = "LoopCount" from = "1" to = "4">

<childNode>
This is Child node <cfoutput>#LoopCount#.</cfoutput>

</childNode>
</cfloop>

</MyDoc>
</cfxml>
<cfdump var=#MyDoc#>

This example creates a document object with a root element MyDoc, which includes text
that displays the value of the ColdFusion variable testVar. MyDoc has four nested child
elements, which are generated by an indexed cfloop tag. The cfdump tag displays the
resulting XML document object.

Creating a new XML document object using the XmlNew function
The XmlNew function creates a new XML document object, which you must then
populate. The following example creates and displays the same ColdFusion document
object as in “Creating a new XML document object using the cfxml tag”:

<cfset testVar = True>
<cfscript>

MyDoc = XmlNew();
MyDoc.xmlRoot = XmlElemNew(MyDoc,"MyRoot");
if (testVar IS TRUE)

MyDoc.MyRoot.XmlText = "The value of testVar is True.";
else

MyDoc.MyRoot.XmlText = "The value of testVar is False.";
for (i = 1; i LTE 4; i = i + 1)

{
MyDoc.MyRoot.XmlChildren[i] = XmlElemNew(MyDoc,"childNode");
MyDoc.MyRoot.XmlChildren[i].XmlText = "This is Child node " & i &".";
}

</cfscript>
<cfdump var=#MyDoc#>
698 Chapter 30 Using XML and WDDX

Creating an XML document object from existing XML
The XmlParse function converts an XML document or document fragment represented as
a text string into a ColdFusion document object.

If the XML document is already represented by a string variable, use the XmlParse tag
directly on the variable. For example, if your application uses cfhttp action="get" to get
the XML document, use the following line to create the XML document object:

<cfset myXMLDocument = XmlParse(cfhttp.fileContent)>

If the XML document is in a file, use cffile convert the file to a CFML variable, then
use the XmlParse tag on the resulting variable. For example, if the XML document is in
the file C:\temp\myxmldoc.xml, use the following code to convert the file to an XML
document object:

<cffile action="read" file="C:\temp\myxmldoc.xml" variable="XMLFileText">
<cfset myXMLDocument=XmlParse(XMLFileText)>

Note: If the file is not encoded with the ASCII or Latin-1 character set, use the cffil tag
charset attribute to specify the file’s character set. For example, if the file is encoded in UTF,
specify charset="UTF-8".

Saving and exporting an XML document object
The ToString function converts an XML document object to a text string. You can then
use the string variable in any ColdFusion tag or function.

To save the XML document in a file, use the ToString function to convert the document
object to a string variable, then use the cffile tag to save the string as a file. For example,
use the following code to save the XML document myXMLDocument in the file
C:\temp\myxmldoc.xml:

<cfset XMLText=ToString(myXMLDocument)>
<cffile action="write" file="C:\temp\myxmldoc.xml" output="#XMLText#">
Creating and saving an XML document object 699

Modifying a ColdFusion XML object
As with all ColdFusion structured objects, you can often use a number of methods to
change the contents of an XML document object. For example, you often have the
choice of using an assignment statement or a function to update the contents of a
structure or an array. The following section describes the array and structure functions
that you can use to modify an XML document object. The section “XML document
object management reference” on page 702 provides a quick reference to modifying XML
document object contents. Later sections describe these methods for changing document
content in detail.

Functions for XML object management
The following table lists the ColdFusion array and structure functions that you can use to
manage XML document objects and their functions, and describes their common uses.
In several cases you can use either an array function or a structure function for a purpose,
such as for deleting all of an element’s attributes or children.

Function Use

ArrayLen Determines the number of child elements in an element, that is, the
number of elements in an element’s XmlChildren array.

ArrayIsEmpty Determines whether an element has any elements in its
XmlChildren array.

StructCount Determines the number of attributes in an element’s
XmlAttributes structure.

StructIsEmpty Determines whether an element has any attributes in its
XmlAttributes structure.

Returns True if the specified structure, including the XML
document object or an element, exists and is empty.

StructKeyArray

StructKeyList

Gets an array or list with the names of all of the attributes in an
element’s XmlAttributes structure. Returns the names of the
children of an XML element.

ArrayInsertAt Adds a new element at a specific location in an element’s
XmlChildren array.

ArrayAppend

ArrayPrepend

Adds a new element at the end or beginning of an element’s
XmlChildren array.

ArraySwap Swaps the children in the XmlChildren array at the specified
position.

ArraySet Sets a range of entries in an XmlChildren array to equal the
contents of a specified element structure. Each entry in the array
range will be a copy of the structure. Can be used to set a single
element by specifying the same index as the beginning and end of
the range.

ArrayDeleteAt Deletes a specific element from an element’s XmlChildren array.

ArrayClear Deletes all child elements from an element’s XmlChildren array.
700 Chapter 30 Using XML and WDDX

Note: Array and structure functions not in the preceding or table or the table in the next
section, do not work with XML document objects, XML elements, or XML node structures.

Treating elements with the same name as an array
In many cases an XML element has multiple children with the same name. For example,
the example document used in this chapter has multiple name elements in the employee
elements. In many cases, you can treat the child elements with identical names as an
array. For example, to reference the second name element in mydoc.employee, you can
specify mydoc.employee.name[2]. However, you can only use a limited set of Array
functions when you use this notation. The following table lists the array functions that
are valid for such references.

StructDelete Deletes a selected attribute from an element’s XMLAttributes
structure.

Deletes all children with a specific element name from an
element’s XmlChildren array.

Deletes all attributes of an element.

Deletes all children of an element.

Deletes a selected property value.

StructClear Deletes all attributes from an element’s XMLAttributes structure.

Duplicate Copies an XML document object, element, or node structure.

IsArray Returns True for the XmlChildren array. Returns false if you specify
an element name, such as mydoc.XmlRoot.name, even if there are
multiple name elements in XmlRoot.

IsStruct Returns False for XML document objects, elements, and nodes.
Returns True for XmlAttributes structures.

StructGet Returns the specified structure, including XML document objects,
elements, nodes, and XmlAttributes structures.

StructAppend Appends a document fragment XML document object to another
XML document object.

StructInsert Adds a new entry to an XmlAttributes structure.

StructUpdate Sets or replaces the value of a document object property such as
XmlName, or of a specified attribute in an XmlAttributes structure.

Function Use

Array function Result

IsArray(elemPath.elemName) Always returns False.

ArrayClear(elemPath.elemName) Removes all the elements with name elemName
from the elemPath element.

ArrayLen(elemPath.elemName) Returns the number of elements named elemName
in the elemPath element.

ArrayDeleteAt(elemPath.elemName, n) Deletes the nth child named elemlName from the
elemPath element.
Modifying a ColdFusion XML object 701

XML document object management reference
The following tables provide a quick reference to the ways you can modify the contents
of an XML document object. The sections that follow describe in detail how to modify
XML contents.

Adding

Use the following techniques to add new information to an element:

Deleting

Use the following techniques to delete information from an element:

IsEmpty(elemPath.elemName) Always Returns False.

ArrayToList(elemPath.elemName, n) Returns a comma separated list of all the XmlText
properties of all the children of elemPath named
elemName.

Array function Result

Type Using a function Using an assignment statement

Attribute StructInsert(xmlElemPath.XmlAttributes,
"key", "value")

xmlElemPath.XmlAttributes.key =
"value"

xmlElemPath.XmlAttributes["key"]
= "value"

Child
element

To append:

ArrayAppend(xmlElempath.XmlChildren,
newElem)

To insert:

ArrayInsertAt(xmlElempath.
XmlChildren, position, newElem)

To append:

xmlElemPath.XmlChildren[i] =
newElem

xmlElemPath.newChildName =
newElem

(where newChildName must be the
same as newElem.XmlName and
cannot be an indexed name such as
name[3])

Type Using a function Using an assignment statement

Property StructDelete(xmlElemPath, propertyName) xmlElemPath.propertyName=""

Attribute All attributes:

StructDelete(xmlElemPath, XmlAttributes)

A specific attribute:

StructDelete(xmlElemPath.XmlAttributes,
"attributeName")

Not available
702 Chapter 30 Using XML and WDDX

Changing

Use the following techniques to change the contents of an element:

Adding, deleting, and modifying XML elements
The following sections describe the basic techniques for adding, deleting, and modifying
XML elements. The example code uses the XML document described in “A simple XML
document” on page 689.

Child
element

All children of an element:

StructDelete(xmlElemPath, "XmlChildren")
or
ArrayClear(xmlElemPath.XmlChildren)

All children with a specific name:

StructDelete(xmlElementpath,
"elemName")

ArrayClear(xmlElemPath.elemName)

A specific child:

ArrayDeleteAt(xmlElemPath.XmlChildren,
position)

ArrayDeleteAt(xmlElemPath.elemName,
position)

Not available

Type Using a function Using an assignment statement

Property StructUpdate(xmlElemPath,
"propertyName", "value")

xmlElemPath.propertyName =
"value"

xmlElemPath["propertyName"] =
"value"

Attribute StructUpdate(xmlElemPath.XmlAttributes,
"attributeName", "value")

xmlElemPath.XmlAttributes.
attributeName="value"

xmlElemPath.XmlAttributes
["attributeName"] = "value"

Child
element

(replace)

ArraySet(xmlElemPath.XmlChildren, index,
index, newElement)

(use the same value for both index entries
to change one element)

Replace first or only child named
elementName:

parentElemPath.elementName =
newElement

parentElemPath["elementName"]
= newElement

Replace a specific child named
elementName:

parentElemPath.elementName
[index] = newElement

or
parentElemPath["elementName"]

[index] = newElement

Type Using a function Using an assignment statement
Modifying a ColdFusion XML object 703

Counting and finding the position of child elements

Often, an XML element has several children with the same name. For example, in the
XML document defined in the simple XML document, the employee root element has
multiple name elements.

To manipulate such an object, you often need to know the number of children of the
same name, and you might need to know the position in the XmlChildren array of a
specific child name that is used for multiple children. The following sections describe
how to get this information.

Counting child elements

The following user-defined function determines the number of child elements with a
specific name in an element:

<cfscript>
function NodeCount (xmlElement, nodeName)
{

nodesFound = 0;
for (i = 1; i LTE ArrayLen(xmlElement.XmlChildren); i = i+1)
{

if (xmlElement.XmlChildren[i].XmlName IS nodeName)
nodesFound = nodesFound + 1;

}
return nodesFound;

}
</cfscript>

The following lines use this function to display the number of nodes named “name” in
the mydoc.employee element:

<cfoutput>
Nodes Found: #NodeCount(mydoc.employee, "name")#
</cfoutput>

Determining the position of a child element with a common name

The XmlChildPos function determines the location in the XmlChildren array of a specific
element with a common name. You use this index when you need to tell ColdFusion
where to insert or delete child elements. For example, if there are several name elements
in mydoc.employee, use the following code to locate name[2] in the XmlChildren array:

<cfset nameIndex = XmlChildPos(mydoc.employee, "name", 2)>

Adding an element

You can add an element by creating a new element or by using an existing element.

Use the XmlElemNew function to create a new, empty element. This function has the
following form:

XmlElemNew(docObject, elementName)

where docObject is the name of the XML document object in which you are creating the
element, and elementName is the name you are giving the new element.
704 Chapter 30 Using XML and WDDX

Use an assignment statement with an existing element on the right side to create a new
element using an existing element. See “Copying an existing element” on page 706 for
more information on adding elements using existing elements.

Adding an element using a function

You can use the ArrayInsertAt or ArrayAppend functions to add an element to an XML
document object. For example, the following line adds a phoneNumber element after the
last element for employee.name[2]:

<cfset ArrayAppend(mydoc.employee.name[2].XmlChildren, XmlElemNew(mydoc,
"phoneNumber"))>

The following line adds a new department element as the first element in employee. The
name elements become the second and third elements.

<cfset ArrayInsertAt(mydoc.employee.XmlChildren, 1, XmlElemNew(mydoc,
"department"))>

You must use the format parentElement.XmlChildren to specify the array of elements to
which you are adding the new element. For example, the following line causes an error:

<cfset ArrayInsertAt(mydoc.employee.name, 2, XmlElemNew(mydoc, "PhoneNumber")>

If you have multiple child elements with the same name, and you want to insert a new
element in a specific position, use the XmlChildPos function to determine the location in
the XmlChildren array where you want to insert the new element. For example, the
following code determines the location of mydoc.employee.name[1] and inserts a new
name element as the second name element:

<cfscript>
nameIndex = XmlChildPos(mydoc.employee, "name", 1);
ArrayInsertAt(mydoc.employee.XmlChildren, nameIndex + 1, XmlElemNew(mydoc,

"name"));
</cfscript>

Adding an element using direct assignment

You can use direct assignment to append a new element to an array of elements. You
cannot use direct assignment to insert an element into an array of elements.

When you use direct assignment, you can specify on the left side an index into the
XmlChildren array greater than the last child in the array. For example, if there are two
elements in mydoc.employee, you can specify any number greater than two, such as
mydoc.employee.XmlChildren[6]. The element is always added as the last (in this case,
third) child.

For example, the following line appends a name element to the end of the child elements
of mydoc.employee:

<cfset mydoc.employee.XmlChildren[9] = XmlElemNew(mydoc, "name")>

If the parent element does not have any children with the same name as the new child,
you can specify the name of the new node or the left side of the assignment. For example,
the following line appends a phoneNumber element to the children of the first name
element in mydoc.employee:

<cfset mydoc.employee.name[1].phoneNumber = XmlElemNew(mydoc, "phoneNumber")>
Modifying a ColdFusion XML object 705

You cannot use the node name on the left to add an element with the same name as an
existing element in the parent. For example, if mydoc.employee has two name nodes, the
following line causes an error:

<cfset mydoc.employee.name[3] = XmlElemNew(mydoc, "name")>

However, the following line does work:

<cfset mydoc.employee.XmlChilren[3] = XmlElemNew(mydoc, "name")>

Copying an existing element

You can add a copy of an existing element elsewhere in the document. For example, if
there is a mydoc.employee.name[1].phoneNumber element, but no mydoc.employee.
name[2].phoneNumber, the following line creates a new mydoc.employee. name[2].
phoneNumber element with the same value as the original element. This assignment
copies the original element. Unlike with standard ColdFusion structures, you get a true
copy, not a reference to the original structure. You can change the copy without changing
the original.

<cfset mydoc.employee.name[2].phoneNumber = mydoc.employee.name[1].phoneNumber>

When you copy an element, the new element must have the same name as the existing
element. If you specify the new element by name on the left side of an assignment, the
element name must be the same as the name on the right side. For example, the following
expression causes an error:

<cfset mydoc.employee.name[2].telephne = mydoc.employee.name[1].phoneNumber>

Deleting elements

There are many ways to delete individual or multiple elements.

Deleting individual elements

Use the ArrayDeleteAt function to delete a specific element from an XML document
object. For example, the following line deletes the second child element in the
mydoc.employee element:

<cfset ArrayDeleteAt(mydoc.employee.XmlChildren, 2)>

If an element has only one child element with a specific name, you can also use the
StructDelete function to delete the child element. For example, the following line deletes
the phoneNumber element named in the second employee.name element:

<cfset StructDelete(mydoc.employee.name[2], "phoneNumber")>

When there are multiple child elements of the same name, you must specify the element
position, either among the elements of the same name, or among all child elements. Fore
example, you can use the following line to delete the second name element in
mydoc.employee:

<cfset ArrayDeleteAt(mydoc.employee.name, 2)>
706 Chapter 30 Using XML and WDDX

You can also determine the position in the XmlChildren array of the element you want to
delete and use that position. To do so, use the XmlChildPos function. For example, the
following lines determine the location of mydoc.employee.name[2] and delete the
element:

<cfset idx = XmlChildPos(mydoc.employee, "name", 2)>
<cfset ArrayDeleteAt(mydoc.employee.XmlChildren, idx)>

Deleting multiple elements

If an element has multiple children with the same name, use the StructDelete function or
ArrayClear function with an element name to delete all of an element’s child elements
with that name. For example, both of the following lines delete all name elements from
the employee structure:

<cfset StructDelete(mydoc.employee, "name")>

<cfset ArrayClear(mydoc.employee.name)>

Use the StructDelete or ArrayClear function with XmlChildren to delete all of an
element’s child elements. For example, each of the following lines deletes all child
elements of the mydoc.employee.name[2] element:

<cfset StructDelete(mydoc.employee.name[2], "XmlChildren")>

<cfset ArrayClear(mydoc.employee.name[2].XmlChildren)>

Adding, changing, and deleting element attributes

You modify an element’s attributes the same way you change the contents of any
structure. For example, each of the following lines adds a Status attribute the second
mydoc.employee.name element:

<cfset mydoc.employee.name[2].XmlAttributes.Status="Inactive">
<cfset StructInsert(mydoc.employee.name[2].XmlAttributes, "Status", "Inactive")>

To change an attribute, use a standard assignment statement; for example:

<cfset mydoc.employee.name[2].XmlAttributs.Status="Active">

To delete an attribute, use StructDelete; for example:

<cfset StructDelete(mydoc.employee.name[1].XmlAttributes, "Status")>

Changing element properties

To change an element’s properties, including its text and comment, use a standard
assignment expression. For example, use the following line to add “in the MyCompany
Documentation Department” to the mydoc.employee XML comment:

<cfset mydoc.employee.XmlComment = mydoc.employee.XmlComment & "in the
MyCompany Documentation Department">

Changing an element name

The XML DOM does not support changing an element name directly. To change the
name of an element, you must create a new element with the new name, insert it into the
XML document object before or after the original element, copy all the original element’s
contents to the new element, and then delete the original element.
Modifying a ColdFusion XML object 707

Clearing an element property value

To clear an element property value, either assign the empty string to the property or use
the StructDelete function. For example, each of the following lines clears the comment
string from mydoc.employee:

<cfset mydoc.employee.XmlComment = "">

<cfset StructDelete(mydoc.employee, "XmlComment")>

Replacing or moving an element

To replace an element with a new element, use a standard replacement expression. For
example, to replace the mydoc.employee.department element with a new element named
organization, use either of the following lines:

<cfset mydoc.employee.department = XmlElemNew(mydoc, "Organization")>

<cfset mydoc.employee.XmlChildren[1] = XmlElemNew(mydoc, "Organization")>

To replace an element with a copy of an existing element, use the existing element on the
right side of an expression. For example, the following line replaces the phoneNumber
element for mydoc.employee.name[2] with the phoneNumber element from
mydoc.employee.name[1]:

<cfset mydoc.employee.name[2].phoneNumber=mydoc.employee.name[1].phoneNumber>

This creates a true copy of the name[1].phoneNumber element as
name[2].phoneNumber.

To move an element, you must assign it to its new location, then delete it from its old
location. For example, the following lines move the phoneNumber element from
mydoc.employee.name[1] to mydoc.employee.name[2]:

<cfset mydoc.employee.name[2].phoneNumber=mydoc.employee.name[1].phoneNumber>
<cfset StructDelete(mydoc.employee.name[1], "phoneNumber")>

Using XML and ColdFusion queries
You can convert XML documents into ColdFusion query objects and manipulate them
using queries of queries. This technique does not require the use of XPath and provides a
method of searching XML documents and extracting data that is natural to ColdFusion
programmers.

Converting XML to a ColdFusion query

The following example reads an XML document, converts it to a query object, and then
performs a query of queries on the object to extract selected data:

<!--- Read the file and convert it to an XML document object --->
<cffile action="read" file="C:\Neo\wwwroot\myexamples\employees.xml"

variable="myxml">
<cfset mydoc = XmlParse(myxml)>

<!--- get an array of employees --->
<cfset emp = mydoc.employee.XmlChildren>
<cfset size = ArrayLen(emp)>

<cfoutput>
708 Chapter 30 Using XML and WDDX

Number of employees = #size#

</cfoutput>

<!--- create a query object with the employee data --->
<cfset myquery = QueryNew("fname, lname") >
<cfset temp = QueryAddRow(myquery, #size#)>
<cfloop index="i" from = "1" to = #size#>

<cfset temp = QuerySetCell(myquery, "fname",
#mydoc.employee.name[i].first.XmlText#, #i#)>

<cfset temp = QuerySetCell(myquery, "lname",
#mydoc.employee.name[i].last.XmlText#, #i#)>

</cfloop>

<!--- Dump the query object --->
Contents of the myquery Query object:

<cfdump var=#myquery#>

<!--- Select entries with the last name starting with A and dump the result --->
<cfquery name="ImqTest" dbType="query">

SELECT lname, fname
FROM myquery
WHERE lname LIKE 'A%'

</cfquery>
<cfdump var=#imqtest#>

Converting a query object to XML

The following example shows how to convert a query object to XML. It uses cfquery to
get a list of employees from the CompanyInfo database and saves the information as an
XML document.

<!--- Query the database and get the names in the employee table --->
<cfquery name="myQuery" datasource="CompanyInfo">
 SELECT FirstName, LastName

FROM employee
</cfquery>

<!--- Create an XML document object containing the data --->
<cfxml variable="mydoc">

<employee>
<cfoutput query="myQuery">

 <name>
<first>#FirstName#</first>
<last>#LastName#</last>

</name>
</cfoutput>

</employee>
</cfxml>

<!--- dump the resulting XML document object --->
<cfdump var=#mydoc#>
<!--- Write the XML to a file --->
<cffile action="write" file="C:\inetpub\wwwroot\xml\employee.xml"

output=#toString(mydoc)#>
Modifying a ColdFusion XML object 709

Transforming documents with XSLT
The Extensible Stylesheet Language Transformation (XSLT) technology transforms an
XML document into another format or representation. For example, one common use of
XSLT is to convert XML documents into HTML for display in a browser. XSLT has
many other uses, including converting XML data to another format, such as converting
XML in a vocabulary used by an order entry application into a vocabulary used by an
order fulfillment application.

XSLT transforms an XML document by applying an Extensible Stylesheet Language
(XSL) stylesheet. (When stored in a file, XSL stylesheets typically have the suffix xsl.)
ColdFusion provides the XmlTransform function to apply an XSL transformation to an
XML document. The function takes an XML document in string format or as an XML
document object, and an XSL stylesheet in string format, and returns the transformed
document as a string.

The following code:

1 Reads the simpletransform.xsl stylesheet file into a string variable.

2 Uses the stylesheet to transform the mydoc XML document object.

3 Saves the resulting transformed document in a second file.

<cffile action="read" file="C:\Neo\wwwroot\testdocs\simpletransform.xsl"
variable="xslDoc">

<cfset transformedXML = XmlTransform(mydoc, xslDoc)>
<cffile action="write" file="C:\Neo\wwwroot\testdocs\transformeddoc.xml"

output=transformedXML>

XSL and XSLT are specified by the World-Wide Web Consortium (W3C). For detailed
information on XSL, XSLT, and XSL stylesheets, see the W3C website at
http://www.w3.org/Style/XSL/. There are also several books on using XSL and XSLT.
710 Chapter 30 Using XML and WDDX

Extracting data with XPath
XPath is a language for addressing parts of an XML document. Like XSL, XPath is a
W3C specification. One of the major uses of XPath is in XSL transformations. However,
XPath has more general uses. In particular, it can extract data from XML documents,
such as complex data set representations. Thus, XPath is another data querying tool.

XPath uses a pattern called an XPath expression to specify the information to extract
from an XML document. For example, the simple XPath expression /employee/name
selects the name elements in the employee root element.

The the XmlPath function uses XPath expressions to extract data from XML document
objects. The function takes an XML document object and an XPath expression in string
format, and returns an array of XML document objects containing the elements that
meet the expression criteria.

The following example extracts all the elements named last, which contain the employee’s
last names, from the employeesimple.xml file, and displays the names:

<cffile action="read"
file="C:\inetpub\wwwroot\examples\employeesimple.xml"
variable="myxml">

<cfscript>
myxmldoc = XmlParse(myxml);
selectedElements = XmlSearch(myxmldoc, "/employee/name/last");
for (i = 1; i LTE ArrayLen(selectedElements); i = i + 1)

writeoutput(selectedElements[i].XmlText & "
");
</cfscript>

XPath is specified by the World-Wide Web Consortium. For detailed information on
XPath, see the W3C website at http://www.w3.org/TR/xpath. Most books that cover
XSLT also discuss XPath.
Extracting data with XPath 711

Example: using XML in a ColdFusion application
The example in this section shows how you can use XML to represent data, and how
ColdFusion can use XML data in an application. Although the example is too simple to
be used in an application without substantial changes, it presents some of the common
uses of XML with ColdFusion.

The example receives an order in the form of an XML document, processes it, and
generates an XML receipt document. In this case, the order document is in a file, but it
could be received as the result of an HTTP request, or retrieved using cfpop, cfftp, or
other methods. The ColdFusion page does the following with the order:

1 Generates a query object from an XML document.

2 Queries a database table to determine the order discount percentage to use.

3 Uses a query of queries to calculate the total price, then calculates the discounted
price.

4 Generates the receipt as an XML document.

This example displays the results of the processing steps to show you what has been done.

The XML document

The order.xml document has the following structure:
• The root element is named order and has one attribute, id.
• There is one customer element with firstname, lastname, and accountnum attributes.

The customer element does not have a body
• There is one items element that contains multiple item elements
• Each item element has an id attribute and contains a name, quantity, and unitprice

element. The name, quantity, and unitprice elements contain their value as body text.

The following order.xml document works correctly with the information in the
CompanyInfo database:

<order id="4323251">
<customer firstname="Philip" lastname="Cramer" accountNum="21"/>
<items>

<item id="43">
<name>

Large Hammer
</name>
<quantity>

1
</quantity>
<unitprice>

15.95
</unitprice>

</item>
<item id="54">

<name>
Ladder

</name>
<quantity>

2

712 Chapter 30 Using XML and WDDX

</quantity>
<unitprice>

40.95
</unitprice>

</item>
<item id="68">

<name>
Paint

</name>
<quantity>

10
</quantity>
<unitprice>

18.95
</unitprice>

</item>
</items>

</order>

The ColdFusion page

The ColdFusion page looks like the following:

<!--- Convert file to XML document object --->
<cffile action="read" file="C:\Neo\wwwroot\examples\order.xml" variable="myxml">
<cfset mydoc = XmlParse(myxml)>

<!--- Extract account number --->
 <cfset accountNum=#mydoc.order.customer.XmlAttributes.accountNum#>
<!--- Display Order Information --->
<cfoutput>

Name=#mydoc.order.customer.XmlAttributes.firstname#
 #mydoc.order.customer.XmlAttributes.lastname#

Account=#accountNum#

<cfset numItems = ArrayLen(mydoc.order.items.XmlChildren)>
Number of items ordered= #numItems#

</cfoutput>

<!--- Process the order into a query object --->
<cfset orderquery = QueryNew("item_Id, name, qty, unitPrice") >
<cfset temp = QueryAddRow(orderquery, #numItems#)>
<cfloop index="i" from = "1" to = #numItems#>

<cfset temp = QuerySetCell(orderquery, "item_Id",
#mydoc.order.items.item[i].XmlAttributes.id# ,#i#)>

<cfset temp = QuerySetCell(orderquery, "name",
#mydoc.order.items.item[i].name.XmlText#, #i#)>

<cfset temp = QuerySetCell(orderquery, "qty",
#mydoc.order.items.item[i].quantity.XmlText# ,#i#)>

<cfset temp = QuerySetCell(orderquery, "unitPrice",
#mydoc.order.items.item[i].unitprice.XmlText#, #i#)>

</cfloop>

<!--- Display the order query --->
Example: using XML in a ColdFusion application 713

<cfdump var=#orderquery#>

<!--- Determine the discount --->
<cfquery name="discountQuery" datasource="CompanyInfo">

SELECT *
FROM employee
WHERE Emp_Id = #accountNum#

</cfquery>
<cfset drate = 0>
<cfif #discountQuery.RecordCount# is 1>

<cfset drate = 10>
</cfif>

<!--- Display the discount rate --->
<cfoutput>

Discount Rate = #drate#%
</cfoutput>

<!--- Compute the total cost and discount price--->
<cfquery name="priceQuery" dbType="query">

SELECT SUM(qty*unitPrice)
AS totalPrice
FROM orderquery

</cfquery>
<cfset discountPrice = priceQuery.totalPrice * (1 - drate/100)>

<!--- Display the full price and discounted price --->
<cfoutput>

Full Price= #priceQuery.totalPrice#

Discount Price= #discountPrice#

</cfoutput>

<!---Generate an XML Receipt --->
<cfxml variable="receiptxml">
<receipt num = "34">
<cfoutput>

<price>#discountPrice#</price>
<cfif drate GT 0 >
<discountRate>#drate#</discountRate>

</cfif>
</cfoutput>
 <itemsFilled>

<cfoutput query="orderQuery">
<name>#name# </name>
<qty> #qty# </qty>
<price> #qty*unitPrice# </price>
</cfoutput>

 </itemsFilled>
</receipt>
</cfxml>

<!--- Display the resulting receipt --->
<cfdump var=#receiptxml#>
714 Chapter 30 Using XML and WDDX

Reviewing the code

The following table describes the CFML code and its function. For the sake of brevity it
does not include code that displays the processing results.

Code Description

<cffile action="read"
file="C:\Neo\wwwroot\examples\order.xml"
variable="myxml">

<cfset mydoc = XmlParse(myxml)>
<cfset accountNum=#mydoc.order.

customer.XmlAttributes.accountNum#>

Reads the XML from a file and convert it to an
XML document object.

Sets the accountNum variable from the
customer entry’s accountnum attribute.

<cfset orderquery = QueryNew("item_Id,
name, qty, unitPrice") >

<cfset temp = QueryAddRow(orderquery,
#numItems#)>

<cfloop index="i" from = "1" to = #numItems#>
<cfset temp = QuerySetCell(orderquery,
"item_Id", #mydoc.order.items.item[i].
XmlAttributes.id# ,#i#)>

<cfset temp = QuerySetCell(orderquery,
"name", #mydoc.order.items.item[i].
name.XmlText#, #i#)>

<cfset temp = QuerySetCell(orderquery,
"qty", #mydoc.order.items.item[i].
quantity.XmlText# ,#i#)>

<cfset temp = QuerySetCell(orderquery,
"unitPrice", #mydoc.order.items.item[i].
unitprice.XmlText#, #i#)>

</cfloop>

Converts the XML document object into a
query object.

Creates a query with columns for the item_id,
name, qty, and unitPrice values for each item.

For each XML item entry in the
mydoc.order.items entry, fills one row of the
query with the item’s id attribute and the text in
the name, quantity, and unitprice entries that
the it contains.

<cfquery name="discountQuery"
datasource="CompanyInfo">

SELECT *
FROM employee
WHERE Emp_Id = #accountNum#

</cfquery>
<cfset drate = 0>
<cfif #discountQuery.RecordCount# is 1>

<cfset drate = 10>
</cfif>

If the account number is the same as an
employee ID in the CompanyInfo database
Employee table, the query returns one record.
and RecordCount equals 1. In this case, sets a
discount rate of 10%. Otherwise, sets a
discount rate of 0%.

<cfquery name="priceQuery" dbType="query">
SELECT SUM(qty*unitPrice)
AS totalPrice
FROM orderquery

</cfquery>
<cfset discountPrice = priceQuery.totalPrice

* (1 - drate/100)>

Uses a query of queries with the SUM
operator to calculate the total cost before
discount of the ordered items, then applies the
discount to the price. The result of the query is
a single value, the total price.
Example: using XML in a ColdFusion application 715

<cfxml variable="receiptxml">
<receipt num = "34">
<cfoutput>
<price>#discountPrice#</price>
<cfif drate GT 0 >
<discountRate>#drate#</discountRate>
</cfif>

</cfoutput>
<itemsFilled>
<cfoutput query="orderQuery">
<name>#name# </name>
<qty> #qty# </qty>
<price> #qty*unitPrice# </price>
</cfoutput>
</itemsFilled>
</receipt>
</cfxml>

Creates an XML document object as a receipt.
The receipt has a root element named receipt,
which has the receipt number as an attribute.
The receipt element contains a price element
with the order cost and an itemsFilled element
with one item element for each item.

Code Description
716 Chapter 30 Using XML and WDDX

Moving complex data across the web with WDDX
WDDX is an XML vocabulary for describing a complex data structure, such as an array,
associative array (such as a ColdFusion structure), or a recordset, in a generic fashion. It
lets you use HTTP to move the data between different application server platforms and
between application servers and browsers. Target platforms for WDDX include
ColdFusion, Active Server Pages (ASP), JavaScript, Perl, Java, Python, COM,
Macromedia Flash, and PHP.

The WDDX XML vocabulary consists of a document type definition (DTD) that
describes the structure of standard data types and a set of components for each of the
target platforms to do the following:
• Serialize the data from its native representation into a WDDX XML document or

document fragment.
• Deserialize a WDDX XML document or document fragment into the native data

representation, such as a CFML structure.

This vocabulary creates a way to move data, its associated data types, and descriptors that
allow the data to be manipulated on a target system, between arbitrary application
servers.

Note: The WDDX DTD, which includes documentation, is located at
http://www.openwddx.org/downloads/dtd/wddx_dtd_10.txt.

While WDDX is a valuable tool for ColdFusion developers, its usefulness is not limited
to CFML. If you serialize a common programming data structure (such as an array,
recordset, or structure) into WDDX format, you can use HTTP to transfer the data
across a range of languages and platforms. Also, you can use WDDX to store complex
data in a database, file, or even a client variable.

WDDX has two features that make it useful for transferring data in a web environment:
• It is lightweight. The JavaScript used to serialize and deserialize data, including a

debugging function to dump WDDX data, occupies less than 22KB.
• Unlike traditional client-server approaches, the source and target system can have

minimal-to-no prior knowledge of each other. They only need to know the structure
of the data that is being transferred.

WDDX was created in 1998, and many applications now expose WDDX capabilities.
The best source of information about WDDX is http://www.openwddx.org. This site
offers free downloads of the WDDX DTD and SDK and a number of resources,
including a WDDX FAQ, a developer forum, and links to additional sites that provide
WDDX resources.

Uses of WDDX
WDDX is useful for transferring complex data between applications. For example, you
can use it to exchange data between a CFML application and a CGI or PHP application.
WDDX is also useful for transferring data between the server and client-side JavaScript.
Moving complex data across the web with WDDX 717

Exchanging data across application servers

WDDX is useful for the transfer of complex, structured data seamlessly between different
application server platforms. For example, an application based on ColdFusion at one
business could use cfwddx to convert a purchase order structure to WDDX. It could then
use cfhttp to send the WDDX to a supplier running a CGI-based system.

The supplier could then deserialize the WDDX to its native data form, the extract
information from the order, and pass it to a shipping company running an application
based on ASP.

Transferring data between the server and browser

You can use WDDX for server-to-browser and browser-to-server data exchanges. You can
transfer server data to the browser in WDDX format and convert it to JavaScript objects
on the browser. Similarly, your application pages can serialize JavaScript data generated
on the browser into WDDX format and transfer the data to the application server. You
then deserialize the WDDX XML into CFML data on the server.

On the server you use the cfwddx tag to serialize and deserialize WDDX data. On the
browser, you use WddxSerializer and WddxRecordset JavaScript utility classes to serialize
the JavaScript data to WDDX. (ColdFusion installs these utility classes on your server as
webroot/CFIDE/scripts/wddx.js.)

WDDX and web services

WDDX does not compete with web services. It is a complementary technology focused
on solving simple problems of application integration by sharing data on the web in a
pragmatic, productive manner at very low cost.

WDDX offers the following advantages:
• It can be used by lightweight clients, such as browsers or the Macromedia Flash

player.
• It can be used to store complex data structures in files and databases.

Applications that take advantage of WDDX can continue to do so if they start to use web
services. These applications could also be converted to use web services standards
exclusively; only the service and data interchange formats—not the application
model—must change.

How WDDX works
The following example shows how WDDX works. A simple structure with two string
variables might have the following form after it is serialized into a WDDX XML
representation:

<var name='x'>
<struct>

<var name='a'>
<string>Property a</string>

</var>
<var name='b'>

<string>Property b</string>
718 Chapter 30 Using XML and WDDX

</var>
</struct>

</var>

When you deserialize this XML into CFML or JavaScript, the result is a structure that is
created by either of the following scripts:

Conversely, when you serialize the variable x produced by either of these scripts into
WDDX, you generate the XML listed above.

ColdFusion provides a tag and JavaScript objects that convert between CFML, WDDX,
and JavaScript. Serializers and deserializers for other data formats are available on the
web. For more information, see http://www.openwddx.org

Note: The cfwddx tag and the wddx.js JavaScript functions use UTF-8 encoding to
represent data. Any tools that deserialize ColdFusion-generated WDDX must accept UTF-8
encoded characters. UTF-8 encoding is identical to the ASCII and ISO 8859 single-byte
encodings for the standard 128 "7-bit" ASCII characters. However, UTF-8 uses a two-byte
representation for "high-ASCII" ISO 8859 characters where the initial bit is 1.

WDDX data type support

The following sections describe the data types that WDDX supports. This information is
a distillation of the description in the WDDX DTD. For more detailed information, see
the DTD at http://www.openwddx.org.

Basic data types

WDDX can represent the following basic data types:

JavaScript CFScript

x = new Object();
x.a = "Property a";
x.b = "Property b";

x = structNew();
x.a = "Property a";
x.b = "Property b";

Data type Description

Null Null values in WDDX are not associated with a type such as
number or string. The cfwddx tag converts WDDX Nulls to empty
strings.

Numbers WDDX documents use floating point numbers to represent all
numbers. The range of numbers is restricted to +/-1.7E+/-308. The
precision is restricted to 15 digits after the decimal point.

Date-time values Date-time values are encoded according to the full form of
ISO8601; for example, 2002-9-15T09:05:32+4:0.

Strings Strings can be of arbitrary length and must not contain embedded
nulls. Strings can be encoded using double-byte characters.
Moving complex data across the web with WDDX 719

Complex data types

WDDX can represent the following complex data types:

Data type comparisons

The following table compares the basic WDDX data types with the data types to which
they correspond in the languages and technologies commonly used on the web:

Data type Description

Array Arrays are integer-indexed collections of objects of arbitrary type. Because
most languages start array indexes at 0, while CFML array indexes start at 1,
working with array indices can lead to nonportable data.

Structure Structures are string-indexed collections of objects of arbitrary type,
sometimes called associative arrays. Because some of the languages
supported by WDDX are not case-sensitive, no two variable names in a
structure can differ only in their case.

Recordset Recordsets are tabular rows of named fields, corresponding to ColdFusion
query objects. Only simple data types can be stored in recordsets. Because
some of the languages supported by WDDX are not case-sensitive, no two
field names in a recordset can differ only in their case. Field names must
satisfy the regular expression [_A-Za-z][_.0-9A-Za-z]* where the period (.)
stands for a literal period character, not “any character”.

Binary The binary data type represents strings (blobs) of binary data. The data is
encoded in MIME base64 format.

WDDX CFML
XML
Schema Java

ECMAScript/
JavaScript COM

null N/A N/A null null VT_NULL

boolean Boolean boolean java.lang.Boolean boolean VT_BOOL

number Number number java.lang.Double number VT_R8

dateTime DateTime dateTime java.lang.Date Date VT_DATE

string String string java.lang.String string VT_BSTR

array Array N/A java.lang.Vector Array VT_ARRAY |
VT_VARIANT

struct Structure N/A java.lang.

Hashtable

Object IWDDXStruct

recordset Query
object

N/A coldfusion.run
time.QueryTable

WddxRecordset IWDDXRecordset

binary Binary binary byte[] WddxBinary V_ARRAY | UI1
720 Chapter 30 Using XML and WDDX

Time zone processing

Producers and consumers of WDDX packets can be in geographically dispersed
locations. Therefore, it is important to use time zone information when serializing and
deserializing data, to ensure that date-time values are represented correctly.

The cfwddx action=cfml2wddx tag useTimezoneInfo attribute specifies whether to use time
zone information in serializing the date-time data. In the JavaScript implementation,
useTimezoneInfo is a property of the WddxSerializer object. In both cases the default
useTimezoneInfo value is True.

Date-time values in WDDX are represented using a subset of the ISO8601 format. Time
zone information is represented as an hour/minute offset from Coordinated Universal
Time (UTC); for example, “2002-9-8T12:6:26-4:0”.

When the cfwddx tag deserializes WDDX to CFML, it automatically uses available time
zone information, and converts date-time values to local time. In this way, you do not
need to worry about the details of time zone conversions.

However, when the JavaScript objects supplied with ColdFusion deserialize WDDX to
JavaScript expressions, they do not use time zone information, because in JavaScript it is
difficult to determine the time zone of the browser.
Moving complex data across the web with WDDX 721

Using WDDX
The following sections describe how you can use WDDX in ColdFusion applications.
The first two sections describe the tools that ColdFusion provides for creating and
converting WDDX. The remaining sections show how you use these tools for common
application uses.

Using the cfwddx tag
The cfwddx tag can do the following conversions:

A typical cfwddx tag used to convert a CFML query object to WDDX looks like the
following:

<cfwddx action="cfml2wddx" input="#MyQueryObject#" output="WddxTextVariable">

In this example, MyQueryObject is the name of the query object variable, and
WddxTextVariable is the name of the variable in which to store the resulting WDDX
XML. Note

For more information on the cfwddx tag, see CFML Reference.

Validating WDDX data
The cfwddx tag has a Validate attribute that you can use when converting WDDX to
CFML or JavaScript. When you set this attribute to True, the XML parser uses the
WDDX DTD to validate the WDDX data before deserializing it. If the WDDX is not
valid, ColdFusion generates an error. By default, ColdFusion does not validate WDDX
data before trying to convert it to ColdFusion or JavaScript data.

The IsWddx function returns True if a variable is a valid WDDX data packet. It returns
False otherwise. You can use this function to validate WDDX packets before converting
them to another format. For example, you can use it instead of the cfwddx validate
attribute, so that invalid WDDX is handled within conditional logic instead of
error-handling code. You can also use it to pre-validate data that will be deserialized by
JavaScript at the browser.

From To

CFML WDDX

CFML JavaScript

WDDX CFML

WDDX JavaScript
722 Chapter 30 Using XML and WDDX

Using JavaScript objects
ColdFusion provides two JavaScript objects, WddxSerializer and WddxRecordset, that you
can use in JavaScript to convert data to WDDX. These objects are defined in the file
webroot/cfide/scripts/wddx.js.

CFML Reference describes these objects and their methods in detail. The example
“Transferring data from the browser to the server” on page 723 shows how you can use
these objects to serialize JavaScript to WDDX.

Converting CFML data to a JavaScript object
The following example demonstrates the transfer of a cfquery recordset from a
ColdFusion page executing on the server to a JavaScript object that is processed by the
browser.

The application consists of four principal sections:
• Running a data query
• Including the WDDX JavaScript utility classes
• Calling the conversion function
• Writing the object data in HTML

The following example uses the cfsnippets data source that is installed with ColdFusion:

<!--- Create a simple query --->
<cfquery name = "q" datasource ="cfsnippets">

SELECT Message_Id, Thread_id, Username, Posted
FROM messages

</cfquery>

<!--- Load the wddx.js file, which includes the dump function --->
<script type="text/javascript" src="/CFIDE/scripts/wddx.js"></script>

<script>
// Use WDDX to move from CFML data to JavaScript
<cfwddx action="cfml2js" input="#q#" topLevelVariable="qj">

// Dump the recordset to show that all the data has reached
// the client successfully.
document.write(qj.dump(true));

</script>

Note: To see how cfwddx Action="cfml2js" works, save this code under your webroot
directory, for example in wwwroot/myapps/wddxjavascript.cfm, run the page in your browser
and select View Source in your browser.

Transferring data from the browser to the server
The following example serializes form field data, posts it to the server, deserializes it, and
displays the data. For simplicity, it only collects a small amount of data. In applications
that generate complex JavaScript data collections, you can extend this basic approach
very effectively. This example uses the WddxSerializer JavaScript object to serialize the
data, and the cfwddx tag to deserialize the data.
Using WDDX 723

To use the example:

1 Save the file under your webroot directory, for example in wwwroot/myapps/
wddxserializedeserialze.cfm.

2 Display http://localhost/myapps/wddxserializedeserialze.cfm in your browser.

3 Enter a first name and last name in the form fields.

4 Click Next.

The name appears in the Names added so far box.

5 Repeat steps 3 and 4 to add as many names as you wish.

6 Click Serialize to serialize the resulting data.

The resulting WDDX packet appears in the WDDX packet display box. This step is
intended only for test purposes. Real applications handle the serialization
automatically.

7 Click Submit to submit the data.

The WDDX packet is transferred to the server-side processing code, which
deserializes it and displays the information.

<!--- load the wddx.js file --->
<script type="text/javascript" src="/CFIDE/scripts/wddx.js"></script>

<!--- Data binding code --->
<script>

// Generic serialization to a form field
function serializeData(data, formField)
{

wddxSerializer = new WddxSerializer();
wddxPacket = wddxSerializer.serialize(data);
if (wddxPacket != null)
{

formField.value = wddxPacket;
}
else
{

alert("Couldn't serialize data");
}

}

// Person info recordset with columns firstName and lastName
// Make sure the case of field names is preserved
var personInfo = new WddxRecordset(new Array("firstName",
"lastName"), true);

// Add next record to end of personInfo recordset
function doNext()
{

// Extract data
var firstName = document.personForm.firstName.value;
var lastName = document.personForm.lastName.value;

// Add names to recordset
724 Chapter 30 Using XML and WDDX

nRows = personInfo.getRowCount();
personInfo.firstName[nRows] = firstName;
personInfo.lastName[nRows] = lastName;

// Clear input fields
document.personForm.firstName.value = "";
document.personForm.lastName.value = "";

// Show added names on list
// This gets a little tricky because of browser differences
var newName = firstName + " " + lastName;
if (navigator.appVersion.indexOf("MSIE") == -1)
{

document.personForm.names[length] =
 new Option(newName, "", false, false);

}
else
{

// IE version
var entry = document.createElement("OPTION");
entry.text = newName;
document.personForm.names.add(entry);

}

}

</script>

<!--- Data collection form --->
<form action="#cgi.script_name#" method="Post"
name="personForm">

<!--- Input fields --->
Personal information

First name: <input type=text name=firstName>

Last name: <input type=text name=lastName>

<!--- Navigation & submission bar --->
<input type="button" value="Next" onclick="doNext()">
<input type="button" value="Serialize"
onclick="serializeData(personInfo, document.personForm.wddxPacket)">
<input type="submit" value="Submit">

Names added so far:

<select name="names" size="5">
</select>

<!--- This is where the WDDX packet will be stored --->
<!--- In a real application this would be a hidden input field. --->

WDDX packet display:

<textarea name="wddxPacket" rows="10" cols="80" wrap="Virtual">
</textarea>
Using WDDX 725

</form>

<!--- Server-side processing --->
<hr>
Server-side processing

<cfif isdefined("form.wddxPacket")>

<cfif form.wddxPacket neq "">

<!--- Deserialize the WDDX data --->
<cfwddx action="wddx2cfml" input=#form.wddxPacket#
output="personInfo">

<!--- Display the query --->
The submitted personal information is:

<cfoutput query=personInfo>

Person #CurrentRow#: #firstName# #lastName#

</cfoutput>

<cfelse>
The client did not send a well-formed WDDX data packet!

</cfif>
<cfelse>

No WDDX data to process at this time.
</cfif>

Storing complex data in a string
The following simple example uses WDDX to store complex data, a data structure that
contains arrays as a string in a client variable. It uses the cfdump tag to display the contents
of the structure before serialization and after deserialization. It uses the HTMLEditFormat
function in a cfoutput tag to display the contents of the client variable. The
HTMLEditFormat function is required to prevent the browser from trying to interpret (and
throwing away) the XML tags in the variable.

<!--- Enable client state management --->
<cfapplication name="relatives" clientmanagement="Yes">

<!--- Build a complex data structure --->
<cfscript>

relatives = structNew();
relatives.father = "Bob";
relatives.mother = "Mary";
relatives.sisters = arrayNew(1);
arrayAppend(relatives.sisters, "Joan");
relatives.brothers = arrayNew(1);
arrayAppend(relatives.brothers, "Tom");
arrayAppend(relatives.brothers, "Jesse");

</cfscript>

A dump of the original relatives structure:

<cfdump var="#relatives#">

726 Chapter 30 Using XML and WDDX

<!--- Convert data structure to string form and save it in the
client scope --->

<cfwddx action="cfml2wddx" input="#relatives#" output="Client.wddxRelatives">

The contents of the Client.wddxRelatives variable:

<cfoutput>#HtmlEditFormat(Client.wddxRelatives)#</cfoutput>

<!--- Now read the data from client scope into a new structure --->
<cfwddx action="wddx2cfml" input="#Client.wddxRelatives#" output="sameRelatives">

A dump of the sameRelatives structure

generated from client.wddxRelatives

<cfdump var="#sameRelatives#">
Using WDDX 727

728 Chapter 30 Using XML and WDDX

CHAPTER 31

Using Web Services
Web services let you publish and consume remote application functionality over the
Internet. When you consume web services, you access remote functionality to perform an
application task. When you publish a web service, you let remote users access your
application functionality to build it into their own applications.

This chapter describes how to consume and publish web services.

Contents

• Web services .. 730

• Working with WSDL files ... 733

• Consuming web services .. 736

• Publishing web services.. 744

• Handling complex data types... 753
729

Web services
Since its inception, the Internet has allowed people to access content stored on remote
computers. This content can be static, such as a document represented by an HTML file,
or dynamic, such as content returned from a ColdFusion page or CGI script.

Web services are a new technology that lets you access application functionality, which
resides on remote computers, that someone created and made available. With a web
service, you can make a request to the remote application to perform an action.

For example, you can request a stock quote, pass a text string to be translated, or request
information from a product catalog. The advantage of web services is that you do not
have to recreate application logic that someone else has already created and, therefore,
you can build your applications faster.

Referencing a remote web service within your ColdFusion application is called
consuming web services. Since web services adhere to a standard interface regardless of
implementation technology, you can consume a web service implemented as part of a
ColdFusion application, or as part of a .NET or Java application.

You can also create your own web services and make them available to others for remote
access, called publishing web service. Applications that consume your web service can be
implemented in ColdFusion or by any application that recognizes the web service
standard.

Accessing a web service
In its simplest form, an access to a web service is similar to a function call. Instead of the
function call referencing a library on your computer, it references remote functionality
over the Internet.

One feature of web services is that they are self describing. That means a person who
makes a web service available also publishes a description of the API to the web service as
a Web Services Description Language (WSDL) file.

A WSDL file is an XML-formatted document that includes information about the web
service, including the following information:
• Operations that you can call on the web service
• Input parameters that you pass to each operation
• Return values from an operation

Consuming web services typically is a two-step process:

1 Parse the WSDL file of the web service to determine its interface.

A web service makes its associated WSDL file available over the Internet. You need to
know the URL of the WSDL file defining the service. For example, you can access
the WSDL file for the BabelFish web service at the following URL:

http://www.xmethods.net/sd/2001/BabelFishService.wsdl

For an overview of WSDL syntax, see “Working with WSDL files” on page 733
730 Chapter 31 Using Web Services

2 Make a request to the web service.

The following example invokes an operation on the BabelFish web service to translate
the string “Hello World” from English into Spanish:
<cfinvoke

webservice='http://www.xmethods.net/sd/2001/BabelFishService.wsdl'
method='BabelFish'
translationmode="en_es"
sourcedata="Hello World"
returnVariable='foo'>

<cfoutput>#foo#</cfoutput>

For more information on consuming web services, see “Consuming web services” on
page 736.

Basic web service concepts
You must be familiar with the underlying architecture of a web service provider in order
to fully understand how web services work.

Note: This section contains an overview of the architecture of web services. For detailed
information, consult one of the many web services books.

The following are three primary components of the web services platform:
• SOAP (Simple Access Open Protocol)
• WSDL (Web Services Description Language)
• UDDI (Universal Description, Discovery, and Integration)

The following simple figure shows how the ColdFusion implementation of web services
work:

The following sections describe the components shown in this figure.

Supporting web services with SOAP

SOAP provides a standard XML structure for sending and receiving web service requests
and responses over the Internet. Usually you send SOAP messages using HTTP, but you
also can send them using SMTP and other protocols. ColdFusion integrates the Apache
Axis SOAP engine to support web services.
Web services 731

The ColdFusion Web Services Engine performs the underlying functionality to support
web services, including generating WSDL files for web services that you create. In
ColdFusion, to consume or publish web services does not require you to be familiar with
SOAP or to perform any SOAP operations.

You can find additional information about SOAP in the W3C’s SOAP 1.1 note at the
following URL:

http://www.w3.org/TR/SOAP/

Describing web services with WSDL

A WSDL document is an XML file that describes a web service’s purpose, where it is
located, and how to access it. The WSDL document describes the operations that you
can invoke and their associated data types.

ColdFusion can generate a WSDL document from a web service, and you can publish
the WSDL document at a URL to provide information to potential clients. For more
information, see “Working with WSDL files” on page 733.

Finding web services with UDDI

As a consumer of web services, you want to know what web services are available. As a
publisher of web services, you want others to be able to find information about your web
services. Universal Description, Discovery and Integration (UDDI) provides a way for
web service clients to dynamically locate web services that provide specific capabilities.
You use a UDDI query to find service providers. A UDDI response contains
information, such as business contact information, business category, and technical
details, about how to invoke a web service.

Although ColdFusion does not directly support UDDI, you can manually register or find
a web service using a public UDDI registry, such as the IBM UDDI Business Registry at
the following URL:

https://www-3.ibm.com/services/uddi/protect/registry.html

You can find additional information about UDDI at the following URL:

http://www.uddi.org/about.html
732 Chapter 31 Using Web Services

Working with WSDL files
WSDL files define the interface to a web service. To consume a web service, you access
the service’s WSDL file to determine information about it. If you publish your
application logic as a web service, you must create a WSDL file for it.

WSDL is a draft standard supported by the World Wide Web Consortium. You can
access the specification at the following URL:

http://www.w3.org/TR/wsdl

Creating a WSDL file
To publish a web service, you construct the service’s functionality and then create the
WSDL file defining the service. In ColdFusion, you use components to create web
services. ColdFusion automatically generates the WSDL file for a component that you
use to produce a web service. For more information on creating web services, see
“Publishing web services” on page 744.

For more information on components, see Chapter 11, “Building and Using ColdFusion
Components” on page 217.

Viewing a WSDL file using Dreamweaver MX
Dreamweaver MX contains a utility to view web services, including operation names,
parameter names, and parameter data types. The following figure shows a WSDL file for
the BabelFish web service:

This figure shows that the web service method babelFish returns a string, and that it takes
string parameters named sourcedata and translationmode as input.

To open the Components tab in the Dreamweaver MX and add a web service:

1 Choose Window > Components, or use Ctrl-F7, to open the Components panel.

2 In the Components panel, choose Web Services from the dropdown list in the
upper-left of the panel.

3 Click the Plus (+) button.

The Add Using WSDL dialog box appears.

4 Specify the URL of the WSDL file.
Working with WSDL files 733

For more information on using Dreamweaver MX, see its online Help system.

Reading a WSDL file
A WSDL file takes practice to read. You can view the WSDL file in a browser, or you can
use a tool such as Dreamweaver MX, which contains a built-in utility for displaying
WSDL files in an easy-to-read format.

The following example shows a WSDL file for the BabelFish web service:

<?xml version="1.0" ?>
<definitions name="BabelFishService"

xmlns:tns="http://www.xmethods.net/sd/BabelFishService.wsdl"
targetNamespace="http://www.xmethods.net/sd/BabelFishService.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="BabelFishRequest">
<part name="translationmode" type="xsd:string" />
<part name="sourcedata" type="xsd:string" />

</message>
<message name="BabelFishResponse">

<part name="return" type="xsd:string" />
</message>
<portType name="BabelFishPortType">

<operation name="BabelFish">
<input message="tns:BabelFishRequest" />
<output message="tns:BabelFishResponse" />

</operation>
</portType>
<binding name="BabelFishBinding" type="tns:BabelFishPortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"
/>

<operation name="BabelFish">
<soap:operation soapAction="urn:xmethodsBabelFish#BabelFish" />
<input>

<soap:body use="encoded" namespace="urn:xmethodsBabelFish"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</input>
<output>

<soap:body use="encoded" namespace="urn:xmethodsBabelFish"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</output>

</operation>
</binding>

<service name="BabelFishService">
<documentation>Translates text of up to 5k in length, between a variety of

languages.</documentation>
<port name="BabelFishPort" binding="tns:BabelFishBinding">

<soap:address location="http://services.xmethods.net:80/perl/soaplite.cgi"
/>

</port>
</service>

</definitions>
734 Chapter 31 Using Web Services

The following are the major components of the WSDL file:

For additional descriptions of the contents of this WSDL file, see “Consuming web
services” on page 736.

Component Definition

definitions The root element of the WSDL file. This area contains namespace
definitions that you use to avoid naming conflicts between multiple web
services.

types (not shown) Defines data types used by the service’s messages.

message Defines the data transferred by a web service operation, typically the name
and data type of input parameters and return values.

port type Defines one or more operations provided by the web service.

operation Defines an operation that can be remotely invoked.

input Specifies an input parameter to the operation using a previously defined
message.

output Specifies the return values from the operation using a previously defined
message.

fault (not shown) Optionally specifies an error message returned from the
operation.

binding Specifies the protocol used to access a web service including SOAP, HTTP
GET and POST, and MIME.

service Defines a group of related operations.

port Defines an operation and its associated inputs and outputs.
Working with WSDL files 735

Consuming web services
ColdFusion provides two methods for consuming web services. The method that you
choose depends on your ColdFusion programming style and application.

The following table describes these methods:

One important consideration is that all consumption methods use the same underlying
technology and offer the same performance.

About the examples in this section
The examples in this section reference the BabelFish web service from AltaVista.
BabelFish can translate string up to 5 KB in length from one language to another. You
can read the WSDL file for this web service in “Reading a WSDL file” on page 734.

If you add the BabelFish web service in Dreamweaver MX, you see the following
description of it in the Application panel.

For information on adding a web service in Dreamweaver, see “Viewing a WSDL file
using Dreamweaver MX” on page 733. For more information on BabelFish, see http://
babelfish.altavista.com/.

Passing parameters to a web service
One type of information in the WSDL file defines the web service operations and the
input and output parameters of each operation, including the data type of each
parameter. If you register the web service in Dreamweaver MX, as shown in the previous
section, you see that the data type of both input parameters is string.

The following example shows a portion of the WSDL file for the BabelFish web service:

<message name="BabelFishRequest">
<part name="translationmode" type="xsd:string" />
<part name="sourcedata" type="xsd:string" />

</message>
<message name="BabelFishResponse">

<part name="return" type="xsd:string" />

Method CFML operator Description

CFScript CreateObject() Consumes a web service from within a CFScript block

CFML tag cfinvoke Consumes a web service from within a block of CFML
code
736 Chapter 31 Using Web Services

</message>
<portType name="BabelFishPortType">

<operation name="BabelFish">
<input message="tns:BabelFishRequest" />
<output message="tns:BabelFishResponse" />

</operation>
</portType>

The operation name used in the examples in this section is BabelFish. This operation
takes a single input parameter defined as a message of type BabelFishRequest.

You can see that the message BabelFishRequest contains two string parameters:
translationmode and sourcedata. When you call the BabelFish operation, you pass both
parameters as input.

Handling return values from a web service
Web service operations often return information back to your application. You can
determine the name and data type of returned information by examining the WSDL file
for the web service.

If you register the web service in Dreamweaver MX, you see that the data type of the
return value is string.

The following example shows a portion of the WSDL file for the BabelFish web service:

<message name="BabelFishRequest">
<part name="translationmode" type="xsd:string" />
<part name="sourcedata" type="xsd:string" />

</message>
<message name="BabelFishResponse">

<part name="return" type="xsd:string" />
</message>
<portType name="BabelFishPortType">

<operation name="BabelFish">
<input message="tns:BabelFishRequest" />
<output message="tns:BabelFishResponse" />

</operation>
</portType>

The operation BabelFish returns a message of type BabelFishResponse. The message
statement in the WSDL file defines the BabelFishResponse message as containing a single
string parameter named return.

Using cfinvoke to consume a web service
This section describes how to consume a web service using the cfinvoke tag. With the
cfinvoke tag, you reference the WSDL file and invoke an operation on the web service
with a single tag.

The cfinvoke tag has the following syntax:

<cfinvoke
webservice = "URLtoWSDL"
method = "operationName"
inputParam1 = "val1"
inputParam2 = "val2"
Consuming web services 737

...
returnVariable = "varName"

>

where:
• webservice specifies the URL to the WSDL file for the web service.
• method specifies the operation of the web service to invoke.
• inputParamN specifies an input parameter passed to the operation.
• returnVariable specifies the name of the variable containg any results returned from

the web service.

To access a web service using cfinvoke:

1 Create a ColdFusion page with the following content:
<cfinvoke

webservice = "http://www.xmethods.net/sd/2001/BabelFishService.wsdl"
method = "BabelFish"
translationmode = "en_es"
sourcedata = "Hello world, friend"
returnVariable = "foo">

<cfoutput>#foo#</cfoutput>

2 Save the page as wscfc.cfm in your web root directory.

3 View the page in your browser.

The following string appears in your browser:
Hola mundo, amigo

You can pass parameters to web services using two other mechanisms: the
cfinvokeargument tag and the argumentCollection attribute of the cfinvoke tag.

To pass parameters using the cfinvokeargument tag, you write your call to the web service,
as the following code shows:

<cfinvoke
webservice ="http://www.xmethods.net/sd/2001/BabelFishService.wsdl"
method ="BabelFish"
returnVariable = "varName" >

<cfinvokeargument name="translationmode" value="en_es">
<cfinvokeargument name="sourcedata" value="Hello world, friend">

</cfinvoke>
<cfoutput>#varName#</cfoutput>

The cfinvokeargument tag is a nested tag of the cfinvoke tag that lets you specify the
name and value of a parameter passed to the web service.

You can also use an attribute collection to pass parameters. An attribute collections is a
structure where each structure key corresponds to a parameter name and each structure
value is the parameter value passed for the corresponding key. The following example
shows an invocation of a web service using an attribute collection:

<cfscript>
stArgs = structNew();
stArgs.translationmode = "en_es";
stArgs.sourceData= "Hello world, friend";

</cfscript>
738 Chapter 31 Using Web Services

<cfinvoke
webservice = "http://www.xmethods.net/sd/2001/BabelFishService.wsdl"
method = "BabelFish"
argumentCollection = "#stArgs#"
returnVariable = "varName" >

<cfoutput>#varName#</cfoutput>

In this example, you create the structure in a CFScript block, but you can use any
ColdFusion method to create the structure.

Using CFScript to consume a web service
The example in this section uses CFScript to consume a web service. In CFScript, you
use the CreateObject function to connect to the web service. After connecting, you can
make requests to the service. The CreateObject function has the following syntax:

webServiceName = CreateObject("webservice", "URLtoWSDL")

where URLtoWSDL specifies the URL to the WSDL file for the web service.

After creating the web service object, you can call operations of the web service using dot
notation, in the following form:

webServiceName.operationName(inputVal1, inputVal2, ...)

You can handle return values from web services by writing them to a variable, as the
following example shows:

resultVar = webServiceName.operationName(inputVal1, inputVal2, ...);

Or, you can pass the return values directly to a function, such as the writeOutput
function, as follows:

writeoutput(webServiceName.operationName(inputVal1, inputVal2, ...));

To access a web service from CFScript:

1 Create a ColdFusion page with the following content:
<cfscript>

ws = CreateObject("webservice",
"http://www.xmethods.net/sd/2001/BabelFishService.wsdl");

xlatstring = ws.BabelFish("en_es", "Hello world, friend");
writeoutput(xlatstring);

</cfscript>

2 Save the page as wscfscript.cfm in your web root directory.

3 View the page in your browser.

The following string appears in your browser:
Hola mundo, amigo

You can also use named parameters to pass information to a web service. The following
example performs the same operation as above, except that it uses named parameters to
make the web service request:

<cfscript>
ws = createObject("webservice",

"http://www.xmethods.net/sd/2001/BabelFishService.wsdl");
xlatstring = ws.BabelFish(translationmode = "en_es",

sourcedata = "Hello world, friend");
Consuming web services 739

</cfscript>
<cfoutput>#xlatstring#</cfoutput>

Calling web services from a Flash client
The Flash Remoting service lets you call ColdFusion pages from a Flash client, but it
does not let you call web services directly. To call web services from a Flash client, you can
use Flash Remoting to call a ColdFusion component that calls the web service. The Flash
client can pass input parameters to the component, and the component can return to the
Flash client any data returned by the web service.

For more information on Flash Remoting, see Chapter 29, “Using the Flash Remoting
Service” on page 673.

Catching errors when consuming web services
Web services might throw errors, including SOAP faults, during processing that you can
catch in your application. If uncaught, these errors propagate to the browser.

To catch errors, you specify an error type of application to the ColdFusion cfcatch tag, as
the following example shows:

<cftry>
Put your application code here ...
<cfcatch type="application">

<!--- Add exception processing code here ... --->
</cfcatch>
.
.
.
<cfcatch type="Any">

<!--- Add exception processing code appropriate for all other
exceptions here ... --->

</cfcatch>
</cftry>

For more information on error handling, see Chapter 14, “Handling Errors” on
page 281.

Handling inout and out parameters
Some web services define inout and out parameters. You use out parameters to pass a
placeholder for a return value to a web service. The web service then returns its result by
writing it to the out parameter. Inout parameters let you pass a value to a web service and
lets the web service return its result by overwriting the parameter value.

The following example shows a web service that takes as input an inout parameter
containing a string and writes its results back to the string:

<cfset S="foo">
<cfscript>

ws=createobject("webservice", "URLtoWSDL")
ws.modifyString("S");

<cfscript>
<cfoutput>#S#</cfoutput>
740 Chapter 31 Using Web Services

Even though this web service takes as input the value of S, because you pass it as an inout
parameter you do not enclose it in pound signs.

Note: ColdFusion supports the use of inout and out parameters to consume web services.
However, ColdFusion does not support inout and out parameters when creating web
services for publication.

Configuring web services in the ColdFusion Administrator
The ColdFusion Administrator lets you register web services so that you do not have to
specify the entire WSDL URL when you reference the web service.

Note: The first time you reference a web service, ColdFusion automatically registers it in
the Administrator.

For example, the following code references the URL to the BabelFish WSDL file:

<cfscript>
ws = CreateObject("webservice",

"http://www.xmethods.net/sd/2001/BabelFishService.wsdl");
xlatstring = ws.BabelFish("en_es", "Hello world, friend");
writeoutput(xlatstring);

</cfscript>

If you register the BabelFish web service in the ColdFusion Administrator using, for
example, the name wsBabel, you could then reference the web service as follows:

<cfscript>
ws = CreateObject("webservice", "wsBabel");
xlatstring = ws.BabelFish("en_es", "Hello world, friend");
writeoutput(xlatstring);

</cfscript>

Not only does this enable you to shorten your code, registering a web service in the
ColdFusion Administrator lets you change a web service’s URL without modifying your
code. So, if the BabelFish web service moves to a new location, you only update the
administrator setting; not your application code.

For more information, see the online help in the ColdFusion Administrator.

Data conversions between ColdFusion and WSDL data types
A WSDL file defines the input and return parameters of an operation, including data
types. For example, the BabelFish web service contains the following definition of input
and return parameters:

<message name="BabelFishRequest">
<part name="translationmode" type="xsd:string" />
<part name="sourcedata" type="xsd:string" />

</message>
<message name="BabelFishResponse">

<part name="return" type="xsd:string" />
</message>
Consuming web services 741

As part of consuming web services, you must understand how ColdFusion converts
WSDL defined data types to ColdFusion data types. The following table shows this
conversion:

For many of the most common data types, such as string and numeric, a WSDL data
type maps directly to a ColdFusion data type. For complex WSDL data types, the
mapping is not as straight forward. In many cases, you map a complex WSDL data type
to a ColdFusion structure. For more information on handling complex data types, see
“Handling complex data types” on page 753.

Consuming ColdFusion web services
Your application might consume web services created in ColdFusion. You do not have to
perform any special processing on the input parameters or return values because
ColdFusion handles data mappings automatically when consuming a ColdFusion web
service.

For example, when ColdFusion publishes a web service that returns a query, or takes a
query as an input, the WSDL file for that service lists its data type as QueryBean.
However, a ColdFusion application consuming this web service can pass a ColdFusion
query object to the function as an input, or write a returned QueryBean to a ColdFusion
query object.

Note: For a list of how ColdFusion data types map to WSDL data types, see “Data
conversions between ColdFusion and WSDL data types” on page 741.

The following example shows a ColdFusion component that takes a query as input and
echoes the query back to the caller:

<cfcomponent>
<cffunction name='echoQuery' returnType='query' access='remote'>

<cfargument name='input' type='query'>
<cfreturn #arguments.input#>

</cffunction>
</cfcomponent>

ColdFusion data type WSDL data type

numeric SOAP-ENC:double

boolean SOAP-ENC:boolean

string SOAP-ENC:string

array SOAP-ENC:Array

binary xsd:base64Binary

date xsd:dateTime

void (operation returns nothing)

struct complex type
742 Chapter 31 Using Web Services

If you add this web service in Dreamweaver MX, you see the following description of it
in the Application panel:

Note: This figure assumes that you create a web component named echotypes.cfc that
contains the echoQuery function definition shown above, and write echotypes.cfc to your
web root directory.

In the WSDL file for the echotypes.cfc component, you see the following definitions that
specify the type of the function’s input and output as QueryBean:

<wsdl:message name="echoQueryRequest">
<wsdl:part name="input" type="tns1:QueryBean"/>

</wsdl:message>
<wsdl:message name="echoQueryResponse">

<wsdl:part name="return" type="tns1:QueryBean"/>
</wsdl:message>

Since ColdFusion automatically handles mappings to ColdFusion data types, you can call
this web service as the following example shows:

<head>
<title>Passing queries to web services</title>
</head>
<body>
<cfquery name="GetEmployees" datasource="CompanyInfo">

SELECT FirstName, LastName, Salary
FROM Employee

</cfquery>

<cfinvoke
webservice = "http://localhost/echotypes.cfc?wsdl"
method = "echoQuery"
input="#GetEmployees#"
returnVariable = "returnedQuery">

<cfoutput>
Is returned result a query? #isQuery(returnedQuery)#

</cfoutput>

<cfoutput query="returnedQuery">
#FirstName#
#LastName#
#Salary#

</cfoutput>
</body>
Consuming web services 743

Publishing web services
To publish web services for consumption by remote applications, you create the web
service using ColdFusion components. For more information on components, see
Chapter 11, “Building and Using ColdFusion Components” on page 217.

Creating components for web services
ColdFusion components encapsulate application functionality and provide a standard
interface for client access to that functionality. A component typically contains one or
more functions defined by the cffunction tag.

For example, the following component contains a single function:

<cfcomponent>
<cffunction name="echoString" returnType="string" output="no">

<cfargument name="input" type="string">
<cfreturn #arguments.input#>

</cffunction>
</cfcomponent>

The function, named echoString, echoes back any string passed to it. To publish the
function as a web service, you must modify the function definition to add the access
attribute, as the following example shows:

<cffunction name="echoString" returnType="string" output="no" access="remote" >

By defining the function as remote, ColdFusion includes the function in the WSDL file.
Only those functions marked as remote are accessible as a web service.

The following list defines the requirements for how to create web services for publication:

1 The value of the access attribute of the cffunction tag must be remote.

2 The cffunction tag must include the returnType attribute to specify a return type.

If the function does not return anything, set its returnType attribute to void.

3 The output attribute of the cffunction tag must be set to No because ColdFusion
converts all output to XML to return it to the consumer.

4 The attribute setting required="false" for the cfargument tag is ignored. ColdFusion
considers all parameters as required.

Specifying data types of function arguments and return values
The cffunction tag lets you define a single return value and one or more input
parameters passed to a function. As part of the function definition, you include the data
type of the return value and input parameters.

The following example shows a component that defines a function with a return value of
type string, one input parameter of type string, and one input parameter of type numeric:

<cfcomponent>
<cffunction name="trimString" returnType="string" output="no">

<cfargument name="inString" type="string">
<cfargument name="trimLength" type="numeric">

</cffunction>
</cfcomponent>
744 Chapter 31 Using Web Services

As part of publishing the component for access as a web service, ColdFusion generates
the WSDL file that defines the component where the WSDL file includes definitions for
how ColdFusion data types map to WSDL data types. The following table shows this
mapping:

In most cases, consumers of ColdFusion web services will be able to easily pass data to
and return results from component functions by mapping their data types to the WSDL
data types shown above.

For ColdFusion structures and queries, clients might have to perform some processing to
map their data to the correct type. For more information, see “Publishing web services
that use complex data types” on page 756.

You can also define a data type in one ColdFusion component based on another
component definition. For more information on using components to specify a data
type, see “Using ColdFusion components to define data types for web services” on page
748.

Producing WSDL files
ColdFusion automatically creates a WSDL file for any component referenced as a web
service. For example, if you have a component named echo.cfc in your web root
directory, you can view its corresponding WSDL file by requesting the component as
follows:

http://localhost/echo.cfc?wsdl

ColdFusion data type WSDL data type

numeric SOAP-ENC:double

boolean SOAP-ENC:boolean

string SOAP-ENC:string

array SOAP-ENC:Array

binary xsd:base64Binary

date xsd:dateTime

guid SOAP-ENC:string

uuid SOAP-ENC:string

void (operation returns nothing)

struct Map

query QueryBean

any complex type

component definition complex type
Publishing web services 745

For example, you define a ColdFusion component as follows:

<cfcomponent>
<cffunction

name = "echoString"
returnType = "string"
output = "no"
access = "remote">

<cfargument name = "input" type = "string">
<cfreturn #arguments.input#>

</cffunction>
</cfcomponent>

If you register the component in Dreamweaver MX, it appears in the Application panel
as the following figure shows:

Requesting the WSDL file returns the following:

<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions targetNamespace="http://webservices"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:intf="http://webservices"
xmlns:impl="http://webservices-impl"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<wsdl:message name="echoStringResponse">
<wsdl:part name="return" type="SOAP-ENC:string" />

</wsdl:message>
<wsdl:message name="echoStringRequest">

<wsdl:part name="input" type="SOAP-ENC:string" />
</wsdl:message>
<wsdl:portType name="echo">

<wsdl:operation name="echoString" parameterOrder="in0">
<wsdl:input message="intf:echoStringRequest" />
<wsdl:output message="intf:echoStringResponse" />

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="echo.cfcSoapBinding" type="intf:echo">

<wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/
http" />

<wsdl:operation name="echoString">
<wsdlsoap:operation soapAction="" style="rpc" />
<wsdl:input>
746 Chapter 31 Using Web Services

<wsdlsoap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/
soap/encoding/" namespace="http://webservices" />

</wsdl:input>
<wsdl:output>

<wsdlsoap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/
soap/encoding/" namespace="http://webservices" />

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name="echo.cfcService">

<wsdl:port name="echo.cfc" binding="intf:echo.cfcSoapBinding">
<wsdlsoap:address location="http://SMGILSON02/webservices/echo.cfc" />

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

To publish a web service:

1 Create a ColdFusion page with the following content:
<cfcomponent output="false">

<cffunction
name = "echoString"
returnType = "string"
output = "no"
access = "remote">

<cfargument name = "input" type = "string">
<cfreturn #arguments.input#>

</cffunction>
</cfcomponent>

2 Save this file as echo.cfc in your web root directory.

3 Create a ColdFusion page with the following content:
<cfinvoke webservice ="http://localhost/echo.cfc?wsdl"

method ="echoString"
input = "hello"
returnVariable="foo">

<cfoutput>#foo#</cfoutput>

4 Save this file as echoclient.cfm in your web root directory.

5 Request echoclient.cfm in your browser.

The following string appears in your browser:
hello

You can also invoke the web service using the following code:

<cfscript>
ws = CreateObject("webservice", "http://localhost/echo.cfc?wsdl");
wsresults = ws.echoString("hello");
writeoutput(wsresults);

</cfscript>
Publishing web services 747

Using ColdFusion components to define data types for web services
ColdFusion components let you define both methods and properties of the component.
Once defined, you can use components to define data types for web services. The
following code defines a component in the file address.cfc:

<cfcomponent>
<cfproperty name="Number" type="numeric">
<cfproperty name="Street" type="string">
<cfproperty name="City" type="string">
<cfproperty name="State" type="string">
<cfproperty name="Country" type="string">

</cfcomponent>

This component contains properties that represent a street address. The following code
defines a component in the file name.cfc that defines first and last name properties:

<cfcomponent>
<cfproperty name="Firstname" type="string">
<cfproperty name="Lastname" type="string">

</cfcomponent>

You can then use address and name to define data types in a ColdFusion component
created to publish a web service, as the following example shows:

<cfcomponent>
<cffunction name="echoName" returnType="name" access="remote">

<cfargument name="input" type="name">
<cfreturn #arguments.input#>

</cffunction>

<cffunction name="echoAddress" returnType="address" access="remote">
<cfargument name="input" type="address">
<cfreturn #arguments.input#>

</cffunction>
</cfcomponent>

Note: If the component files are not in a directory under your web root, you must create a
ColdFusion mapping to the directory containing them.
748 Chapter 31 Using Web Services

If you register the component in Dreamweaver MX, it appears in the Application panel
as the following figure shows:

The WSDL file for the web service contains data definitions for the complex types name
and address. Each definition consists of the elements that define the type as specified in
the ColdFusion component file for that type. For example, shown below is the definition
for name:

<complexType name="name">
<all>

<element name="Firstname" nillable="true" type="xsd:string" />
<element name="Lastname" nillable="true" type="xsd:string" />

</all>
</complexType>

Securing your web services
You can restrict access to your published web services to control the users allowed to
invoke them. You can use your web server to control access to the directories containing
your web services, or you can use ColdFusion security in the same way that you would to
control access to any ColdFusion page.

Controlling access to component CFC files

To browse the HTML description of a .cfc file, you request the file by specifying a URL
to the file in your browser. By default, ColdFusion secures access to all URLs that directly
reference a .cfc file, and prompts you to enter a password upon the request. Use the
ColdFusion RDS password to view the file.

To disable security on .cfc file browsing, use the ColdFusion Administrator to disable the
RDS password.
Publishing web services 749

For more information, see Chapter 11, “Building and Using ColdFusion Components”
on page 217.

Using your web server to control access

Most web servers, including IIS and Apache, implement directory access protection using
the basic HTTP authentication mechanism. When a client attempts to access one of the
resources under a protected directory, and has not properly authenticated, the web server
automatically sends back an authentication challenge, typically an HTTP Error 401
Access Denied error.

In response, the client’s browser opens a login prompt containing a username and
password field. When the user submits this information, the browser sends it back to the
web server. If authentication passes, the web server allows access to the directory. The
browser also caches the authentication data as long as it is open, so subsequent requests
automatically include the authentication data.

Web service clients can also pass the username and password information as part of the
request. The cfinvoke tag includes the username and password attributes that let you pass
login information to a web server using HTTP basic authentication. You can include
these attributes when invoking a web service, as the following example shows:

<cfinvoke
webservice = "http://some.wsdl"
returnVariable = "foo"
...
username="aName"
password="aPassword">

<cfoutput>#foo#</cfoutput>

ColdFusion inserts the username/password string in the authorization request header as
a base64 binary encoded string, with a colon separating the username and password. This
method of passing the username/password is compatible with the HTTP basic
authentication mechanism used by web servers.

The ColdFusion Administrator lets you predefine web services. As part of defining the
web service, you can specify the username and password that ColdFusion includes as part
of the request to the web service. Therefore, you do not have to encode this information
using the cfinvoke tag. For information on defining a web service in the ColdFusion
Administrator, see “Configuring web services in the ColdFusion Administrator” on page
741.

Using ColdFusion to control access

Instead of letting the web server control access to your web services, you can handle the
username/password string in your Application.cfm file as part of your own security
mechanism. In this case, you use the cflogin tag to retrieve the username/password
information from the authorization header, decode the binary string, and extract the
username and password, as the following example Application.cfm file shows:

<cfsilent>
<cflogin>

<cfset isAuthorized = false>
750 Chapter 31 Using Web Services

<cfif isDefined("cflogin")
<!--- verify user name from cflogin.name and password from cflogin.password

using your authentication mechanism --->
>
<cfset isAuthorized = true>

</cfif>

</cflogin>

<cfif not isAuthorized>
<!--- If the user does not pass a username/password, return a 401 error.

The browser then prompts the user for a username/password. --->
<cfheader statuscode="401">
<cfheader name="WWW-Authenticate" value="Basic realm=""Test""">
<cfabort>

</cfif>
</cfsilent>

This example does not show how to perform user verification. For more information on
verification, see Chapter 16, “Securing Applications” on page 347.

Assigning security roles to functions

ColdFusion components offer role-based security. The following example creates a
component method that deletes files:

<cfcomponent>
<cffunction name="deleteFile" access="remote" roles="admin,manager">

<cfargument name="filepath" required="yes">
<cffile action="DELETE" file=#arguments.filepath#>

</cffunction>
</cfcomponent>

In the example, the cffunction tag includes the roles attribute to specify the user roles
allowed to access it. In this example, only users in the role admin and manager can access
the function. Notice that multiple roles are delimited by a comma.

Role based security can be used with any ColdFusion component, not just for web
services. For more information on roles, see Chapter 16, “Securing Applications” on
page 347.

Using programmatic security

You can implement your own security within the a function to protect resources. For
example you can use the ColdFusion function IsUserInRole() to determine if a user is in
particular role, as the following example shows:

<cffunction name="foo">
<cfif IsUserInRole("admin")>

… do stuff allowed for admin
<cfelseif IsUserInRole("user")>

… do stuff allowed for user
<cfelse>

<cfoutput>unauthorized access</cfoutput>
<cfabort>
Publishing web services 751

</cfif>
</cffunction>

Best practices for publishing web services
ColdFusion web services provide a powerful mechanism for publishing and consuming
application functionality. However, before you produce web services for publication, you
might want to consider the following best practices:

1 Minimize the use of ColdFusion complex types, such as query and struct, in the web
services you create for publication. These types require consumers, especially those
consuming the web service using a technology other than ColdFusion, to create
special data structures to handle complex types.

2 Locally test the ColdFusion components implemented for web services before
publishing them over the Internet.
752 Chapter 31 Using Web Services

Handling complex data types
When dealing with web services, handling complex types falls into the following
categories:
• Mapping the data types of a web service to consume to ColdFusion data types
• Understanding how clients will reference your ColdFusion data types when you

publish a web service

This section describes both categories.

Consuming web services that use complex data types
The following table shows how WSDL data types are converted to ColdFusion data
types:

This table shows that complex data types map to ColdFusion structures. ColdFusion
structures offer a flexible way to represent data. You can create structures that contain
single-dimension arrays, multi-dimensional arrays, and other structures.

The ColdFusion mapping of complex types to structures is not automatic. You have to
perform some processing on the data in order to access it as a structure. The next sections
describe how to pass complex types to web services, and how to handle complex types
returned from web services.

Passing input parameters to web services as complex types

A web service can take a complex data type as input. In this situation, you can construct
a ColdFusion structure that models the complex data type, then pass the structure to the
web service.

For example, the following excerpt from a WSDL file shows the definition of a complex
type named Employee:

<s:complexType name="Employee">
<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="fname" type="s:string" />
<s:element minOccurs="1" maxOccurs="1" name="lname" type="s:string" />
<s:element minOccurs="1" maxOccurs="1" name="active" type="s:boolean" />
<s:element minOccurs="1" maxOccurs="1" name="age" type="s:int" />

ColdFusion data type WSDL data type

numeric SOAP-ENC:double

boolean SOAP-ENC:boolean

string SOAP-ENC:string

array SOAP-ENC:Array

binary xsd:base64Binary

date xsd:dateTime

void (operation returns nothing)

struct* complex type
Handling complex data types 753

<s:element minOccurs="1" maxOccurs="1" name="hiredate" type="s:dateTime" />
<s:element minOccurs="1" maxOccurs="1" name="number" type="s:double" />

</s:sequence>
</s:complexType>

The Employee data type definition includes six elements, the data type of each element,
and the name of each element.

Another excerpt from the WSDL file shows a message definition using the Employee
data type. This message defines an input parameter, as the following code shows:

<message name="updateEmployeeInfoSoapIn">
<part name="thestruct" type="s0:Employee" />

</message>

A third excerpt from the WSDL file shows the definition of an operation, named
updateEmployeeInfo, possibly one that updates the employee database with the
employee information. This operation takes as input a parameter of type Employee, as
the following code shows:

<operation name="updateEmployeeInfo">
<input message="s0:updateEmployeeInfoSoapIn" />

</operation>

To call the updateEmployeeInfo operation, you create a ColdFusion structure, initialize
six fields of the structure that correspond to the six elements of Employee, then call the
operation, as the following code shows:

<!--- Create a structure using CFScript, then call the web service. --->
<cfscript>

stUser = structNew();
stUser.active = TRUE;
stUser.fname = "John";
stUser.lname = "Smith";
stUser.age = 23;
stUser.hiredate = createDate(2002,02,22);
stUser.number = 123.321;

ws = createObject("webservice", "http://somehost/echosimple.asmx?wsdl");
ws.echoStruct(stUser);

</cfscript>

You can use structures for passing input parameters as complex types in many situations.
However, to build a structure to model a complex type, you have to inspect the WSDL
file for the web service to determine the layout of the complex type. This can take some
practice.

Handling return values as complex types

When a web service returns a complex type, you can write that returned value directly to
a ColdFusion variable.
754 Chapter 31 Using Web Services

The previous section used a complex data type named Employee to define an input
parameter to an operation. A WSDL file can also define a return value using the
Employee type, as the following code shows:

<message name="updateEmployeeInfoSoapOut">
<part name="updateEmployeeInfoResult" type="s0:Employee" />

</message>

<operation name="updateEmployeeInfo">
<input message="s0:updateEmployeeInfoSoapIn" />
<output message="s0:updateEmployeeInfoSoapOut" />

</operation>

In this example, the operation updateEmployeeInfo takes a complex type as input and
returns a complex type as output. To handle the input parameter, you create a structure.
To handle the returned value, you write it to a ColdFusion variable, as the following
example shows:

<!--- Create a structure using CFScript, then call the web service. --->
<!--- Write the returned value to a ColdFusion variable. --->
<cfscript>

stUser = structNew();
stUser.active = TRUE;
stUser.fname = "John";
stUser.lname = "Smith";
stUser.age = 23;
stUser.hiredate = createDate(2002,02,22);
stUser.number = 123.321;

ws = createObject("webservice", "http://somehost/echosimple.asmx?wsdl");
myReturnVar = ws.echoStruct(stUser);

</cfscript>

<!--- Output the returned values. --->
<cfoutput>

Name of employee is: #myReturnVar.fname# #myReturnVar.lname#

Active status: #myReturnVar.active#

Age: #myReturnVar.age#

Hire Date: #myReturnVar.hiredate#

Favorite Number: #myReturnVar.number#

</cfoutput>

You access elements of the variable myReturnVar using the dot notation in the same way
you access structure fields. If a complex type has nested elements, in the way a structure
can have multiple levels of nested fields, you use dot notation to access the nested
elements, as in a.b.c.d, to whatever nesting level is necessary.

However, the variable myReturnVar is not a ColdFusion structure. It is a container for
the complex type, but has none of the attributes of a ColdFusion structure. Calling the
ColdFusion function isStruct on the variable returns False.
Handling complex data types 755

You can copy the contents of the variable to a ColdFusion structure, as the following
example shows:

<cfscript>
...

ws = createObject("webservice", "http://somehost/echosimple.asmx?wsdl");
myReturnVar = ws.echoStruct(stUser);

realStruct = structNew();
realStruct.active = #myReturnVar.active#;
realStruct.fname = "#myReturnVar.fname#";
realStruct.lname = "#myReturnVar.lname#";
realStruct.age = #myReturnVar.age#;
realStruct.hiredate = #myReturnVar.hiredate#;
realStruct.number = #myReturnVar.number#;

</cfscript>

Calling isStruct on realStruct returns “True” and you can use all ColdFusion structure
functions to process it.

This example shows that ColdFusion variables and structures are useful for handling
complex types returned from web services. To understand how to access the elements of a
complex type written to a ColdFusion variable, you have to inspect the WSDL file for
the web service. The WSDL file defines the API to the web service and will provide you
with the information necessary to handle data returned from it.

Publishing web services that use complex data types
The two ColdFusion data types that do not map exactly to WSDL data types are struct
and query. When you publish a ColdFusion web service that uses parameters of type
struct or query, the consuming application needs to be able to handle the data.

Note: If the consumer of a ColdFusion web service is another ColdFusion application, you
do not have to perform any special processing. ColdFusion correctly maps struct and query
data types in the web service publisher with the consumer. For more information, see
“Consuming ColdFusion web services” on page 742.

Publishing structures

A ColdFusion structure can hold an unlimited number of key-value pairs where the
values can be of any ColdFusion data type. While it is a very useful and powerful way to
represent data, it cannot be directly mapped to any XML data types defined in the SOAP
1.1 encoding and XML Schema specification. Therefore, ColdFusion structures are
treated as a custom type and the complex type XML schema in WSDL looks like the
following:

<complexType name="Map">
<sequence>

<element name="item" minOccurs="0" maxOccurs="unbounded">
<complexType>

<all>
<element name="key" type="xsd:anyType" />
<element name="value" type="xsd:anyType" />

</all>
756 Chapter 31 Using Web Services

</complexType>
</element>

</sequence>
</complexType>

This complex type defines a representation of a structure, where the structure keys and
values can be any type.

If you register the component in Dreamweaver MX, it appears in the Application panel
as the following figure shows:

In the WSDL mapping of a ColdFusion structure, each key/value pair in the structure
points to the next element in the structure except for the final field, which contains a
value. For example, if you have a structure containing the field A.B.C, that field is
represented as the following figure shows:

Publishing queries

ColdFusion publishes query data types as the WSDL type QueryBean. The QueryBean
data type contains two elements, as the following excerpt from a WSDL file shows:

<complexType name="QueryBean">
<all>

<element name="data" nillable="true" type="intf:ArrayOf_SOAP-ENC_Array" />
<element name="ColumnList" nillable="true"

type="intf:ArrayOf_SOAP-ENC_string" />
</all>

</complexType>

The following table describes the elements of QueryBean:

Element name Description

ColumnList String array that contains column names

data 2-dimensional array that contains query data
Handling complex data types 757

The WSDL file for a QueryBean defines these elements as follows:

<complexType name="ArrayOf_SOAP-ENC_Array">
<complexContent>

<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="SOAP-ENC:Array[]" />

</restriction>
</complexContent>

</complexType>
<complexType name="ArrayOf_SOAP-ENC_string">

<complexContent>
<restriction base="SOAP-ENC:Array">

<attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="xsd:string[]" />
</restriction>
</complexContent>

</complexType>
758 Chapter 31 Using Web Services

CHAPTER 32

Integrating J2EE and Java Elements

in CFML Applications
This chapter describes how to integrate J2EE elements, including the following, into
your ColdFusion application:
• JSP pages and servlets
• JSP tags
• Java objects, including Enterprise JavaBeans (EJBs)

It does not explain J2EE concepts or how to program using Java or JSP. It does explain
how to use existing Java and JSP elements in your ColdFusion Applications.

Contents

• About ColdFusion, Java, and J2EE .. 760

• Using JSP tags and tag libraries.. 762

• Interoperating with JSP pages and servlets ... 764

• Using Java objects .. 769
759

About ColdFusion, Java, and J2EE
ColdFusion is built on a J2EE-compliant Java technology platform. This lets ColdFusion
applications take advantage of, and integrate with, J2EE elements. ColdFusion pages can
do any of the following:
• Include JavaScript and client-side Java applets on the page.
• Use JSP tags.
• Interoperate with JSP pages.
• Use Java servlets.
• Use Java objects, including JavaBeans and Enterprise JavaBeans.

About ColdFusion and client-side JavaScript and applets
ColdFusion pages, like HTML pages, can incorporate client-side JavaScript and Java
applets. To use JavaScript, you write the JavaScript code just as you do on any HTML
page. ColdFusion ignores the JavaScript and sends it to the client.

The cfapplet tag simplifies using Java client-side applets.

To use an applet on a ColdFusion page:

1 Register the applet .class file in ColdFusion Administrator Java Applets Extensions
page. (For information on registering applets, see the ColdFusion Administrator
online Help.)

2 Use the cfapplet tag to call the applet. The appletSource attribute must be the Applet
name assigned in ColdFusion Administrator.

For example, ColdFusion includes a Copytext sample applet that copies text from one
text box to another. The ColdFusion Setup automatically registers the applet in the
Administrator. To use this applet, incorporate it on your page. For example:

<cfform action = "copytext.cfm">
 <cfapplet appletsource = "copytext" name = "copytext">
</cfform>

About ColdFusion and JSP
ColdFusion supports JSP tags and pages in the following ways:
• Interoperates with JSP pages: ColdFusion pages can include or forward to JSP pages,

JSP pages can include or forward to ColdFusion pages, and both types of pages can
share data in persistent scopes.

• Imports and uses JSP tag libraries: the cfimport tag imports JSP tag libraries and lets
you use its tags.

ColdFusion pages are not JSP pages, however, and you cannot use most JSP syntax on
ColdFusion pages. In particular you cannot use the following features on ColdFusion
pages:
• Include, Taglib, and Page directives Instead, you use CFML include and import

tags to include pages and import tag libraries.
• Expression, Declaration, and Scriptlet JSP scripting elements Instead, you use

CFML elements and expressions.
760 Chapter 32 Integrating J2EE and Java Elements in CFML Applications

• JSP comments Instead, you use CFML comments. (ColdFusion ignores JSP
comments and passes them to the browser.)

• Standard JSP tags Such as jsp:plugin, unless your J2EE server provides access to
these tags in a JAR file. Instead, you use ColdFusion tags and the PageContext object.

About ColdFusion and Servlets
Some Java servlets are not exposed as JSP pages; instead they are Java programs. You can
incorporate JSP servlets in your ColdFusion application. For example, your enterprise
might have an existing servlet that performs some business logic. To use a servlet, the
ColdFusion page specifies the servlet by using the ColdFusion GetPageContext function.

When you access the servlet with the GetPageContext function, the ColdFusion page
shares the Application, Session, and Request scopes with the servlet, so you can use these
scopes for shared data.

ColdFusion pages can also access servlets by using the cfhttp tag, use the servlet URL in
a form tag, or access an SHTML page that uses a servlet tag.

Note: The cfservlet tag, which provides access to servlets on JRun servers, is deprecated
for ColdFusion MX.

About ColdFusion and Java objects
Java objects include the following:
• Standard Java classes and methods that make up the J2EE API
• Custom-written Java objects, including the following:

− Custom classes, including JavaBeans

− Enterprise JavaBeans

ColdFusion pages use the cfobject tag to access Java objects.

ColdFusion searches for the objects in the following order:

1 The ColdFusion Java Dynamic Class Load directories:

− Java archive (.jar) files in web_root/WEB-INF/lib

− Class (.class) files in web_root/WEB-INF/classes
ColdFusion reloads classes from these directories, as described in the next section,
“About class loading”.

2 The classpath specified on the ColdFusion Administrator JVM and Java Settings
page.

3 The default JVM classpath.

About class loading

ColdFusion dynamically loads classes that are either .class files in the web_root/
WEB-INF/classes directory or in JAR files in the web_root/WEB-INF/lib directory.
ColdFusion checks the time stamp on the file when it creates an object that is defined in
either directory, even when the class is already in memory. If the file that contains the
class is newer than the class in memory, ColdFusion loads the class from that directory.
About ColdFusion, Java, and J2EE 761

To use this feature, make sure that the Java implementation classes that you modify are
not in the general JVM classpath.

To disable automatic class loading of your classes, put the classes in the JVM classpath.
Classes located on the JVM classpath are loaded once per server lifetime. To reload these
classes, stop and restart ColdFusion Server.

Note: Because you put tag libraries in the web_root/WEB-INF/lib directory, ColdFusion
automatically reloads these libraries if necessary when you import the library.

About GetPageContext and the PageContext object.

Because ColdFusion pages are J2EE servlet pages, all ColdFusion pages have an
underlying Java PageContext object. CFML includes the GetPageContext function that
you can then use in your ColdFusion page.

The PageContext object exposes a number of fields and methods that can be useful in
J2EE integration. In particular, it includes the include and forward methods that provide
the equivalent of the corresponding standard JSP tags.

This chapter describes how to use the include and forward PageContext methods for
calling JSP pages and servlets. It does not discuss the PageContext object in general. For
more information on the object, see Java documentation. You can find the Javadoc
description of this class at http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/servlet/
jsp/PageContext.html.

Using JSP tags and tag libraries
You can use JSP tags from any JSP tag library. For example, you can use any of the
custom tags in the open-source Apache Jakarta Project Taglibs project tag libraries,
located at http://jakarta.apache.org/taglibs/index.html. This project consists of a number
of individual JSP custom tag libraries for purposes ranging from JNDI access to
generating random text strings.

Using a JSP tag in a ColdFusion page
JSP pages use a standard set of tags, such as jsp:forward and jsp:include. You can also
import custom JSP tag libraries into a JSP application. You can use both the standard JSP
tags and custom JSP tags in ColdFusion pages, as the following sections describe.

Standard JSP tags and ColdFusion

ColdFusion tags provide equivalent features to most standard JSP tags. For example, the
cfapplet tag provides the same service as the jsp:plugin tag, and cfobject tag lets you use
JavaBeans, as does the jsp:usebean tag. Similarly, you do not use the jsp:getproperty tag
because ColdFusion automatically gets properties when you reference them. Therefore,
ColdFusion does not support the use of standard JSP tags directly.
762 Chapter 32 Integrating J2EE and Java Elements in CFML Applications

However, two standard JSP tags provide functionality that is useful in ColdFusion pages:
the forward and include tags invoke JSP pages and Java servlets. The PageContext object
described in “About GetPageContext and the PageContext object.” on page 762 has
forward and include methods that provide the same operations. For more information
about using these methods see “Accessing a JSP page or servlet from a ColdFusion page”
on page 764.

Using custom JSP tags in a ColdFusion page

Follow these steps to use a custom JSP tag on a ColdFusion page:

To use a custom tag:

1 Put the tag library, consisting of the taglibname.jar file, and the taglibname.tld file, if
one is supplied, in the web_root/WEB-INF/lib directory.

2 In the ColdFusion page that uses a JSP tag from the tag library, specify the tag library
name in a cfimport tag; for example:
<cfimport taglib="/WEB-INF/lib/random.jar" prefix="random">

If the TLD file is not included in the JAR file, use the .tld suffix in place of the .jar
suffix.

Note: The cfimport tag must be on the page that uses the imported tag. You cannot put
the cfimport tag in Application.cfm.

3 Use the custom tag using the form prefix:tagName; for example:
<random:number id="myNum" range="000000-999999" />

Note: You cannot use the cfsavecontent tag to suppress output of a custom JSP tag.

Example: using the random tag library
The following example uses the random tag library from the Apache Jakarta Taglibs
project and calls the library’s number tag, which initializes a random number generator
that uses a secure algorithm to generate a six-digit random number. You get a new
random number each time you reference the variable randPass.random.

<cfimport taglib="/WEB-INF/lib/random.jar" prefix="myrand">
<myrand:number id="randPass" range="000000-999999" algorithm="SHA1PRNG"

provider="SUN" />
<cfset myPassword = randPass.random>
<cfoutput>

Your password is #myPassword#

</cfoutput>

For more information on the Jakarta random tag library and how to use its tags, see the
documentation at the Apache Jakarta Taglibs project website, http://jakarta.apache.org/
taglibs/index.html. The Taglibs project includes many open source custom tag libraries.
Using JSP tags and tag libraries 763

Interoperating with JSP pages and servlets
ColdFusion pages and JSP pages can interoperate in several ways:
• ColdFusion pages can invoke JSP pages and servlets.
• JSP pages can invoke ColdFusion pages.
• ColdFusion pages, JSP pages, and servlets can share data in three scopes.

The following sections show how you can use these techniques.

Integrating JSP and servlets in a ColdFusion application
You can integrate JSP pages and servlets in your ColdFusion application. For example,
you can write some application pages in JSP and write others in CFML. ColdFusion
pages can access JSP pages by using the JSP include and forward methods to call the page.
As with any web application, you can use href links in ColdFusion pages to open JSP
pages.

The ability to use JSP lets you incorporate legacy JSP pages in your ColdFusion
application, or conversely, use CFML to expand an existing JSP application using
ColdFusion pages.

If you have a JSP page that must call a ColdFusion page, you also use a jsp:forward or
jsp:include tag to call the ColdFusion page. For an example of calling a ColdFusion page
from a JSP page, see “Calling a JSP page from a ColdFusion page” on page 766.

Accessing a JSP page or servlet from a ColdFusion page

To access a JSP page or servlet from a ColdFusion page, you use the getPageContext
function with the forward or the include method. For example, to include a JSP "Hello
World" page in your ColdFusion application, use the following line:

GetPageContext().include("hello.jsp");

To pass parameters to the JSP page, include the parameters in the page URL.

For example, you might want to integrate an existing JSP customer response component
into a new ColdFusion order processing application. The order processing application
provides the order number, total cost, and expected shipping date, and the customer
response component sends the response to the e-mail address on file for the particular
customer number. The ColdFusion application might use the following CFScript code to
call the response JSP page:

urlParams = "UID=#order.uid#&cost=#order.total#&orderNo=#order.orderNo#
&shipDate=#order.shipDateNo#"

getPageContext().forward(URLEncodedFormat("/responsegen/responsegen.jsp
?#urlParams#"));

To access a servlet that exposes the same functionality, you use the same code, although
the URL would change. For example, to run a servlet called HelloWorldServlet, you put
the servlet .java or .class file in the serverroot/WEB-INF/classes directory and refer to the
servlet with the URL /servlet/HelloWorldServlet.
764 Chapter 32 Integrating J2EE and Java Elements in CFML Applications

Sharing data between ColdFusion pages and JSP pages or servlets

If an application includes ColdFusion pages and JSP pages or servlets, they can share data
in the Request, Session and Application scopes. The following table lists the ways that
you can access JSP pages with which you want to share the scope data:

Note: When you share data between ColdFusion pages and JSP pages, you must be
careful about data type conversion issues. For more information, see “Java and ColdFusion
data type conversions” on page 774.

To share session variables, you must specify J2EE session management in the ColdFusion
Administrator. For more information on configuring and using J2EE Session scope
management, see “ColdFusion and J2EE session management,” in Chapter 15.

For example, you could put the customer order structure used in the previous example in
the Session scope. Then, you would not have to pass the order values as a set of
parameters. Instead, the JSP pages could access the Session scope variables directly, and
the ColdFusion page would only require a line like the following to call the JSP page:

getPageContext().forward(URLEncodedFormat("/responsegen/responsegen.jsp"));

For examples of using the Request, Session, and Application scopes to share data between
ColdFusion pages and JSP pages, including samples of the appropriate JSP code, see the
following section, “Examples: using JSP with CFML”.

Accessing ColdFusion application and session variables in JSP pages

ColdFusion runs as a J2EE application on the J2EE application server. The J2EE
application ServletContext is a data structure that stores objects as attributes. A
ColdFusion Application scope is represented as an attribute named by the Application
scope name. The attribute contains the scope values as a hash table. Therefore, you access
ColdFusion Application scope variable in a JSP page or servlet using the following
format:

((Map)application.getAttribute("CFApplicationName"))).get("appVarName")

Similarly, the ColdFusion Session scope is a structure within the J2EE session. Because
ColdFusion identifies sessions by the application name. the session structure is contained
in an attribute of the J2EE session that is identified by the application name. Therefore,
you access ColdFusion session variables as follows:

((Map)(session.getAttribute("CFApplicationName"))).get("sessionVarName")

Unnamed ColdFusion Application and Session scopes

If you do not specify an application name in the ColdFusion cfapplication tag, the
application is unnamed. ColdFusion supports only a single unnamed application, so if
multiple cfapplication tags do not specify an application name, all pages affected by the
tags share the single unnamed application Scope. This scope maps directly to the J2EE

Scope Can share data using

Request forward, include

Session href, cfhttp, forward, include

Application href, cfhttp, forward, include
Interoperating with JSP pages and servlets 765

application scope. Similarly, all sessions of unnamed applications correspond directly to
the J2EE application server’s session scope.

You access an Application scope variable from a ColdFusion unnamed application in a
JSP page using the following format:

application.getAttribute("applicationVariableName")

You access Session scope variables in a ColdFusion unnamed application as follows:

session.getAttribute("sessionVariableName")

Note: When you use application and session variables for the unnamed ColdFusion
application in JSP pages and servlets, the variable names must be case-correct. That is, the
characters in the variable name must have the same case as you used when you created the
variable in ColdFusion. You do not have to use case-correct application and session variable
names for named ColdFusion applications.

Examples: using JSP with CFML
The following simple examples show how you can integrate JSP pages, servlets, and
ColdFusion pages. They also show how you can use the Request, Application, and
Session scopes to share data between ColdFusion pages, JSP pages, and servlets.

Calling a JSP page from a ColdFusion page

The following page sets Request, Session, and application variables and calls a JSP page,
passing it a name parameter:

<cfapplication name="myApp" sessionmanagement="yes">
<cfscript>
Request.myVariable = "This";
Session.myVariable = "is a";
Application.myVariable = "test.";
GetPageContext().include("hello.jsp?name=Bobby");
</cfscript>

Reviewing the code

The following table describes the CFML code and its function:

Code Description

<cfapplication name="myApp"
sessionmanagement="yes">

Specifies the application name as myApp and
enables session management. In most applications,
this tag is in the Application.cfm page.

<cfscript>
Request.myVariable = "This";
Session.myVariable = "is a";
Application.myVariable = "test.";

Sets ColdFusion Request, Session, and
Application, scope variables. Uses the same name,
myVariable, for each variable.

GetPageContext().include
("hello.jsp?name=Bobby");

</cfscript>

Uses the getPageContext function to get the
current servlet page context for the ColdFusion
page. Uses the include method of the page context
object to call the hello.jsp page. Passes the name
parameter in the URL.
766 Chapter 32 Integrating J2EE and Java Elements in CFML Applications

The hello.jsp page is called by the CFML. It displays the Name parameter in a header
and the three variables in the remainder of the body.

<%@page import="java.util.*" %>
<h2>Hello <%= request.getParameter("Name")%>!</h2>

Request.myVariable: <%= request.getAttribute("myvariable")%>

session.myVariable: <%= ((Map)(session.getAttribute("myApp")))

.get("myVariable")%>

Application.myVariable: <%= ((Map)(application.getAttribute("myApp")))

.get("myVariable")%>

Reviewing the code

The following table describes the JSP code and its function:

Calling a ColdFusion page from a JSP page

The following JSP page sets Request, Session, and application variables and calls a
ColdFusion page, passing it a name parameter:

<%@page import="java.util.*" %>

<% request.setAttribute("myvariable", "This");%>
<% ((Map)session.getAttribute("myApp")).put("myVariable", "is a");%>
<% application.setAttribute("myApp.myvariable", "test.");%>

<jsp:include page="hello.cfm">
 <jsp:param name="name" value="Robert" />
</jsp:include>

Code Description

<%@page import="java.util.*" %> Imports the java.util package. This contains
methods required in the JSP page.

<h2>Hello <%= request.getParameter
("name")%>!</h2>

Displays the name passed as a URL parameter
from the ColdFusion page. The parameter
name is case-sensitive,

request.myVariable: <%= request.
getAttribute("myvariable")%>

Uses the getAttribute method of the JSP
request object to displays the value of the
Request scope variable myVariable.

session.myVariable:
<%= ((Map)(session.getAttribute("myApp"))).
get("myVariable")%>

Uses the getAttribute method of the JSP
session object to get the myApp object (the
Application scope). Casts this to a Java Map
object and uses the get method to obtain the
myVariable value for display.

Application.myVariable: <%=
((Map)(application.getAttribute("myApp")))
.get("myVariable")%>

Uses the getAttribute method of the JSP
myApp application object to obtain the value of
myVariable in the Application scope.
Interoperating with JSP pages and servlets 767

Reviewing the code

The following table describes the JSP code and its function:

The following hello.cfm page is called by the JSP page. It displays the Name parameter in
a heading and the three variables in the remainder of the body.

<cfapplication name="myApp" sessionmanagement="yes">
<cfoutput>
<h2>Hello #URL.name#!</h2>
Request.myVariable: #Request.myVariable#

Session.myVariable: #Session.myVariable#

Application.myVariable: #Application.myVariable#

</cfoutput>

Reviewing the code

The following table describes the CFML code and its function:

Code Description

<%@page import="java.util.*" %> Imports the java.util package. This contains
methods required in the JSP page.

<% request.setAttribute("myvariable",
"This");%>

Uses the setAttribute method of the JSP
request object to set the value of the Request
scope variable myVariable.

<% ((Map)session.getAttribute("myApp"))
.put("myVariable", "is a");%>

Uses the getAttribute method of the JSP
session object to get the myApp object (the
Application scope). Casts this to a Java Map
object and uses the set method to set the
myVariable value.

<% application.setAttribute
("myApp.myvariable", "test.");%>

Uses the setAttribute method of the JSP
application object to set the value of myVariable
in the myApp application scope.

<jsp:include page="hello.cfm">
 <jsp:param name="name" value="Robert" />
</jsp:include>

Sets the name parameter to Robert and calls
the ColdFusion page hello.cfm.

Code Description

<cfapplication name="myApp"
sessionmanagement="yes">

Specifies the application name as myApp and enables
session management. In most applications, this tag is in
the Application.cfm page.

<h2>Hello #URL.name#!</h2> Displays the name passed using the jsp:param tag on
the JSP page. The parameter name is not
case-sensitive.

Request.myVariable:
#Request.myVariable#

Session.myVariable:
#Session.myVariable#

Application.myVariable:
#Application.myVariable#

Displays the Request.myVariable, Session. myVariable,
and Application.myVariable values.
768 Chapter 32 Integrating J2EE and Java Elements in CFML Applications

Using Java objects
You use the cfobject tag to create an instance of a Java object. You use other ColdFusion
tags, such as cfset and cfoutput, or CFScript to invoke properties (attributes), and
methods (operations) on the object.

Method arguments and return values can be any valid Java type; for example, simple
arrays and objects. ColdFusion does the appropriate conversions when strings are passed
as arguments, but not when they are received as return values. For more information on
type conversion issues, see “Java and ColdFusion data type conversions” on page 774.

The examples in the following sections assume that the name attribute in the cfobject tag
specified the value obj, and that the object has a property called Property, and methods
called Method1, Method2, and Method3.

Note: The cfdump tag displays an object’s public methods and data.

Using basic object techniques
The following sections describe how to invoke Java objects.

Invoking objects

The cfobject tag makes Java objects available in ColdFusion. It can access any Java class
that is available on the JVM classpath or in either of the following locations:
• In a Java archive (.jar) file in web_root/WEB-INF/lib
• In a class (.class) file in web_root/WEB-INF/classes

For example:

<cfobject type="Java" class="MyClass" name="myObj">

Although the cfobject tag loads the class, it does not create an instance object. Only
static methods and fields are accessible immediately after the call to cfobject.

If you call a public non-static method on the object without first calling the init method,
there ColdFusion makes an implicit call to the default constructor.

To call an object constructor explicitly, use the special ColdFusion init method with the
appropriate arguments after you use the cfobject tag; for example:

<cfobject type="Java" class="MyClass" name="myObj">
<cfset ret=myObj.init(arg1, arg2)>

Note: The init method is not a method of the object, but a ColdFusion identifier that calls
the new function on the class constructor. So, if a Java object has an init method, a name
conflict exists and you cannot call the object’s init method.

To have persistent access to an object, you must use the init function, because it returns
a reference to an instance of the object, and cfobject does not.

An object created using cfobject or returned by other objects is implicitly released at the
end of the ColdFusion page execution.

Using properties

Use the following coding syntax to access properties if the object does either of the
following actions:
Using Java objects 769

• Exposes the properties as public properties.
• Does not make the properties public, but is a JavaBean that provides public getter

and setter methods of the form getPropertyName() and setPropertyName(value). For
more information, see the following “Calling JavaBean get and set methods” section.

To set a property:
<cfset obj.property = "somevalue">

To get a property:
<cfset value = obj.property>

Note: ColdFusion does not require that property and method names be consistently
capitalized. However, you should use the same case in ColdFusion as you do in Java to
ensure consistency.

Calling methods

Object methods usually take zero or more arguments. Some methods return values, while
others might not. Use the following techniques to call methods:
• If the method has no arguments, follow the method name with empty parentheses, as

in the following cfset tag:
<cfset retVal = obj.Method1()>

• If the method has one or more arguments, put the arguments in parentheses,
separated by commas, as in the following example, which has one integer argument
and one string argument:
<cfset x = 23>
<cfset retVal = obj.Method1(x, "a string literal")>

Note: When you invoke a Java method, the type of the data being used is important. For
more information see “Java and ColdFusion data type conversions” on page 774.

Calling JavaBean get and set methods

ColdFusion can automatically invoke getPropertyName() and setPropertyName(value)
methods if a Java class conforms to the JavaBeans pattern. As a result, you can set or get
the property by referencing it directly, without having to explicitly invoke a method.

For example, if the myFishTank class is a JavaBean, the following code returns the results
of calling the getTotalFish() method on the myFish object:

<cfoutput>
There are currently #myFish.TotalFish# fish in the tank.

</cfoutput>

The following example adds one guppy to a myFish object by implicitly calling the
setGuppyCount(int number) method:

<cfset myFish.GuppyCount = myFish.GuppyCount + 1>

Note: You can use the direct reference method to get or set values in some classes that
have getProperty and setProperty methods but do not conform fully to the JavaBean pattern.
However, you cannot use this technique for all classes that have getProperty and setProperty
methods. For example, you cannot directly reference any of the following standard Java
classes, or classes derived from them: Date, Boolean, Short, Integer, Long, Float, Double,
Char, Byte, String, List, Array.
770 Chapter 32 Integrating J2EE and Java Elements in CFML Applications

Calling nested objects

ColdFusion supports nested (scoped) object calls. For example, if an object method
returns another object and you must invoke a property or method on that object, you can
use the following syntax:

<cfset prop = myObj.X.Property>.

Similarly, you can use code such as the following CFScript line:
GetPageContext().include("hello.jsp?name=Bobby");

In this code, the ColdFusion GetPageContext function returns a Java PageContext object,
and the line invokes the PageContext object’s include method.

Creating and using a simple Java class
Java is a strongly typed language, unlike ColdFusion, which does not enforce data types.
As a result, there are some subtle considerations when calling Java methods. The
following sections create and use a Java class to show how to use Java effectively in
ColdFusion pages.

The Employee class

The Employee class has four data members: FirstName and LastName are public, and
Salary and JobGrade are private. The Employee class has three overloaded constructors
and a overloaded SetJobGrade method.

Save the following Java source code in the file Employee.java, compile it, and place the
resulting Employee.class file in a directory that is specified in the classpath:

public class Employee {

public String FirstName;
public String LastName;
private float Salary;
private int JobGrade;

public void Employee() {
 FirstName ="";
 LastName ="";
 Salary = 0.0f;
 JobGrade = 0;
}

public void Employee(String First, String Last) {
 FirstName = First;
 LastName = Last;
 Salary = 0.0f;
 JobGrade = 0;
}

public void Employee(String First, String Last, float salary, int grade) {
 FirstName = First;
 LastName = Last;
 Salary = salary;
 JobGrade = grade;
Using Java objects 771

}

public void SetSalary(float Dollars) {
 Salary = Dollars;
}

public float GetSalary() {
 return Salary;
}

public void SetJobGrade(int grade) {
 JobGrade = grade;
}

public void SetJobGrade(String Grade) {
 if (Grade.equals("CEO")) {
 JobGrade = 3;
 }
 else if (Grade.equals("MANAGER")) {
 JobGrade = 2;
 }
 else if (Grade.equals("DEVELOPER")) {
 JobGrade = 1;
 }
}

public int GetJobGrade() {
 return JobGrade;
}

}

A CFML page that uses the Employee class

Save the following text as JEmployee.cfm:

<html>
<body>
<cfobject action="create" type="java" class="Employee" name="emp">
<!--- <cfset emp.init()> --->
<cfset emp.firstname="john">
<cfset emp.lastname="doe">
<cfset firstname=emp.firstname>
<cfset lastname=emp.lastname>
</body>

<cfoutput>
Employee name is #firstname# #lastname#

</cfoutput>
</html>

When you view the page in your browser, you get the following output:

Employee name is john doe
772 Chapter 32 Integrating J2EE and Java Elements in CFML Applications

Reviewing the code

The following table describes the CFML code and its function:

Java considerations

Keep the following points in mind when you write a ColdFusion page that uses a Java
class object:
• The Java class name is case-sensitive. You must ensure that the Java code and the

CFML code use Employee as the class name.
• Although Java method and field names are case sensitive, ColdFusion variables are

not case sensitive, and ColdFusion does any necessary case conversions. As a result,
the sample code works even though the CFML uses emp.firstname and
emp.lastname; the Java source code uses FirstName and LastName for these fields.

• If you do not call the constructor (or, as in this example, comment it out),
ColdFusion automatically invokes the default constructor when it first uses the class.

Using an alternate constructor

The following ColdFusion page explicitly calls one of the alternate constructors for the
Employee object:

<html>
<body>

<cfobject action="create" type="java" class="Employee" name="emp">
<cfset emp.init("John", "Doe", 100000.00, 10)>
<cfset firstname=emp.firstname>
<cfset lastname=emp.lastname>
<cfset salary=emp.GetSalary()>
<cfset grade=emp.GetJobGrade()>

<cfoutput>
Employee name is #firstname# #lastname#

Employee salary #DollarFormat(Salary)#

Employee Job Grade #grade#

</cfoutput>

Code Description

<cfobject action=create
type=java class=Employee
name=emp>

Loads the Employee Java class and gives it an object
name of emp.

<!--- <cfset emp.init()> ---> Does not call a constructor. ColdFusion invokes the
default constructor when it first uses the class; in this
case, when it processes the next line.

<cfset emp.firstname="john">
<cfset emp.lastname="doe">

Sets the public fields in the emp object to your values.

<cfset firstname=emp.firstname>
<cfset lastname=emp.lastname>

Gets the field values back from emp object.

<cfoutput>
Employee name is #firstname#

#lastname#
</cfoutput>

Displays the retrieved values.
Using Java objects 773

</body>
</html>

In this example, the constructor takes four arguments: the first two are strings, the third
is a float, and the fourth is an integer.

Java and ColdFusion data type conversions
ColdFusion does not use explicit types for variables, while Java is strongly typed.
However, ColdFusion data does use a number of underlying types to represent data.

Under most situations, when the method names are not ambiguous, ColdFusion can
determine the data types that are required by a Java object, and often it can convert
ColdFusion data to the required types. For example, ColdFusion text strings are
implicitly converted to the Java String type. Similarly, if a Java object contains a doIt
method that expects a parameter of type int, and CFML is issuing a doIt call with a
CFML variable x that contains an integer value, ColdFusion converts the variable x to
Java int type. However, ambiguous situations can result from Java method overloading,
where a class has multiple implementations of the same method that differ only in their
parameter types.

The following sections describe how ColdFusion handles the unambiguous situations,
and how it provides you with the tools to handle ambiguous ones.

Default data type conversion

Whenever possible, ColdFusion automatically matches Java types to ColdFusion types.

The following table lists how ColdFusion converts ColdFusion data values to Java data
types when passing arguments. The left column represents the underlying ColdFusion
representation of its data. The right column indicates the Java data types into which
ColdFusion can automatically convert the data:

CFML Java

Integer short, int, long (short and int might result in a loss of precision).

Real number float double (float might result in a loss of precision.

Boolean boolean

Date-time java.util.Date

String, including lists String

short, int, long, float, double, java.util.Date, when a CFML string
represents a number or date.

boolean, for strings with the value Yes, No, True, and False
(case-insensitive).
774 Chapter 32 Integrating J2EE and Java Elements in CFML Applications

The following table lists how ColdFusion converts data returned by Java methods to
ColdFusion data types:

Array java.util.Vector (ColdFusion Arrays are internally represented
using an instance of a java.util.Vector object.)

ColdFusion can also map a CFML array to any of the following
when the CFML array contains consistent data of a type that can
be converted to the Java array’s data type: byte[], char[],
boolean[], int[], long[], float[], double[], String[], or Object[].
When a CFML array contains data of different of types, the
conversion to a simple array type might fail.

Structure java.util.Map

Query object java.util.Map

XML document object Not supported.

ColdFusion component Not applicable.

Java CFML

boolean/Boolean Boolean

byte/Byte String

char/Char String

short/Short Integer

int/Integer Integer

long/Long Integer

float/Float Real Number

double/Double Real Number

String String

java.util.Date Date-time

java.util.List Comma-delimited list

byte[] Array

char[] Array

boolean[] Array

String[] Array

java.util.Vector Array

java.util.Map Structure

CFML Java
Using Java objects 775

Resolving ambiguous data types with the JavaCast function

You can overload Java methods so a class can have several identically named methods. At
runtime, the JVM resolves the specific method to use based on the parameters passed in
the call and their types.

In the section “The Employee class,” on page 771, the Employee class has two
implementations for the SetJobGrade method. One method takes a string variable, the
other an integer. If you write code such as the following, which implementation to use is
ambiguous:

<cfset emp.SetJobGrade(“1”)>

The “1” could be interpreted as a string or as a number, so there is no way to know which
method implementation to use. When ColdFusion encounters such an ambiguity, it
throws a user exception.

The ColdFusion JavaCast function helps you resolve such issues by specifying the Java
type of a variable, as in the following line:

<cfset emp.SetJobGrade(JavaCast(“int”, “1”))>

The JavaCast function takes two parameters: a string representing the Java data, and the
variable whose type you are setting. You can specify the following Java data types:
boolean, int, long, float, double, and String.

For more information on the JavaCast function, see CFML Reference.

Handling Java exceptions
You handle Java exceptions just as you handle standard ColdFusion exceptions, with the
cftry and cfcatch tags. You specify the name of the exception class in the cfcatch tag that
handles the exception. For example, if a Java object throws an exception named
myException, you specify myException in the cfcatch tag.

Note: To catch any exception generated by a Java object, specify java.lang.Exception for
the cfcatch type attribute. To catch any Throwable errors, specify java.lang.Throwable in the
cfcatch tag type attribute.

The following sections show an example of throwing and handling a Java exception.

For more information on exception handling in ColdFusion, see Chapter 14, “Handling
Errors” on page 281.

Example: exception-throwing class

The following Java code defines the testException class that throws a sample exception. It
also defines a myException class that extends the Java built-in Exception class and
includes a method for getting an error message.

The myException class has the following code. It throws an exception with a message
that is passed to it, or if no argument is passed, it throws a canned exception.

//class myException
public class myException extends Exception
{

public myException(String msg) {
super(msg);
776 Chapter 32 Integrating J2EE and Java Elements in CFML Applications

}
public myException() {

super("Error Message from myException");
}

}

The testException class contains one method, doException, which throws a myException
error with an error message, as follows:

public class testException {
public testException ()
{
}
public void doException() throws myException {

 throw new myException("Throwing an exception from testException class");
 }
}

Example: CFML Java exception handling code

The following CFML code calls the testException class doException method. The
cfcatch block handles the resulting exception.

<cfobject action=create type=java class=testException name=Obj>
<cftry>

<cfset Obj.doException() >
<cfcatch type="myException">

<cfoutput>

The exception message is: #cfcatch.Message#

</cfoutput>
</cfcatch>

</cftry>

Examples: using Java with CFML
The following sections show several examples of using Java objects in CFML. They
include examples of using a custom Java class, a standard Java API class in a user-defined
function, a JavaBean, and an Enterprise JavaBean (EJB).

Using a Java API in a UDF

The following example of a user defined function (UDF) is functionally identical to the
GetHostAddress function from the NetLib library of UDFs from the Common Function
Library Project, http://www.cflib.org. It uses the InetAddress class from the standard Java
2 java.net package to get the Internet address of a specified host:

function GetHostAddress(host) {
 // Define the function local variables.
 var iaddrClass="";
 var address="";

 // Initialize the Java class.
 iaddrClass=CreateObject("java", "java.net.InetAddress");

 // Get the address object.
 address=iaddrClass.getByName(host);
Using Java objects 777

 // Return the address
 return address.getHostAddress();
}

Using an EJB

ColdFusion can use EJBs that are served by JRun 4.0 servers. The JRun Server Jrun.jar
file must have the same version as the Jrun.jar file in ColdFusion.

To call an EJB, you use cfobject type="Java" to create and call the appropriate objects.
Before you can use an EJB you must do the following:

1 Have a properly deployed EJB running on a J2EE server. The bean must be registered
with the JNDI server.

2 Have the following information:

• Name of the EJB server
• Port number of the JNDI naming service on the EJB server
• Name of the EJB, as registered with the naming service

3 Install the EJB home and component interface compiled classes on your ColdFusion
web server, either as class files in the web_root/WEB-INF/classes directory or
packaged in a JAR file the web_root/WEB-INF/lib directory.

Note: To use an EJB served by a JRUN server, your ColdFusion installation and the JRun
server that hosts the EJB must have the same version of the jrun.jar file (located in
cf_root\runtime\lib directory in ColdFusion).

While the specific steps for using an EJB depend on the EJB server and on the EJB itself,
they generally correspond to the following order:

To use an EJB:

1 Use the cfobject tag to create an object of the JNDI naming context class
(javax.naming.Context). You will use fields from this class to define the information
that you use to locate the EJB. Because you only use fields, you do not initialize the
object.

2 Use the cfobject tag to create a java.util.Properties class object that will contain the
context object properties.

3 Call the init method to initialize the Properties object.

4 Set the Properties object to contain the properties that are required to create an initial
JNDI naming context. These include the INITIAL_CONTEXT_FACTORY and
PROVIDER_URL properties. You might also need to provide
SECURITY_PRINCIPAL and SECURITY_CREDENTIALS values required for
secure access to the naming context. For more information on these properties, see
the JNDI documentation.

5 Use the cfobject tag to create the JNDI InitialContext (javax.naming.
InitialContext) object.

6 Call the init method for the InitialContext object with the Properties object values
to initialize the object.
778 Chapter 32 Integrating J2EE and Java Elements in CFML Applications

7 Call the InitialContextext object’s lookup method to get a reference to the home
interface for the bean that you want. Specify the JNDI name of the bean as the lookup
argument.

8 Call the create method of the bean’s home object to create a new instance of the
bean. If you are using Entity beans, you typically use a finder method instead. A
finder method locates one or more existing entity beans.

9 Now you can use the bean’s methods as required by your application.

10 When finished, call the context object’s close method to close the object.

The following code shows this process using a simple Java Entity bean on a JRun 4.0
server. It calls the bean’s getMessage method to obtain a message.

<html>
<head>
 <title>cfobject Test</title>
</head>

<body>
<H1>cfobject Test</H1>
<!--- Create the Context object to get at the static fields. --->
<CFOBJECT
 action=create
 name=ctx
 type="JAVA"
 class="javax.naming.Context">

<!--- Create the Properties object and call an explicit constructor--->
<CFOBJECT
 action=create
 name=prop
type="JAVA"

 class="java.util.Properties">

<!--- Call the init method (provided by cfobject)
 to invoke the Properties object constructor. --->
<cfset prop.init()>

<!--- Specify the properties These are required for a remote server only --->
<cfset prop.put(ctx.INITIAL_CONTEXT_FACTORY, "jrun.naming.JRunContextFactory")>
<cfset prop.put(ctx.PROVIDER_URL, "localhost:2908")>
<!--- <cfset prop.put(ctx.SECURITY_PRINCIPAL, "admin")>

<cfset prop.put(ctx.SECURITY_CREDENTIALS, "admin")>
 --->
<!--- Create the InitialContext --->
<CFOBJECT
 action=create
 name=initContext
 type="JAVA"
 class="javax.naming.InitialContext">

<!--- Call the init method (provided through cfobject)
 to pass the properties to the InitialContext constructor. --->
<cfset initContext.init(prop)>
Using Java objects 779

<!--- Get reference to home object. --->
<cfset home = initContext.lookup("SimpleBean")>

<!--- Create new instance of entity bean.
 (hard-wired account number). Alternatively,
 you would use a find method to locate an
 existing entity bean. --->
<cfset mySimple = home.create()>

<!--- Call a method in the entity bean. --->
<cfset myMessage = mySimple.getMessage()>

<cfoutput>
#myMessage#

</cfoutput>

<!--- Close the context. --->
<cfset initContext.close()>

</body>
</html>

Using a custom Java class

The following code provides a more complex custom class than in the example “Creating
and using a simple Java class” on page 771. The Example class manipulates integer, float,
array, Boolean, and Example object types.

The Example class

The following Java code defines the Example class. The Java class Example has one public
integer member, mPublicInt. Its constructor initializes mPublicInt to 0 or an integer
argument. The class has the following public methods:

Method Description

ReverseString Reverses the order of a string.

ReverseStringArray Reverses the order of elements in an array of strings.

Add Overloaded: Adds and returns two integers or floats or adds
the mPublicInt members of two Example class objects and
returns an Example class object.

SumArray Returns the sum of the elements in an integer array.

SumObjArray Adds the values of the mPublicInt members of an array of
Example class objects and returns an Example class object.

ReverseArray Reverses the order of an array of integers.

Flip Switches a Boolean value.
780 Chapter 32 Integrating J2EE and Java Elements in CFML Applications

public class Example {
 public int mPublicInt;

 public Example() {
 mPublicInt = 0;
 }

 public Example(int IntVal) {
 mPublicInt = IntVal;
 }

 public String ReverseString(String s) {
 StringBuffer buffer = new StringBuffer(s);
 return new String(buffer.reverse());
 }

 public String[] ReverseStringArray(String [] arr) {
 String[] ret = new String[arr.length];
 for (int i=0; i < arr.length; i++) {
 ret[arr.length-i-1]=arr[i];
 }
 return ret;
 }

 public int Add(int a, int b) {
 return (a+b);
 }

 public float Add(float a, float b) {
 return (a+b);
 }

 public Example Add(Example a, Example b) {
 return new Example(a.mPublicInt + b.mPublicInt);
 }

 static public int SumArray(int[] arr) {
 int sum=0;
 for (int i=0; i < arr.length; i++) {
 sum += arr[i];
 }
 return sum;
 }

 static public Example SumObjArray(Example[] arr) {
 Example sum= new Example();
 for (int i=0; i < arr.length; i++) {
 sum.mPublicInt += arr[i].mPublicInt;
 }
 return sum;
 }

 static public int[] ReverseArray(int[] arr) {
 int[] ret = new int[arr.length];
 for (int i=0; i < arr.length; i++) {
 ret[arr.length-i-1]=arr[i];
Using Java objects 781

 }
 return ret;
 }

 static public boolean Flip(boolean val) {
 System.out.println("calling flipboolean");
 return val?false:true;
 }
}

The useExample ColdFusion page

The following useExample.cfm page uses the Example class to manipulate numbers,
strings, Booleans, and Example objects. The JavaCast CFML function ensures that
CFML variables convert into the appropriate Java data types.

<html>
<head>

<title>CFOBJECT and Java Example</title>
</head>
<body>

<!--- Create a reference to an Example object --->
<cfobject action=create type=java class=Example name=obj>
<!--- Create the object and initialize its public member to 5 --->
<cfset x=obj.init(JavaCast("int",5))>

<!--- Create an array and populate it with string values,
then use the Java object to reverse them. --->

<cfset myarray=ArrayNew(1)>
<cfset myarray[1]="First">
<cfset myarray[2]="Second">
<cfset myarray[3]="Third">
<cfset ra=obj.ReverseStringArray(myarray)>

<!--- Display the results --->
<cfoutput>

original array element 1: #myarray[1]#

original array element 2: #myarray[2]#

original array element 3: #myarray[3]#

after reverse element 1: #ra[1]#

after reverse element 2: #ra[2]#

after reverse element 3: #ra[3]#

</cfoutput>

<!--- Use the Java object to flip a Boolean value, reverse a string,
add two integers, and add two float numbers --->

<cfset c=obj.Flip(true)>
<cfset StringVal=obj.ReverseString("This is a test")>
<cfset IntVal=obj.Add(JavaCast("int",20),JavaCast("int",30))>
<cfset FloatVal=obj.Add(JavaCast("float",2.56),JavaCast("float",3.51))>
782 Chapter 32 Integrating J2EE and Java Elements in CFML Applications

<!--- Display the results --->
<cfoutput>

StringVal: #StringVal#

IntVal: #IntVal#

FloatVal: #FloatVal#

</cfoutput>

<!--- Create a two-element array, sum its values,
and reverse its elements --->

<cfset intarray=ArrayNew(1)>
<cfset intarray[1]=1>
<cfset intarray[2]=2>
<cfset IntVal=obj.sumarray(intarray)>
<cfset reversedarray=obj.ReverseArray(intarray)>

<!--- Display the results --->
<cfoutput>

IntVal1 :#IntVal#

array1: #reversedarray[1]#

array2: #reversedarray[2]#

</cfoutput>

<!--- Create a ColdFusion array containing two Example objects.
Use the SumObjArray method to add the objects in the array
Get the public member of the resulting object--->

<cfset oa=ArrayNew(1)>
<cfobject action=create type=java class=Example name=obj1>
<cfset VOID=obj1.init(JavaCast("int",5))>
<cfobject action=create type=java class=Example name=obj2>
<cfset VOID=obj2.init(JavaCast("int",10))>
<cfset oa[1] = obj1>
<cfset oa[2] = obj2>
<cfset result = obj.SumObjArray(oa)>
<cfset intval = result.mPublicInt>

<!--- Display the results --->
<cfoutput>

intval1: #intval#

</cfoutput>

</body>
</html>
Using Java objects 783

784 Chapter 32 Integrating J2EE and Java Elements in CFML Applications

CHAPTER 33

Integrating COM and CORBA

Objects in CFML Applications
This chapter describes how to use the cfobject tag to invoke COM (Component Object
Model) or DCOM (Distributed Component Object Model) and CORBA (Common
Object Request Broker) objects.

Contents

• About COM and CORBA .. 786

• Creating and using objects ... 788

• Getting started with COM and DCOM.. 790

• Creating and using COM objects .. 793

• Getting started with CORBA .. 797

• Creating and using CORBA objects .. 797

• CORBA example... 805
785

About COM and CORBA
This section provides some basic information on COM and CORBA objects supported
in ColdFusion and provides resources for further inquiry.

About objects
COM and CORBA are two of the object technologies supported by ColdFusion. Other
object technologies include Java and ColdFusion components. For more information on
ColdFusion components see Chapter 11, “Building and Using ColdFusion
Components” on page 217.

An object is a self-contained module of data and its associated processing. An object is a
building block that you can put together with other objects and integrate into
ColdFusion code to create an application.

An object is represented by a handle, or name. Objects have properties that represent
information. Objects also provide methods for manipulating the object and getting data
from it. The exact terms and rules for using objects vary with the object technology.

You create instances of objects using the cfobject tag or the CreateObject function. You
then use the object and its methods in ColdFusion tags, functions, and expressions. For
more information on the ColdFusion syntax for using objects, see “Creating and using
objects” on page 788.

About COM and DCOM
COM (Component Object Model) is a specification and a set of services defined by
Microsoft to enable component portability, reusability, and versioning. DCOM
(Distributed Component Object Model) is an implementation of COM for distributed
services, which allows access to components residing on a network.

COM objects can reside locally or on any network node. COM is supported on
Microsoft Windows platforms.

For more information on COM, go to the Microsoft COM website,
http://www.microsoft.com/com.

About CORBA
CORBA (Common Object Request Broker Architecture) is a distributed computing
model for object-oriented applications defined by the Object Management Group
(OMG). In this model, an object is an encapsulated entity whose services are accessed
only through well-defined interfaces. The location and implementation of each object is
hidden from the client requesting the services. ColdFusion supports CORBA 2.3 on
both Windows and UNIX.

CORBA uses an Object Request Broker (ORB) to send requests from applications on
one system to objects executing on another system. The ORB allows applications to
interact in a distributed environment, independent of the computer platforms on which
they run and the languages in which they are implemented. For example, a ColdFusion
application running on one system can communicate with an object that is implemented
in C++ on another system.
786 Chapter 33 Integrating COM and CORBA Objects in CFML Applications

CORBA follows a client-server model. The client invokes operations on objects that are
managed by the server, and the server replies to requests. The ORB manages the
communications between the client and the server using the Internet Inter-ORB
Protocol (IIOP).

Each CORBA object has an interface that is defined in the CORBA Interface Definition
Language (IDL). The CORBA IDL describes the operations that can be performed on
the object, and the parameters of those operations. Clients do not have to know anything
about how the interface is implemented to make requests.

To request a service from the server, the client application gets a handle to the object
from the ORB. It uses the handle to call the methods specified by the IDL interface
definition. The ORB passes the requests to the server, which processes the requests and
returns the results to the client.

For information about CORBA, see the following OMG website, which is the main web
repository for CORBA information: http://www.omg.com.
About COM and CORBA 787

Creating and using objects
You use the cfobject tag or the CreateObject function to create a named instance of an
object. You use other ColdFusion tags, such as cfset and cfoutput, to invoke the object’s
properties and methods.

The following sections provide information about creating and using objects that applies
to both COM and CORBA objects. The examples assume a sample object named “obj”,
and that the object has a property called “Property”, and methods called “Method1”,
“Method2”, and “Method3”.

Creating objects
You create, or instantiate (create a named instance of) an object in ColdFusion with the
cfobject tag or CreateObject function. The specific attributes or parameters that you use
depend on the type of object you use, and are described in detail in “Creating and using
COM objects” on page 793 and “Creating CORBA objects” on page 797. The following
examples use a cfobject tag to create a COM object and a CreateObject function to
create a CORBA object:

<cfobject type="COM" action="Create" name="obj" class="sample.MyObject">

obj = CreateObject("CORBA", "d:\temp\tester.ior", "IOR", "Visibroker")

ColdFusion releases any object created by cfobject or CreateObject, or returned by other
objects, at the end of the ColdFusion page execution.

Using properties
Use standard ColdFusion statements to access properties as follows:
• To set a property, use a statement or cfset tag, such as the following:

<cfset obj.property = "somevalue">

• To get a property, use a statement or cfset tag, such as the following:
<cfset value = obj.property>

As shown in this example, you do not use parentheses on the right side of the equation to
get a property value.

Calling methods
Object methods usually take zero or more arguments. You send In arguments, whose
values are not returned to the caller by value. You send Out and In,Out arguments,
whose values are returned to the caller, by reference. Arguments sent by reference usually
have their value changed by the object. Some methods have return values, while others
might not.

Use the following techniques to call methods:
• If the method has no arguments, follow the method name with empty parentheses, as

in the following cfset tag:
<cfset retVal = obj.Method1()>
788 Chapter 33 Integrating COM and CORBA Objects in CFML Applications

• If the method has one or more arguments, put the arguments in parentheses,
separated by commas, as in the following example, which has one integer argument
and one string argument:
<cfset x = 23>
<cfset retVal = obj.Method1(x, "a string literal")>

• If the method has reference (Out or In,Out) arguments, use double quotation marks
(") around the name of the variable you are using for these arguments, as shown for
the variable x in the following example:
<cfset x = 23>
<cfset retVal = obj.Method2("x", "a string literal")>
<cfoutput> #x#</cfoutput>

In this example, if the object changes the value of x, it now contains a value other
than 23.

Calling nested objects
ColdFusion supports nested (scoped) object calls. For example, if an object method
returns another object, and you must invoke a property or method on that object, you
can use the syntax in either of the following examples:

<cfset prop = myObj.X.Property>

or

<cfset objX = myObj.X>
<cfset prop = objX.Property>
Creating and using objects 789

Getting started with COM and DCOM
ColdFusion is an automation (late-binding) COM client. As a result, the COM object
must support the IDispatch interface, and arguments for methods and properties must
be standard automation types. Because ColdFusion is a typeless language, it uses the
object's type information to correctly set up the arguments on call invocations. Any
ambiguity in the object's data types can lead to unexpected behavior.

In ColdFusion, you should only use server-side COM objects, which do not have a
graphical user interface. If your ColdFusion application invokes an object with a
graphical interface in a window, the component might appear on the web server desktop,
not on the user's desktop. This can take up ColdFusion Server threads and prevent
further web server requests from being serviced.

ColdFusion can call Inproc, Local, or Remote COM objects. The attributes specified in
the cfobject tag determine which type of object is called.

COM Requirements
To use COM components in your ColdFusion application, you need at least the
following items:
• The COM objects (typically DLL or EXE files) that you want to use in your

ColdFusion application pages. These components should allow late binding; that is,
they should implement the IDispatch interface.

• Microsoft OLE/COM Object Viewer, available from Microsoft at
http://www.microsoft.com/com/resources/oleview.asp. This tool lets you view
registered COM objects.
Object Viewer lets you view an object's class information so that you can properly
define the class attribute for the cfobject tag. It also displays the object's supported
interfaces, so you can discover the properties and methods (for the IDispatch
interface) of the object.

Registering the object
After you acquire an object, you must register it with Windows for ColdFusion (or any
other program) to find it. Some objects have setup programs that register objects
automatically, while others require manual registration.

You can register Inproc object servers (.dll or .ocx files) manually by running the
regsvr32.exe utility using the following form:

regsvr32 c:\path\servername.dll

You typically register Local servers (.exe files) either by starting them or by specifying a
command line parameters, such as the following:

C:\pathname\servername.exe -register

Finding the component ProgID and methods
Your COM object supplier should provide documentation that explains each of the
component's methods and the ProgID. If you do not have documentation, use the OLE/
COM Object Viewer to view the component's interface.
790 Chapter 33 Integrating COM and CORBA Objects in CFML Applications

Using the OLE/COM Object Viewer
The OLE/COM Object Viewer installation installs the executable, by default, as
\mstools\bin\oleview.exe. You use the Object Viewer to retrieve a COM object's Program
ID, as well as its methods and properties.

To find an object in the Object Viewer, it must be registered, as described in “Registering
the object” on page 790. The Object Viewer retrieves all COM objects and controls from
the Registry, and presents the information in a simple format, sorted into groups for easy
viewing.

By selecting the category and then the component, you can see the Program ID of a
COM object. The Object Viewer also provides access to options for the operation of the
object.

To view an object's properties:

1 Open the Object Viewer, as shown in the following figure, and scroll to the object
you want to examine.

2 Select and expand the object in the left pane of the Object Viewer.
Getting started with COM and DCOM 791

3 Right-click the object to view it, including the TypeInfo.

If you view the TypeInfo, you see the object's methods and properties, as shown in
the following figure. Some objects do not have access to the TypeInfo area, which is
determined when an object is built and by the language used.
792 Chapter 33 Integrating COM and CORBA Objects in CFML Applications

Creating and using COM objects
You must use the cfobject tag or the CreateObject function to create an instance of the
COM object (component) in ColdFusion before your application pages can invoke any
methods or assign any properties in the component.

For example, the following code uses the cfobject tag to create the Windows CDO
(Collaborative Data Objects) for NTS NewMail object to send mail:

<cfobject type="COM"
action="Create"
name="Mailer"
class="CDONTS.NewMail">

The following line shows how to use the corresponding CreateObject function in
CFScript:

Mailer = CreateObject("COM", "CDONTS.NewMail");

The examples in later sections in this chapter use this object.

Note: CDO is installed by default on all Windows NT and 2000 operating systems that
have installed the Microsoft SMTP server. In Windows NT Server environments, the SMTP
server is part of the Option Pack 4 setup. In Windows 2000 Server and Workstation
environments, it is bundled with the operating system. For more information on CDO for
NTS, see http://msdn.microsoft.com/library/default.asp?URL=/library/psdk/cdo/
_olemsg_overview_of_cdo.htm.

The CDO for NTS NewMail component includes a number of methods and properties
to perform a wide range of mail-handling tasks. (In the OLE/COM Object Viewer,
methods and properties might be grouped together, so you could find it difficult to
distinguish between them at first.)

The CDO for NTS NewMail object includes the following properties:

Body [String]
Cc [String]
From [String]
Importance [Long]
Subject [String]
To [String]

You use these properties to define elements of your mail message. The CDO for NTS
NewMail object also includes a send method which has a number of optional arguments
to send messages.

Connecting to COM objects
The action attribute of the cfobject tag provides the following two ways to connect to
COM objects:
• Create method (cfobject action="Create") Takes a COM object, typically a DLL,

and instantiates it prior to invoking methods and assigning properties.
• Connect method (cfobject action="Connect") Links to an object, typically an

executable, that is already running on the server.
Creating and using COM objects 793

You can use the optional cfobject context attribute to specify the object context. If you
do not specify a context, ColdFusion uses the setting in the Registry. The following table
describes the context attribute values:

Setting properties and invoking methods
The following example, which uses the sample Mailer COM object, shows how to assign
properties to your mail message and how to execute component methods to handle mail
messages.

In the example, form variables contain the method parameters and properties, such as the
name of the recipient, the desired e-mail address, and so on:

<!--- First, create the object --->
<cfobject type="COM"

action="Create"
name="Mailer"
class="CDONTS.NewMail">

<!--- Second, use the form variables from the user entry form to populate a number
of properties necessary to create and send the message. --->

<cfset Mailer.From = "#Form.fromName#">
<cfset Mailer.To = "#Form.to#">
<cfset Mailer.Subject = "#Form.subject#">
<cfset Mailer.Importance = 2>
<cfset Mailer.Body = "#Form.body#">
<cfset Mailer.Cc = "#Form.cc#">

<!--- Last, use the Send() method to send the message.
Invoking the Send() method destroys the object.--->

<cfset Mailer.Send()>

Note: Use the cftry and cfcatch tags to handle exceptions thrown by COM objects. For
more information on exception handling, see “Handling runtime exceptions with ColdFusion
tags,” in Chapter 14.

COM object considerations
When you use COM objects, consider the following to prevent and resolve errors:
• Ensure correct threading.
• Use input and output arguments correctly.
• Understand common COM-related error messages.

The following sections describe these issues.

Attribute value Description

InProc An in-process server object (typically a DLL) that is running in the
same process space as the calling process, such as ColdFusion.

local An out-of-process server object (typically an EXE file) that is
running outside the ColdFusion process space but running locally
on the same server.

remote An out-of-process server object (typically an EXE file) that is
running remotely on the network. If you specify remote, you must
also use the server attribute to identify where the object resides.
794 Chapter 33 Integrating COM and CORBA Objects in CFML Applications

Ensuring correct threading

Improper threading can cause serious problems when using a COM object in
ColdFusion. Make sure that the object is thread-safe. An object is thread-safe if it can be
called from many programming threads simultaneously, without causing errors.

Visual Basic ActiveX DLLs are typically not thread-safe. If you use such a DLL in
ColdFusion, you can make it thread-safe by using the OLE/COM Object Viewer to
change the object’s threading model to the Apartment model.

If you are planning to store a reference to the COM object in the Application, Session, or
Server scope, do not use the Apartment threading model. This threading model is
intended to service only a single request. If your application requires you to store the
object in any of these scopes, keep the object in the Both threading model, and lock all
code that accesses the object, as described in “Locking code with cflock,” in Chapter 15.

To change the threading model of a COM Object:

1 Open the OLE/COM Object Viewer.

2 Select All Objects under Object Classes in the left pane.

3 Locate your COM object. The left pane lists these by name.

4 Select your object.

5 Select the Implementation tab in the right pane.

6 Select the Inproc Server tab, below the App ID field.

7 Select the Threading Model drop down menu and select Apartment or Both, as
appropriate.

Using input and output arguments

COM object method in arguments are passed by value. The COM object gets a copy of
the variable value, so you can specify a ColdFusion variable without surrounding it with
quotation marks.

COM object out method arguments are passed by reference. The COM object modifies
the contents of the variable on the calling page, so the calling page can use the resulting
value. To pass a variable by reference, surround the name of an existing ColdFusion
variable with quotation marks. If the argument is a numeric type, assign the variable a
valid number before you make the call. For example:

<cfset inStringArg="Hello Object">
<cfset outNumericArg=0>
<cfset result=myCOMObject.calculate(inStringArg, "outNumericArg")>

The string "Hello Object" is passed to the object's calculate method as an input
argument. The value of outNumericArg is set by the method to a numeric value.
Creating and using COM objects 795

Understanding common COM-related error messages

The following table described some error messages you might encounter when using
COM objects:

Error Cause

Error Diagnostic Information
Error trying to create object specified in the tag.
COM error 0x800401F3. Invalid class string

The COM object is not registered or
does not exist.

Error Diagnostic Information
Error trying to create object specified in the tag.
COM error 0x80040154. Class not registered

The COM object is not registered or
does not exist. This error usually occurs
when an object existed previously, but
was uninstalled.

Error Diagnostic Information
Failed attempting to find "SOMEMETHOD"
property/method on the object COM error 0x80020006.
Unknown name.

The COM object was instantiated
correctly, but the method you specified
does not exist.
796 Chapter 33 Integrating COM and CORBA Objects in CFML Applications

Getting started with CORBA
The ColdFusion cfobject tag and CreateObject function support CORBA through the
Dynamic Invocation Interface (DII). As with COM, the object's type information must
be available to ColdFusion. Therefore, an IIOP-compliant Interface Repository (IR)
must be running on the network, and the object's Interface Definition Language (IDL)
specification must be registered in the IR. If your application uses a naming service to get
references to CORBA objects, a naming service must also be running on the network.

ColdFusion loads ORB runtime libraries at startup using a connector, which does not tie
ColdFusion customers to a specific ORB vendor. ColdFusion currently includes
connectors for the Borland Visibroker 4.5 ORB. The source necessary to write
connectors for other ORBs is available under NDA to select third-party candidates and
ORB vendors

You must take several steps to configure and enable CORBA access in ColdFusion. For
detailed instructions, see Installing ColdFusion MX.

Note: When you enable CORBA access in ColdFusion, one step requires you to start the
Interface Repository using an IDL file. This file must contain the IDL for all the CORBA
objects that you invoke in ColdFusion applications on the server.

Creating and using CORBA objects
The following sections describe how to create, or instantiate, a CORBA object and how
to use it in your ColdFusion application.

Creating CORBA objects
The cfobject tag and CreateObject functions create in ColdFusion a stub, or proxy
object, for the CORBA object on the remote server. You use this stub object to invoke
the remote object.

The following table describes the attributes you use in the cfobject tag to create a
CORBA object:

Attribute Description

type Must be CORBA. COM is the default.

context Specifies the CORBA binding method, that is, how the object is obtained,
as follows:

• IOR Uses a file containing the object's unique Interoperable Object
Reference.

• NameService Uses a naming service.
Getting started with CORBA 797

For example, use the following CFML to invoke a CORBA object specified by the
tester.ior file if you configured your ORB name as Visibroker:

<cfobject action = "create" type = "CORBA" context = "IOR"
class = "d:\temp\tester.ior" name = "handle" locale = "Visibroker">

When you use the CreateObject function to invoke this CORBA object, specify the name
as the function return variable, and specify the type, class, context, and locale as
arguments. For example, the following line creates the same object as the preceding
cfobject tag:

handle = CreateObject("CORBA", "d:\temp\tester.ior", "IOR", "Visibroker")

For the complete cfobject and CreatObject syntax, see CFML Reference.

Using a naming service

Currently, ColdFusion can only resolve objects registered in a CORBA 2.3-compliant
naming service.

If you use a naming service, make sure that its naming context is identical to the naming
context specified in the property file of the Connector configuration in use, as specified
in the ColdFusion Administrator CORBA Connectors page. The property file must
contain the line "SVCnameroot=name" where name is the naming context to be used.
The server implementing the object must bind to this context, and register the
appropriate name.

class Specifies the information required for the binding method to access the
object.

If you set the context attribute to IOR, The class attribute must be to the full
pathname of a file containing the string version of the IOR. ColdFusion must
be able to read this IOR file at all times, so make it local to the server or put it
on the network in an accessible location.

If you set the context attribute to NameService, The class attribute must be a
name delimited by forward slashes (/), such as MyCompany/Department/
Dev. You can use period-delimited “kind” identifiers as part of the class
attribute; for example, Macromedia.current/Eng.current/CF"

name Specifies the name (handle) that your application uses to call the object's
interface.

locale (Optional) Identifies the connector configuration. You can omit this option if
ColdFusion Administrator has only one connector configuration, or if it has
multiple connector configurations and you want to use the one that is
currently selected in the Administrator. If you specify this attribute, it must be
an ORB name you specified in the CORBA Connector ORB Name field
when you configured a CORBA connector in ColdFusion Administrator; for
example, Visibroker.

Attribute Description
798 Chapter 33 Integrating COM and CORBA Objects in CFML Applications

Using CORBA objects in ColdFusion
After you create the object, you can invoke attributes and operations on the object using
the syntax described in “Creating and using objects” on page 788. The following sections
describe the rules for using CORBA objects in ColdFusion pages. They include
information on using methods in ColdFusion, which IDL types you can access from
ColdFusion, and the ColdFusion data types that correspond to the supported IDL data
types.

Using CORBA interface methods in ColdFusion

When you use the cfobject tag or the CreateObject function to create a CORBA object,
ColdFusion creates a handle to a CORBA interface, which is identified by the cfobject
name attribute or the CreateObject function return variable. For example, the following
CFML creates a handle named myHandle:

<cfobject action = "create" type = "CORBA" context = "IOR"
class = "d:\temp\tester.ior" name = "myHandle" locale="visibroker">

<cfset myHandle = CreateObject("CORBA", "d:\temp\tester.ior", "IOR", "visibroker")

You use the handle name to invoke all of the interface methods, as in the following
CFML:

<cfset ret=myHandle.method(foo)>

The following sections describe how to call CORBA methods correctly in ColdFusion.

Method name case considerations

Method names in IDL are case-sensitive. However, ColdFusion is case-insensitive.
Therefore, do no use methods that differ only in case in IDL.

For example, the following IDL method declarations correspond to two different
methods:

testCall(in string a); // method #1

TestCall(in string a); // method #2

However, ColdFusion cannot differentiate between the two methods. If you call either
method, you cannot be sure which of the two will be invoked.

Passing parameters by value (in parameters)

CORBA in parameters are always passed by value. When calling a CORBA method with
a variable in ColdFusion, specify the variable name without quotes, as shown in the
following example:

IDL void method(in string a);

CFML <cfset foo="my string">
<cfset ret=handle.method(foo)>
Creating and using CORBA objects 799

Passing variables by reference (out and inout parameters)

CORBA out and inout parameters are always passed by reference. As a result, if the
CORBA object modifies the value of the variable that you pass when you invoke the
method, your ColdFusion page gets the modified value.

To pass a parameter by reference in ColdFusion, specify the variable name in double
quotes in the CORBA method. The following example shows an IDL line that defines a
method with a string variable, b, that is passed in and out of the method by reference. It
also shows CFML that calls this method.

In this case, the ColdFusion variable foo corresponds to the inout parameter b. When the
CFML executes, the following happens:

1 ColdFusion calls the method, passing it the variable by reference.

2 The CORBA method replaces the value passed in, "My Initial String", with some
other value. Because the variable was passed by reference, this modifies the value of
the ColdFusion variable.

3 The cfoutput tag prints the new value of the foo variable.

Using methods with return values

Use CORBA methods that return values as you would any ColdFusion function; for
example:

Using IDL types with ColdFusion variables

The following sections describe how ColdFusion supports CORBA data types. They
include a table of supported IDL types and information about how ColdFusion converts
between CORBA types and ColdFusion data.

IDL Support

The following table shows which CORBA IDL types ColdFusion supports, and whether
they can be used as parameters or return variables. (NA means not applicable.)

IDL void method(in string a, inout string b);

CFML <cfset foo = "My Initial String">
<cfset ret=handle.method(bar, "foo")>
<cfoutput>#foo#</cfoutput>

IDL double method(out double a);

CFML <cfset foo=3.1415>
<cfset ret=handle.method("foo")>
<cfoutput>#ret#</cfoutput>

CORBA IDL type General support As parameters As return value

constants No No No

attributes Yes (for properties) NA NA

enum Yes (as an integer) Yes Yes
800 Chapter 33 Integrating COM and CORBA Objects in CFML Applications

Data type conversion

The following table lists IDL data types and the corresponding ColdFusion data types:

union No No No

sequence Yes Yes Yes

array Yes Yes Yes

interface Yes Yes Yes

typedef Yes NA NA

struct Yes Yes Yes

module Yes NA NA

exception Yes NA NA

any No No No

boolean Yes Yes Yes

char Yes Yes Yes

wchar Yes Yes Yes

string Yes Yes Yes

wstring Yes Yes Yes

octet Yes Yes Yes

short Yes Yes Yes

long Yes Yes Yes

float Yes Yes Yes

double Yes Yes Yes

unsigned short Yes Yes Yes

unsigned long Yes Yes Yes

longlong No No No

unsigned longlong No No No

void Yes NA Yes

IDL type ColdFusion type

boolean Boolean

char One-character string

wchar One-character string

string String

wstring String

octet One-character string

CORBA IDL type General support As parameters As return value
Creating and using CORBA objects 801

Boolean data considerations

ColdFusion treats any of the following as Boolean values:

short Integer

long Integer

float Real number

double Real number

unsigned short Integer

unsigned long Integer

void Not applicable (returned as an empty string)

struct Structure

enum Integer, where 0 corresponds to the first enumerator in the enum
type

array Array (must match the array size specified in the IDL)

sequence Array

interface An object reference

module Not supported (cannot dereference by module name)

exception ColdFusion throws an exception of type
coldfusion.runtime.corba.CorbaUserException

attribute Object reference using dot notation

True "yes", "true", or 1

False "no", "false", or 0

IDL type ColdFusion type
802 Chapter 33 Integrating COM and CORBA Objects in CFML Applications

You can use any of these values with CORBA methods that take Boolean parameters, as
the following code shows:

Struct data type considerations

For IDL struct types, use ColdFusion structures. You can prevent errors by using the
same case for structure key names in ColdFusion as you do for the corresponding IDL
struct field names.

Enum type considerations

ColdFusion treats the enum IDL type as an integer with the index starting at 0. As a
result, the first enumerator corresponds to 0, the second to 1, and so on. In the following
example, the IDL enumerator a corresponds to 0, b to 1 and c to 2:

In this example, the CORBA object gets called with the second (not first) entry in the
enumerator, a.

IDL module Tester
{
interface TManager
{

void testBoolean(in boolean a);
void testOutBoolean(out boolean a);
void testInoutBoolean(inout boolean a);
boolean returnBoolean();

}
}

CFML <CFSET handle = CreateObject("CORBA", "d:\temp\tester.ior", "IOR", "") >
<cfset ret = handle.testboolean("yes")>
<cfset mybool = True>
<cfset ret = handle.testoutboolean("mybool")>
<cfoutput>#mybool#</cfoutput>

<cfset mybool = 0>
<cfset ret = handle.testinoutboolean("mybool")>
<cfoutput>#mybool#</cfoutput>

<cfset ret = handle.returnboolean()>
<cfoutput>#ret#</cfoutput>

IDL module Tester
{

enum EnumType {a, b, c};
interface TManager
{

void testEnum(in EnumType a);
void testOutEnum(out EnumType a);
void testInoutEnum(inout EnumType a);
EnumType returnEnum();

}
}

CFML <CFSET handle = CreateObject("CORBA", "d:\temp\tester.ior", "IOR", "") >
<cfset ret = handle.testEnum(1)>
Creating and using CORBA objects 803

Double-byte character considerations

If you are using an ORB that supports CORBA later than version 2.0, you do not have to
do anything to support double-byte characters. Strings and characters in ColdFusion will
appropriately convert to wstring and wchar when they are used. However, the CORBA
2.0 IDL specification does not support the wchar and wstring types, and uses the 8-bit
Latin-1 character set to represent string data. In this case, you cannot pass parameters
containing those characters, however, you can call parameters with char and string types
using ColdFusion string data.

Handling exceptions
Use the cftry and cfcatch tags to catch CORBA object method exceptions thrown by the
remote server, as follows:

1 Specify type="coldfusion.runtime.corba.CorbaUserException" in the cfcatch tag to
catch CORBA exceptions.

2 Use the cfcatch.getContents method to get the contents of the exception object.

The the cfcatch.getContents method returns a ColdFusion structure containing the data
specified by the IDL for the exception.

The following code example shows the IDL for a CORBA object that raises an exception
defined by the PrimitiveException exception type definition, and the CFML that catches
the exception and displays the contents of the object.

IDL interface myInterface
{

exception PrimitiveException
{

long l;
string s;
float f;

};
void testPrimitiveException() raises (PrimitiveException);

}

CFML <cftry>
<cfset ret0 = handle.testPrimitiveException()>
<cfcatch type=coldfusion.runtime.corba.CorbaUserException>

<cfset exceptStruct= cfcatch.getContents()>
<cfdump var ="#exceptStruct#">

</cfcatch>
</cftry>
804 Chapter 33 Integrating COM and CORBA Objects in CFML Applications

CORBA example
The following code shows an example of using a LoanAnalyzer CORBA object. This
simplified object determines whether an applicant is approved for a loan based on the
information that is supplied.

The LoanAnalyzer CORBA interface has one method, which takes the following two in
arguments:
• An Account struct that identifies the applicant’s account. It includes a Person struct

that represents the account holder, and the applicant’s age and income.
• A CreditCards sequence, which corresponds to the set of credit cards the user

currently has. The credit card type is represented by a member of the CardType
enumerator. (This example assumes the applicant has no more than one of any type
of card.)

The object returns a Boolean value indicating whether the application is accepted or
rejected.

The CFML does the following:

1 Initializes the values of the ColdFusion variables that are used in the object method.
In a more complete example, the information would come from a form, query, or
both.

The code for the Person and Account structs is straightforward. The cards variable,
which represents the applicant’s credit cards, is more complex. The interface IDL uses
a sequence of enumerators to represent the cards. ColdFusion represents an IDL
sequence as an array, and an enumerator as 0-indexed number indicating the position
of the selected item among the items in the enumerator type definition.

In this case, the applicant has a Master Card, a Visa card, and a Diners card. Because
Master Card (MC) is the first entry in the enumerator type definition, it is
represented in ColdFusion by the number 0. Visa is the third entry, so it is
represented by 2. Diners is the fifth entry, so it is represented by 4. These numbers
must be put in an array to represent the sequence, resulting in a three-element,
one-dimensional array containing 0, 2, and 4.

2 Instantiates the CORBA object.

3 Calls the approve method of the CORBA object and gets the result in the return
variable, ret.

4 Displays the value of the ret variable, Yes or No.
CORBA example 805

IDL struct Person
{

long pid;
string name;
string middle;
string last_name;

}

struct Account
{

Person person;
short age;
double income;

}

double loanAmountl
enum cardType {AMEX, VISA, MC, DISCOVER, DINERS};

typedef sequence<cardType> CreditCards;

interface LoanAnalyzer
{

boolean approve(in Account, in CreditCards);
}

CFML <!--- Declare a "person" struct ---->
<cfset p = StructNew()>
<cfif IsStruct(p)>

<cfset p.pid = 1003232>
<cfset p.name = "Eduardo">
<cfset p.middle = "R">
<cfset p.last_name = "Doe">

</cfif>

<!---- Declare an "Account" struct --->
<cfset a = StructNew()>
<cfif IsStruct(a)>

<cfset a.person = p>
<cfset a.age = 34>
<cfset a.income = 150120.50>

</cfif>

<!----- Declare a "CreditCards" sequence --->
<cfset cards = ArrayNew(1)>
<cfset cards[1] = 0> <!--- corresponds to Amex --->
<cfset cards[2] = 2> <!--- corresponds to MC --->
<cfset cards[3] = 4> <!--- corresponds to Diners --->

<!---- Creating a CORBA handle using the Naming Service---->
<cfset handle = CreateObject("CORBA", "FirstBostonBank/MA/Loans",
"NameService") >

<cfset ret=handle.approve(a, cards)>
<cfoutput>Account approval: #ret#</cfoutput>
806 Chapter 33 Integrating COM and CORBA Objects in CFML Applications

PART VII

Using External Resources
This part describes how you can use ColdFusion to access and use the
following external services: mail servers, remote HTTP and FTP servers,
and files and directories.

The following chapters are included:

Sending and Receiving E-Mail .. 809

Interacting with Remote Servers ... 829

Managing Files on the Server .. 845

CHAPTER 34

Sending and Receiving E-Mail
You can add interactive e-mail features to your ColdFusion applications using the cfmail
and cfpop tags. This complete two-way interface to mail servers makes the ColdFusion
e-mail capability a vital link to your users.

Contents

• Using ColdFusion with mail servers... 810

• Sending e-mail messages .. 811

• Sample uses of cfmail... 813

• Customizing e-mail for multiple recipients .. 815

• Using cfmailparam... 817

• Advanced sending options ... 818

• Receiving e-mail messages.. 819

• Handling POP mail... 821
809

Using ColdFusion with mail servers
Adding e-mail to your ColdFusion applications lets you respond automatically to user
requests. You can use e-mail in your ColdFusion applications in many different ways,
including the following:
• Trigger e-mail messages based on users’ requests or orders.
• Allow users to request and receive additional information or documents through

e-mail.
• Confirm customer information based on order entries or updates.
• Send invoices or reminders, using information pulled from database queries.

ColdFusion offers several ways to integrate e-mail into your applications. To send e-mail,
you generally use the Simple Mail Transfer Protocol (SMTP). To receive e-mail, you use
the Post Office Protocol (POP) to retrieve e-mail from the mail server. To use e-mail
messaging in your ColdFusion applications, you must have access to an SMTP server
and/or a valid POP account.

In your ColdFusion application pages, you use the cfmail and cfpop tags to send and
receive e-mail, respectively. The following sections describe how to use the ColdFusion
e-mail features and show examples of these tags.
810 Chapter 34 Sending and Receiving E-Mail

Sending e-mail messages
Before you configure ColdFusion to send e-mail messages, you must have access to an
SMTP e-mail server. Also, before you run application pages that refer to the e-mail server,
you can configure the ColdFusion Administrator to use the SMTP server. If you later
need to override the SMTP server information, you can specify a new mail server in the
server attribute of the cfmail tag.

To configure ColdFusion for e-mail:

1 In the ColdFusion Administrator, select Server Settings > Mail Server.

2 In the Mail Server box, enter the name or IP address of your SMTP mail server.

3 (Optional) Change the Server Port and Connection Timeout default settings.

4 Select the Verify Mail Server Connection check box to make sure ColdFusion can
access your mail server.

5 (Optional) Change the Server Port and Connection Timeout default settings.

6 Click Submit Changes.

ColdFusion saves the settings. The page displays a message indicating success or
failure for connecting to the server.

For more information on the Administrator’s mail settings, see Administering ColdFusion
MX.

Sending SMTP e-mail with cfmail
The cfmail tag provides support for sending SMTP e-mail from within ColdFusion
applications. The cfmail tag is similar to the cfoutput tag, except that cfmail outputs the
generated text as SMTP mail messages rather than to a page. The cfmail tag supports all
the attributes and commands that you use with cfoutput, including query. The following
table describes important cfmail tag attributes:

Attribute Description

subject The subject of the message.

from The e-mail address of the sender.

to The e-mail address of the recipient. Use a comma-delimited list to
specify multiple recipients.

cc (Optional) The e-mail address of a carbon copy recipient. The
recipient’s address is visible to other recipients. Use a
comma-delimited list to specify multiple cc recipients.

bcc (Optional) The e-mail address of a blind carbon copy recipient. The
recipient’s address is not visible to other recipients. Use a
comma-delimited list to specify multiple bcc recipients.

SpoolEnable (Optional) When SpoolEnable="yes", saves a copy of the message
until the sending operation is complete.
Sending e-mail messages 811

To send a simple e-mail message:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>Sending a simple e-mail</title>
</head>

<body>
<h1>Sample e-mail</h1>
<cfmail

from="Sender@Company.com"
to="#URL.email#"
subject="Sample e-mail from ColdFusion MX">

This is a sample e-mail message to show basic e-mail capability.

</cfmail>

The e-mail was sent.

</body>
</html>

2 Save the file as send_mail.cfm in the myapps directory under your web_root directory.

3 Open your browser and enter the following URL:

http://localhost:8500/myapps/send_mail.cfm?email=myname@mycompany.com

(Replace myname@mycompany.com with your e-mail address.)

The page sends the e-mail message to you, through your SMTP server.

Note: If you do not receive an e-mail message, check whether you have configured
ColdFusion to work with your SMTP server; for more information, see “Sending e-mail
messages” on page 811.
812 Chapter 34 Sending and Receiving E-Mail

Sample uses of cfmail
An application page containing the cfmail tag dynamically generates e-mail messages
based on the tag’s settings. Some of the tasks that you can accomplish with cfmail include
the following:
• Sending a mail message in which the data the user enters in an HTML form

determine the recipient and contents
• Using a query to send a mail message to a database-driven list of recipients
• Using a query to send a customized mail message, such as a billing statement, to a list

of recipients that is dynamically populated from a database
• Sending a MIME file attachment with a mail message

Sending form-based e-mail
In the following example, the contents of a customer inquiry form submittal are
forwarded to the marketing department. You could also use the same application page to
insert the customer inquiry into the database. You include the following code on your
form so that it executes when users enter their information and submit the form:

<cfmail
from="#Form.EMailAddress#"
to="marketing@MyCompany.com,sales@MyCompany.com"
subject="Customer Inquiry">

A customer inquiry was posted to our web site:

Name: #Form.FirstName# #Form.LastName#
Subject: #Form.Subject#

#Form.InquiryText#
</cfmail>

Sending query-based e-mail
In the following example, a query (ProductRequests) retrieves a list of the customers who
inquired about a product during the previous seven days. The list is then sent, with an
appropriate header and footer, to the marketing department:

<cfmail
query="ProductRequests"
from="webmaster@MyCompany.com"
to="marketing@MyCompany.com"
subject="Widget status report">

Here is a list of people who have inquired about
MyCompany Widgets during the previous seven days:

<cfoutput>
#ProductRequests.FirstName# #ProductRequests.LastName# (#ProductRequests.Company#)

- #ProductRequests.EMailAddress#&##013;
</cfoutput>

Regards,
Sample uses of cfmail 813

The WebMaster
webmaster@MyCompany.com

</cfmail>

Reviewing the code

The following table describes the code:

Sending e-mail to multiple recipients
In addition to simply using a comma-delimited list in the to attribute of the cfmail tag,
you can send e-mail to multiple recipients by using the query attribute of the cfmail tag.

In the following example, a query (BetaTesters) retrieves a list of people who are beta
testing ColdFusion. This query then notifies each beta tester that a new release is
available. The contents of the cfmail tag body are not dynamic. What is dynamic is the
list of e-mail addresses to which the message is sent. Using the variable #TesterEMail#,
which refers to the TesterEmail column in the Betas table, in the to attribute enables the
dynamic list:

<cfquery name="BetaTesters" datasource="myDSN">
SELECT * FROM BETAS

</cfquery>

<cfmail query="BetaTesters"
from="beta@MyCompany.com"
to="#BetaTesters.TesterEMail#"
subject="Widget Beta Four Available">

To all Widget beta testers:

Widget Beta Four is now available
for downloading from the MyCompany site.
The URL for the download is:

http://beta.mycompany.com

Regards,
Widget Technical Support
beta@MyCompany.com

</cfmail>

Code Description

<cfoutput>
#ProductRequests.FirstName#
#ProductRequests.LastName#
(#ProductRequests.Company#) -
#ProductRequests.EMailAddress#&##013;
</cfoutput>

Presents a dynamic list embedded within a
normal cfmail message, repeating for each
row in the ProductRequests query. The
&##013; forces a carriage return between
output records.
814 Chapter 34 Sending and Receiving E-Mail

Customizing e-mail for multiple recipients
In the following example, a query (GetCustomers) retrieves the contact information for a
list of customers. The query then sends an e-mail to each customer to verify that the
contact information is still valid:

<cfquery name="GetCustomers" datasource="myDSN">
SELECT * FROM Customers

</cfquery>

<cfmail query="GetCustomers"
from="service@MyCompany.com"
to="#GetCustomers.EMail#"
subject="Contact Info Verification">

Dear #GetCustomers.FirstName# -

We'd like to verify that our customer
database has the most up-to-date contact
information for your firm. Our current
information is as follows:

Company Name: #GetCustomers.Company#
Contact: #GetCustomers.FirstName# #GetCustomers.LastName#

Address:
#GetCustomers.Address1#
#GetCustomers.Address2#
#GetCustomers.City#, #GetCustomers.State# #GetCustomers.Zip#

Phone: #GetCustomers.Phone#
Fax: #GetCustomers.Fax#
Home Page: #GetCustomers.HomePageURL#

Please let us know if any of the above
information has changed, or if we need to
get in touch with someone else in your
organization regarding this request.

Thanks,
Customer Service
service@MyCompany.com

</cfmail>
Customizing e-mail for multiple recipients 815

Reviewing the code

The following table describes the code and its function:

Code Description

<cfquery name="GetCustomers"
datasource="myDSN">

SELECT * FROM Customers
</cfquery>

Retrieves all data from the Customers table
into a query named GetCustomers.

<cfmail query="GetCustomers"
from="service@MyCompany.com"
to="#GetCustomers.EMail#"
subject="Contact Info

Verification">

Uses the to attribute of cfmail, the
#GetCustomers.Email# query column
causes one message to be sent to the
address listed in each row of the query.
Therefore, the mail body does not use a
cfoutput tag.

Dear #GetCustomers.FirstName#
...
Company Name: #GetCustomers.Company#
Contact: #GetCustomers.FirstName#
#GetCustomers.LastName#

Address:
#GetCustomers.Address1#
#GetCustomers.Address2#
#GetCustomers.City#,

#GetCustomers.State#
#GetCustomers.Zip#

Phone: #GetCustomers.Phone#
Fax: #GetCustomers.Fax#
Home Page: #GetCustomers.HomePageURL#

Uses other query columns
(#GetCustomers.FirstName#,
#GetCustomers.LastName#, and so on)
within the cfmail section to customize the
contents of the message for each recipient.
816 Chapter 34 Sending and Receiving E-Mail

Using cfmailparam
You use the cfmailparam tag to attach files or add a custom header to an e-mail message.
You nest the cfmailparam tag within the cfmail tag.

Attaching files to a message
You use one cfmailparam tag for each attachment, as the following example shows:

<cfmail from="daniel@MyCompany.com"
to="jacob@YourCompany.com"
subject="Requested Files">

Jake,

Here are the files you requested.

Regards,
Dan

<cfmailparam file="c:\widget_launch\photo_01.jpg">
<cfmailparam file="c:\widget_launch\press_release.doc">

</cfmail>

You must use a fully qualified system path for the file attribute of cfmailparam. The file
must be located on a drive on the ColdFusion server machine (or a location on the local
network), not the browser machine.

Adding a custom header to a message
When the recipient of an e-mail message replies to the message, the reply is sent to the
address specified in the From field of the original message. You can use cfmailparam to
override the value in the From field and provide a Reply-To e-mail address. Using
cfmailparam, the reply to the following example is addressed to
widget_master@YourCompany.com:

<cfmail from="jacob@YourCompany.com"
to="daniel@MyCompany.com"
subject="Requested Files">

<cfmailparam name="Reply-To" value="widget_master@YourCompany.com">

Dan,
Thanks very much for the sending the widget press release and graphic.
I’m now the company’s Widget Master and am accepting e-mail at
widget_master@YourCompany.com.

See you at Widget World 2002!

Jake
</cfmail>

Note: You can combine the two uses of cfmailparam within the same ColdFusion page.
Write a separate cfmailparam tag for each header and for each attached file.
Using cfmailparam 817

Advanced sending options
The ColdFusion implementation of SMTP mail uses a spooled architecture. When an
application page processes a cfmail tag, the messages that are generated are not sent
immediately. Instead, they are spooled to disk and processed in the background. This
architecture has two advantages:
• End users of your application are not required to wait for SMTP processing to

complete before a page returns to them. This design is especially useful when a user
action causes more than a handful of messages to be sent.

• Messages sent using cfmail are delivered reliably, even in the presence of
unanticipated events like power outages or server crashes.

You can set how frequently ColdFusion Server checks for spooled mail on messages on
the Mail/Mail Logging page of the ColdFusion Administrator Server tab. (The default
interval is 60 seconds.) If ColdFusion is extremely busy or has a large existing queue of
messages, however, delivery can occur after the spool interval.

Sending mail as HTML
Most newer Internet mail applications are capable of reading and interpreting HTML
code in a mail message. The cfmail tag lets you specify the message type as HTML. The
type="HTML" attribute (the only valid value; the default is plain text) informs the receiving
e-mail client that the message contains embedded HTML tags that must be processed.
This feature is useful only when you are sending messages to mail clients that can
interpret HTML. Also, you must escape any pound signs in the HTML, such as those
used to specify colors, by using two # characters; for example, bgcolor="##C5D9E5".

Error logging and undelivered messages
ColdFusion logs all errors that occur during SMTP message processing to the file
mail.log in the ColdFusion log directory. The log entries contain the date and time of
the error as well as diagnostic information about why the error occurred.

If a message is not delivered because of an error, ColdFusion writes it to this directory:
• On Windows: \CFusionMX\Mail\UnDelivr
• On UNIX: /opt/coldfusionmx/mail/undelivr

The error log entry that corresponds to the undelivered message contains the name of the
file written to the UnDelivr (or undelivr) directory.

For more information about the mail logging settings in the ColdFusion Administrator,
see Administering ColdFusion MX.
818 Chapter 34 Sending and Receiving E-Mail

Receiving e-mail messages
You create ColdFusion pages to access a Post Office Protocol (POP) server to retrieve
e-mail message information. ColdFusion can then display the messages (or just header
information), write information to a database, or perform other actions.

The cfpop tag lets you add Internet mail client features and e-mail consolidation to
applications. Although a conventional mail client provides an adequate interface for
personal mail, there are many cases in which an alternative interface to some mailboxes is
advantageous. You use cfpop to develop targeted mail clients to suit the specific needs of a
wide range of applications. The cfpop tag does not work with the other major e-mail
protocol, Internet Mail Access Protocol (IMAP).

Here are three instances in which implementing POP mail makes sense:
• If your site has generic mailboxes that are read by more than one person

(sales@yourcompany.com), it can be more efficient to construct a ColdFusion mail
front end to supplement individual user mail clients.

• In many applications, you can automate mail processing when the mail is formatted
to serve a particular purpose; for example, when subscribing to a list server.

• If you want to save e-mail messages to a database.

Using cfpop on your POP server is like running a query on your mailbox contents. You
set its action attribute to retrieve either headers (using the GetHeaderOnly value) or entire
messages (using the GetAll value) and assign it a name value. You use the name to refer to
the record set that cfpop returns, for example, when using cfoutput. To access a POP
server, you also must define the server, username, and password attributes.

For more information on cfpop syntax and variables, see CFML Reference.

Using cfpop
Use the following steps to add POP mail to your application.

To implement the cfpop tag in your application:

1 Choose the mailboxes to access within your ColdFusion application.

2 Determine which mail message components you must process: message header,
message body, attachments, and so on.

3 Decide whether you must store the retrieved messages in a database.

4 Decide whether you must delete messages from the POP server after you retrieve
them.

5 Incorporate the cfpop tag in your application and create a user interface for accessing
a mailbox.

6 Build an application page to handle the output. Retrieved messages can include
ASCII characters that do not display properly in the browser.

You use the cfoutput tag with the HTMLCodeFormat and HTMLEditFormat functions to
control output to the browser. These functions convert characters with special meanings
in HTML, such as the less than (<), greater than (>), and ampersand (&) symbols, into
Receiving e-mail messages 819

HTML-escaped characters, such as <, >, and &. The HTMLCodeFormat tag also
surrounds the text in a pre tag block. The examples in this chapter use these functions.

The cfpop query variables
Like any ColdFusion query, each cfpop query returns two variables that provide record
number information:
• RecordCount The total number of records returned by the query.
• CurrentRow The current row of the query being processed by cfoutput or cfloop in a

query-driven loop.

You can reference these properties in a cfoutput tag by prefixing the query variable with
the query name in the name attribute of cfpop:

<cfoutput>
This operation returned #Sample.RecordCount# messages.

</cfoutput>
820 Chapter 34 Sending and Receiving E-Mail

Handling POP mail
This section provides an example of each of the following uses of POP mail:
• Retrieving only message headers
• Retrieving a message
• Retrieving a message and its attachments
• Deleting messages

Retrieving only message headers

You can retrieve only the headers of your messages by using the GetHeaderOnly value for
the action attribute of the cfpop tag. Whether you use cfpop to retrieve the header or the
entire message, ColdFusion returns a query object that contains one row for each message
in the specified mailbox. The query object, whose name is specified in the name attribute
of the cfpop tag, consists of the following fields:
• date
• from
• messageNumber
• replyTo
• subject
• cc
• to

To retrieve only the message header:

1 Create a ColdFusion page with the following content:
<html>
<head>
<title>POP Mail Message Header Example</title>
</head>

<body>
<h2>This example retrieves message header information:</h2>

<cfpop server="mail.company.com"
username=#myusername#
password=#mypassword#
action="GetHeaderOnly"
name="Sample">

<cfoutput query="Sample">
MessageNumber: #HTMLEditFormat(Sample.messageNumber)#

To: #HTMLEditFormat(Sample.to)#

From: #HTMLEditFormat(Sample.from)#

Subject: #HTMLEditFormat(Sample.subject)#

Date: #HTMLEditFormat(Sample.date)#

 Cc: #HTMLEditFormat(Sample.cc)#

ReplyTo: #HTMLEditFormat(Sample.replyTo)#

</cfoutput>

</body>
Handling POP mail 821

</html>

2 Edit the following lines so that they refer to valid values for your POP mail server,
username, and password:
<cfpop server="mail.company.com"

username=#myusername#
password=#mypassword#

3 Save the file as header_only.cfm in the myapps directory under your web_root and
view it in your web browser:

This code retrieves the message headers and stores them in a cfpop record set called
Sample. For more information about working with record set data, see Chapter 22,
“Using Query of Queries” on page 461.

The ColdFusion function HTMLEditFormat replaces characters that have meaning in
HTML, such as the less than (<) and greater than (>) signs that can surround detailed
e-mail address information, with escaped characters such as < and >.

In addition, you can process the date returned by cfpop with ParseDateTime, which
accepts an argument for converting POP date/time objects into a CFML date-time
object.

You can reference any of these columns in a cfoutput tag, as the following example shows:

<cfoutput>
#ParseDateTime(queryname.date, "POP")#
#HTMLCodeFormat(queryname.from)#
#HTMLCodeFormat(queryname.messageNumber)#

</cfoutput>

For information on these ColdFusion functions, see CFML Reference.
822 Chapter 34 Sending and Receiving E-Mail

Retrieving a message

When you use the cfpop tag with action="GetAll", ColdFusion returns the same columns
as with getheaderonly, plus two additional columns, body and header.

To retrieve an entire message:

1 Create a ColdFusion page with the following content:
<html>
<head><title>POP Mail Message Body Example</title></head>

<body>
<h2>This example adds retrieval of the message body:</h2>
<cfpop server="mail.company.com"

username=#myusername#
password=#mypassword#
action="GetAll"
name="Sample">

<cfoutput query="Sample">
MessageNumber: #HTMLEditFormat(Sample.messageNumber)#

To: #Sample.to#

From: #HTMLEditFormat(Sample.from)#

Subject: #HTMLEditFormat(Sample.subject)#

Date: #HTMLEditFormat(Sample.date)#

Cc: #HTMLEditFormat(Sample.cc)#

ReplyTo: #HTMLEditFormat(Sample.replyTo)#

Body:

#Sample.body#

Header:

#HTMLCodeFormat(Sample.header)#

<hr>
</cfoutput>

</body>
</html>

2 Edit the following lines so that they refer to valid values for your POP mail server,
username, and password:
<cfpop server="mail.company.com"

username=#myusername#
password=#mypassword#
Handling POP mail 823

3 Save the file as header_body.cfm in the myapps directory under your web_root and
view it in your web browser:

This example does not use a CFML function to encode the body contents. As a result,
the browser displays the formatted message as you would normally see it in a mail
program that supports HTML messages.

Retrieving a message and its attachments

When you use the cfpop tag with action="getAll", and use the attachmentpath attribute
to specify the directory in which to store attachments, ColdFusion retrieves any
attachment files from the POP server and saves them in the specified directory. The cfpop
tag also adds the following two columns to the query it creates:
• attachments Contains a tab-separated list of all attachment names.
• attachmentfiles Contains a tab-separated list of the locations of the attachment

files. Use the cffile tag to delete these temporary files.

You must ensure that the attachmentpath directory exists before you use the cfpop tag to
retrieve attachments. ColdFusion generates an error if it attempts to write an attachment
file to a nonexistent directory.

If a message has no attachments, the attachments and attachmentfiles columns contain
empty strings.

To retrieve all parts of a message, including attachments:

1 Create a ColdFusion page with the following content:
<html>
<head>
<title>POP Mail Message Attachment Example</title>
</head>
824 Chapter 34 Sending and Receiving E-Mail

<body>
<h2>This example retrieves message header,
body, and all attachments:</h2>

<cfpop server="mail.company.com"
username=#myusername#
password=#mypassword#
action="GetAll"
attachmentpath="c:\temp\attachments"
name="Sample">

<cfoutput query="Sample">
MessageNumber: #HTMLEditFormat(Sample.MessageNumber)#

To: #HTMLEditFormat(Sample.to)#

From: #HTMLEditFormat(Sample.from)#

Subject: #HTMLEditFormat(Sample.subject)#

Date: #HTMLEditFormat(Sample.date)#

Cc: #HTMLEditFormat(Sample.cc)#

ReplyTo: #HTMLEditFormat(Sample.ReplyTo)#

Attachments: #HTMLEditFormat(Sample.Attachments)#

Attachment Files: #HTMLEditFormat(Sample.AttachmentFiles)#

Body:

#Sample.body#

Header:

HTMLCodeFormat(Sample.header)#

<hr>

</cfoutput>

</body>
</html>

2 Edit the following lines so that they refer to valid values for your POP mail server,
username, and password:
<cfpop server="mail.company.com"

username=#myusername#
password=#mypassword#
Handling POP mail 825

3 Save the file as header_body_att.cfm in the myapps directory under your web_root
and view it in your web browser:

Note: To avoid duplicate filenames when saving attachments, set the
generateUniqueFilenames attribute of cfpop to Yes.

Deleting messages

By default, retrieved messages remain on the POP mail server. If you want to delete
retrieved messages, you must set the action attribute of the cfpop tag to Delete. You must
also specify use the messagenumber attribute to specify the numbers of the messages to
delete.

Using cfpop to delete a message permanently removes it from the server. If the
messagenumber does not correspond to a message on the server, ColdFusion generates an
error.

Note: Message numbers are reassigned at the end of every POP mail server
communication that contains a delete action. For example, if you retrieve four messages
from a POP mail server, the server returns the message numbers 1,2,3,4. If you delete
messages 1 and 2 with a single cfpop tag, messages 3 and 4 are assigned message numbers
1 and 2, respectively.

To delete messages:

1 Create a ColdFusion page with the following content:
<html>
<head>
<title>POP Mail Message Delete Example</title>
</head>

<body>
<h2>This example deletes messages:</h2>
826 Chapter 34 Sending and Receiving E-Mail

<cfpop server="mail.company.com"
username=#username#
password=#password#
action="Delete"
messagenumber="1,2,3">

</body>
</html>

2 Edit the following lines so that they refer to valid values for your POP mail server,
username, and password:
<cfpop server="mail.company.com"

username=#username#
password=#password#

3 Save the file as message_delete.cfm in the myapps directory under your web_root and
view the file in your web browser.

Caution: When you view this page in your web browser, ColdFusion immediately
deletes the messages from the POP server.

The following figure shows the message list before the deletion of message 280:
Handling POP mail 827

The following figure shows the message list after the deletion of message number 280.
ColdFusion reorders the remaining messages:
828 Chapter 34 Sending and Receiving E-Mail

CHAPTER 35

Interacting with Remote Servers
This chapter describes how ColdFusion wraps the complexity of Hypertext Transfer
Protocol (HTTP) and File Transfer Protocol (FTP) communications in a simplified tag
syntax that lets you extend your site’s offerings across the web.

Contents

• About interacting with remote servers.. 830

• Using cfhttp to interact with the web... 830

• Creating a query object from a text file .. 835

• Using the cfhttp Post method .. 837

• Performing file operations with cfftp.. 841
829

About interacting with remote servers
Transfer protocols are mechanisms for moving files and information from a source to one
or more destinations. Two of the more popular protocols are the Hypertext Transfer
Protocol (HTTP) and the File Transfer Protocol (FTP). ColdFusion has the cfhttp and
cfftp tags that let you use these protocols to interact with remote servers.

The cfhttp tag lets you receive a web page or web-based file, just as a web browser uses
HTTP to transport web pages. When you type a URL into a web browser, you make an
HTTP request to a web server. With the cfhttp tag, you can display a web page, send
variables to a ColdFusion or CGI application, retrieve specialized content from a web
page, and create a ColdFusion query from a text file. You can use the Get or Post
methods to interact with remote servers.

The cffttp tag takes advantage of FTP’s main purpose—transporting files. Unlike
HTTP, FTP was not designed to interact with other servers for processing and
interacting with data. Once you establish an FTP connection with the cffttp tag, you
can use it to upload, download, and manage files and directories.

Using cfhttp to interact with the web
The cfhttp tag, which lets you retrieve information from a remote server, is one of the
more powerful tags in the CFML tag set. You can use one of two methods—Get or
Post—to interact with a remote server using the cfhttp tag:
• Using the Get method, you can only send information to the remote server in the

URL. This method is often used for a one-way transaction in which cfhttp retrieves
an object.

• Using the Post method, you can pass variables to a ColdFusion page or CGI program,
which processes them and returns data to the calling page. The calling page then
appears or further processes the data that was received. For example, when you use
cfhttp to Post to another ColdFusion page, that page does not appear. It processes the
request and returns the results to the original ColdFusion page, which then uses the
information as appropriate.

Using the cfhttp Get method
You use Get to retrieve files, including text and binary files, from a specified server. The
retrieved information is stored in a special variable, cfhttp.fileContent. The following
examples show several common Get operations.

To retrieve a file and store it in a variable:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>Use Get Method</title>
</head>

<body>
<cfhttp

method="Get"
830 Chapter 35 Interacting with Remote Servers

url="http://www.macromedia.com"
resolveurl="Yes">

<cfoutput>
#cfhttp.FileContent#

</cfoutput>

</body>
</html>

2 (Optional) Replace the value of the url attribute with another URL.

3 Save the file as get_webpage.cfm in the myapps directory under your web_root and
view it in the web browser.

The browser loads the web page specified in the url attribute:
Using cfhttp to interact with the web 831

Reviewing the code

The following table describes the code and its function:

To get a web page and save it in a file:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>Use Get Method</title>
</head>

<body>
<cfhttp

method = "Get"
url="http://www.macromedia.com/software"
path="c:\temp"
file="macr_software.htm">

</body>
</html>

2 (Optional) Replace the value of the url attribute with another URL and change the
filename.

3 (Optional) Change the path from C:\temp to a path on your hard drive.

4 Save the page as save_webpage.cfm in the myapps directory under your web_root
directory.

5 Go to the specified path and view the file that you specified in a text editor (using the
values specified in step 1, this is C:\temp\macr_software.htm):

The saved file does not appear properly in your browser because the Get operation
saves only the specified web page HTML. It does not save the frame, image, or other
files that the page might include.

Code Description

<cfhttp method="Get"
url="http://www.macromedia.com"
resolveurl="Yes">

Get the page specified in the URL and make
the links absolute instead of relative so that
they appear properly.

<cfoutput>
#cfhttp.FileContent#

</cfoutput>

Display the page, which is stored in the
variable cfhttp.fileContent, in the browser.
832 Chapter 35 Interacting with Remote Servers

Reviewing the code

The following table describes the code and its function:

To get a binary file and save it:

1 Create a ColdFusion page with the following content:
<cfhttp

method="Get"
url="http://www.macromedia.com/macromedia/accessibility/images/
spotlight.jpg"
path="c:\temp"
file="My_SavedBinary.jpg">

<cfoutput>
#cfhttp.MimeType#

</cfoutput>

2 (Optional) Replace the value of the url attribute with the URL of a binary file that
you want to download.

3 (Optional) Change the path from C:\temp to a path on your hard drive.

4 Save the file as save_binary.cfm in the myapps directory under your web_root and
view it in the web browser.

The MIME content type appears in your browser:

5 (Optional) Verify that the binary file now exists at the location you specified in the
path attribute.

Code Description

<cfhttp
method = "Get"
url="http://www.macromedia.com/software"

path="c:\temp"
file="macr_software.htm">

Get the page specified in the URL and save it
in the file specified by the path and file
attributes.

When you use the path and file attributes,
ColdFusion ignores any resolveurl attribute.
As a result, frames and other included files
cannot appear when you view the saved
page.
Using cfhttp to interact with the web 833

Reviewing the code

The following table describes the code and its function:

Code Description

<cfhttp
method="Get"
url="http://www.macromedia.com/macromedia/
accessibility/images/spotlight.jpg"

path="c:\temp"
file="My_SavedBinary.jpg">

Get a binary file and save it in the
path and file specified.

<cfoutput>
#cfhttp.MimeType#

</cfoutput>

Display the MIME type of the
file.
834 Chapter 35 Interacting with Remote Servers

Creating a query object from a text file
You can create a query object from a delimited text file by using the cfhttp tag and
specifying method="Get" and the name attribute. This is a powerful method for processing
and handling text files. After you create the query object, you can easily reference
columns in the query and perform other ColdFusion operations on the data.

ColdFusion processes text files in the following manner:
• You can specify a field delimiter with the delimiter attribute. The default is a comma.
• If data in a field might include the delimiter character, you must surround the entire

field with the text qualifier character, which you can specify with the textqualifier
attribute. The default text qualifier is the double quotation mark (").

• The textqualifier="" specifies that there is no text qualifier. If you use
textqualifier="""" (four " marks in a row), it explicitly specifies the double
quotation mark as the text qualifier.

• If there is a text qualifier, you must surround all field values with the text qualifier
character.

• To include the text qualifier character in a field, use a double character. For example,
if the text qualifier is ", use "" to include a quotation mark in the field.

• The first row of text is always interpreted as column headings, so that row is skipped.
You can override the file’s column heading names by specifying a different set of
names in the columns attribute. You must specify a name for each column. You then
use these new names in your CFML code. However, ColdFusion never treats the first
row of the file as data.

• When duplicate column heading names are encountered, ColdFusion adds an
underscore character to the duplicate column name to make it unique. For example,
if two CustomerID columns are found, the second is renamed "CustomerID_".

To create a query from a text file:

1 Create a text file with the following content:
OrderID,OrderNum,OrderDate,ShipDate,ShipName,ShipAddress
001,001,01/01/01,01/11/01,Mr. Shipper,123 Main Street
002,002,01/01/01,01/28/01,Shipper Skipper,128 Maine Street

2 Save the file as text.txt in the myapps directory under your web_root.

3 Create a ColdFusion page with the following content:
<cfhttp method="Get"

url="http://127.0.0.1/myapps/text.txt"
name="juneorders"
textqualifier="">

<cfoutput query="juneorders">
OrderID: #OrderID#

Order Number: #OrderNum#

Order Date: #OrderDate#

</cfoutput>
Creating a query object from a text file 835

<!--- Now substitute different column names --->
<!--- by using the columns attribute --->
<hr>
Now using replacement column names

<cfhttp method="Get"
url="http://127.0.0.1/myapps/text.txt"
name="juneorders"
columns="ID,Number,ODate,SDate,Name,Address"
textqualifier="">

<cfoutput query="juneorders">
Order ID: #ID#

Order Number: #Number#

Order Date: #SDate#

</cfoutput>

4 Save the file as query_textfile.cfm in the myapps directory under your web_root and
view it in the web browser:
836 Chapter 35 Interacting with Remote Servers

Using the cfhttp Post method
Use the Post method to send cookie, form field, CGI, URL, and file variables to a
specified ColdFusion page or CGI program for processing. For Post operations, you must
use the cfhttpparam tag for each variable you want to post. The Post method passes data
to a specified ColdFusion page or an executable that interprets the variables being sent
and returns data.

For example, when you build an HTML form using the Post method, you specify the
name of the page to which form data is passed. You use the Post method in cfhttp in a
similar way. However, with cfhttp, the page that receives the Post does not, itself, display
anything.

To pass variables to a ColdFusion page:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>HTTP Post Test</title>
</head>

<body>
<h1>HTTP Post Test</h1>

<cfhttp method="Post"
url="http://127.0.0.1:8500/myapps/post_test_server.cfm">

<cfhttpparam type="Cookie"
value="cookiemonster"
name="mycookie6">

<cfhttpparam type="CGI"
value="cgivar "
name="mycgi">

<cfhttpparam type="URL"
value="theurl"
name="myurl">

<cfhttpparam type="Formfield"
value="twriter@macromedia.com"
name="emailaddress">

<cfhttpparam type="File"
name="myfile"
file="c:\pix\trees.gif">

</cfhttp>

<cfoutput>
File Content:

#cfhttp.filecontent#

Mime Type: #cfhttp.MimeType#

</cfoutput>
</body>
</html>

2 Replace the path to the GIF file to a path on your server (this is just before the closing
cfhttp tag).
Using the cfhttp Post method 837

3 Save the file as post_test.cfm in the myapps directory under your web_root.

Note: You must write a page to view the variables. This is the next procedure.

Reviewing the code

The following table describes the code and its function:

To view the variables:

1 Create a ColdFusion page with the following content:
<html>
<head><title>HTTP Post Test</title> </head>

<body>
<h1>HTTP Post Test</h1>
<cffile destination="C:\temp\"

nameconflict="Overwrite"
filefield="Form.myfile"
action="Upload"
attributes="Normal">

<cfoutput>
The URL variable is: #URL.myurl#

The Cookie variable is: #Cookie.mycookie6#

The CGI variable is: #CGI.mycgi#.

The Formfield variable is: #Form.emailaddress#.

The file was uploaded to #File.ServerDirectory#\#File.ServerFile#.

</cfoutput>

Code Description

<cfhttp method="Post"
url="http://127.0.0.1:8500/myapps/

post_test_server.cfm">

Post an HTTP request to the specified page.

<cfhttpparam type="Cookie"
value="cookiemonster"
name="mycookie6">

Send a cookie in the request.

<cfhttpparam type="CGI"
value="cgivar "
name="mycgi">

Send a CGI variable in the request.

<cfhttpparam type="URL"
value="theurl"
name="myurl">

Send a URL in the request.

<cfhttpparam type="Formfield"
value="twriter@macromedia.com"
name="emailaddress">

Send a Form field in the request.

<cfhttpparam type="File"
name="myfile"
file="c"\pix\trees.gif">

Send a file in the request.

The </cfhttp> tag ends the http request.

<cfoutput>
File Content:

#cfhttp.filecontent#

Display the contents of the file that the page
that is posted to creates by processing the
request. In this example, this is the output
from the cfoutput tag in server.cfm.

Mime Type: #cfhttp.MimeType#

</cfoutput>

Display the MIME type of the created file.
838 Chapter 35 Interacting with Remote Servers

</body>
</html>

2 Replace C:\temp\ with an appropriate directory path on your hard drive.

3 Save the file as post_test_server.cfm in the myapps directory under your web_root.

4 View post_test.cfm in your browser and look for the file in C:\temp\ (or your
replacement path):

Reviewing the code

The following table describes the code and its function:

Code Description

<cffile destination="C:\temp\"
nameconflict="Overwrite"
filefield="Form.myfile"
action="Upload"
attributes="Normal">

Write the transferred document to a file on
the server. You send the file using the
cfhttpparam type="File" attribute, but the
receiving page gets it as a Form variable, not
a File variable. This cffile tag creates File
variables, as follows.

<cfoutput> Output information. The results are not
displayed by this page. They are passed back
to the posting page in its cfhttp.filecontent
variable.

The URL variable is: #URL.myurl#
 Output the value of the URL variable sent in
the HTTP request.

The Cookie variable is: #Cookie.mycookie#
 Output the value of the Cookie variable sent
in the HTTP request.
Using the cfhttp Post method 839

To return results of a CGI program:

The following code runs a CGI program search.exe on a website and displays the results,
including both the MIME type and length of the response. The search.exe program must
expect a “search” parameter.

<cfhttp method="Post"
url="http://www.my_favorite_site.com/search.exe"
resolveurl="Yes">

<cfhttpparam type="Formfield"
name="search"
value="Macromedia ColdFusion">

</cfhttp>

<cfoutput>
Response Mime Type: #cfhttp.MimeType#

Response Length: #len(cfhttp.filecontent)#

Response Content:

#htmlcodeformat(cfhttp.filecontent)#

</cfoutput>

The CGI variable is: #CGI.mycgi#
 Output the value of the CGI variable sent in
the HTTP request.

The Form variable is:
#Form.emailaddress#.

Output the Form variable sent in the HTTP
request. You send the variable using the
type="formField" attribute but the receiving
page gets it as a Form variable.

The file was uploaded to
#File.ServerDirectory#\#File.
ServerFile#.
</cfoutput>

Output the results of the cffile tag on this
page. This time, the variables really are File
variables.

Code Description
840 Chapter 35 Interacting with Remote Servers

Performing file operations with cfftp
The cfftp tag lets you perform tasks on remote servers using File Transfer Protocol
(FTP). You can use cfftp to cache connections for batch file transfers when uploading or
downloading files.

Note: To use cfftp, the Enable cfftp Tag option must be selected on the Tag Restrictions
page of the Basic Security section of the ColdFusion Administrator Security tab.

For server/browser operations, use the cffile, cfcontent, and cfdirectory tags.

Using cfftp involves two major types of operations: connecting, and transferring files.
The FTP protocol also provides commands for listing directories and performing other
operations. For a complete list of attributes that support FTP operations and additional
details on using the cfftp tag, see CFML Reference.

To open an FTP connection and retrieve a file listing:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>FTP Test</title>
</head>

<body>
<h1>FTP Test</h1>
<!--- Open ftp connection --->
<cfftp connection="Myftp"

server="MyServer"
username="MyUserName"
password="MyPassword"
action="Open"
stoponerror="Yes">

<!--- Get the current directory name. --->
<cfftp connection=Myftp

action="GetCurrentDir"
stoponerror="Yes">

<!--- output directory name --->
<cfoutput>

The current directory is: #cfftp.returnvalue#<p>
</cfoutput>

<!--- Get a listing of the directory. --->
<cfftp connection=Myftp

action="listdir"
directory="#cfftp.returnvalue#"
name="dirlist"
stoponerror="Yes">

<!--- Close the connection.--->
<cfftp action="close" connection="Myftp">
<p>Did the connection close successfully?

<cfoutput>#cfftp.succeeded#</cfoutput></p>

<!--- output dirlist results --->
Performing file operations with cfftp 841

<hr>
<p>FTP Directory Listing:</p>

<cftable query="dirlist" colheaders="yes" htmltable>
<cfcol header="Name" TEXT="#name#">
<cfcol header="Path" TEXT="#path#">
<cfcol header="URL" TEXT="#url#">
<cfcol header="Length" TEXT="#length#">
<cfcol header="LastModified"
TEXT="#DateFormat(lastmodified)#">
<cfcol header="IsDirectory"

TEXT="#isdirectory#">
</cftable>

2 Change MyServer to the name of a server for which you have FTP permission.

3 Change MyUserName and MyPassword to a valid username and password.

To establish an anonymous connection, enter “anonymous” as the username and an
e-mail address (by convention) for the password.

4 Save the file as ftp_connect.cfm in the myapps directory under your web_root and
view it in the web browser.

Reviewing the code

The following table describes the code and its function:

Code Description

<cfftp connection="Myftp"
server="MyServer"
username="MyUserName"
password="MyPassword"
action="Open"
stoponerror="Yes">

Open an FTP connection to the MyServer
server and log on as MyUserName. If an
error occurs, stop processing and display
an error. You can use this connection in
other cfftp tags by specifying the Myftp
connection.

<cfftp connection=Myftp
action="GetCurrentDir"
stoponerror="Yes">

<cfoutput>
The current directory is:

#cfftp.returnvalue#<p>
</cfoutput>

Use the Myftp connection to get the name
of the current directory; stop processing if
an error occurs.

Display the current directory.

<cfftp connection=Myftp
action="ListDir"
directory="#cfftp.returnvalue#"
name="dirlist"
stoponerror="Yes">

Use the Myftp connection to get a
directory listing. Use the value returned by
the last cfftp call (the current directory of
the connection) to specify the directory to
list. Save the results in a variable named
dirlist (a query object). Stop processing if
there is an error.
842 Chapter 35 Interacting with Remote Servers

After you establish a connection with cfftp, you can reuse the connection to perform
additional FTP operations until either you or the server closes the connection. When you
access an already-active FTP connection, you do not need to re-specify the username,
password, or server. In this case, make sure that when you use frames, only one frame uses
the connection object.

Note: For a single simple FTP operation, such as GetFile or PutFile, you do not need to
establish a connection. Specify all the necessary login information, including the server and
any login and password, in the single cfftp request.

Caching connections across multiple pages
The FTP connection established by cfftp is maintained only in the current page unless
you explicitly assign the connection to a variable with Application or Session scope.

Assigning a cfftp connection to an application variable could cause problems, since
multiple users could access the same connection object at the same time. Creating a
session variable for a cfftp connection makes more sense, because the connection is
available to only one client and does not last past the end of the session.

Example: caching a connection

<cflock scope="Session" timeout=10>
<cfftp action="Open"

username="anonymous"
password="me@home.com"
server="ftp.eclipse.com"
connection="Session.myconnection">

</cflock>

In this example, the connection cache remains available to other pages within the current
session. You must enable session variables in your application for this approach to work,

<cfftp action="close" connection="Myftp">
<p>Did the connection close successfully?

<cfoutput>#cfftp.succeeded#</cfoutput></p>

Close the connection, and do not stop
processing if the operation fails (because
you can still use the results). Instead,
display the value of the cfftp.succeeded
variable, which is Yes if the connection is
closed, and No if the operation failed.

<cftable query="dirlist" colheaders="yes"
htmltable>
<cfcol header="Name"
TEXT="#name#">

<cfcol header="Path"
TEXT="#path#">

<cfcol header="URL"
TEXT="#url#">

<cfcol header="Length"
TEXT="#length#">

<cfcol header="LastModified"
TEXT="#DateFormat(lastmodified)#">

<cfcol header="IsDirectory"
TEXT="#isdirectory#">

</cftable>

Display a table with the results of the
ListDir FTP command.

Code Description
Performing file operations with cfftp 843

and you must lock code that uses session variables. For more information on locking, see
Chapter 15, “Using Persistent Data and Locking” on page 315.

Note: Changing a connection’s characteristics, such the retrycount or timeout values,
might require you to re-establish the connection.

Connection actions and attributes
The following table shows the available cfftp actions and the attributes they require
when you use a named (that is, cached) connection. If you do not specify an existing
connection name, you must specify the username, password, and server attributes.

Action Attributes Action Attributes

Open none Rename existing
new

Close none Remove server
item

ChangeDir directory GetCurrentDir none

CreateDir directory GetCurrentURL none

ListDir name
directory

ExistsDir directory

RemoveDir directory ExistsFile remotefile

GetFile localfile
remotefile

Exists item

PutFile localfile
remotefile
844 Chapter 35 Interacting with Remote Servers

CHAPTER 36

Managing Files on the Server
The cffile, cfdirectory, and cfcontent tags handle browser and server file management
tasks, such as uploading files from a client to the web server, viewing directory
information, and changing the content type that is sent to the web browser. To perform
server-to-server operations, use the cfftp tag, described in “Performing file operations
with cfftp” on page 841.

Contents

• About file management.. 846

• Using cffile .. 846

• Using cfdirectory ... 856

• Using cfcontent ... 858
845

About file management
ColdFusion lets you access and manage the files and directories on your ColdFusion
server. The cffile tag has several attributes for moving, copying, deleting, and renaming
files. You use the cfdirectory tag to list, create, delete, and rename directories. The
cfcontent tag lets you define the MIME (Multipurpose Internet Mail Extensions)
content type that returns to the web browser.

Using cffile
You can use the cffile tag to work with files on the server in several ways:
• Upload files from a client to the web server using an HTML form
• Move, rename, copy, or delete files on the server
• Read, write, or append to text files on the server

You use the action attribute to specify any of the following file actions: upload, move,
rename, copy, delete, read, readBinary, write, and append. The required attributes depend
on the action specified. For example, if action="write", ColdFusion expects the
attributes associated with writing a text file.

Note: Consider the security and logical structure of directories on the server before
allowing users access to them. You can disable the cffile tag in the ColdFusion
Administrator. Also, to access files that are not located on the local ColdFusion Server
system, ColdFusion services must run using an account with permission to access the
remote files and directories.

Uploading files
File uploading requires that you create two files:
• An HTML form to specify file upload information
• An action page containing the file upload code

The following procedures describe how to create these files.

To create an HTML file to specify file upload information:

1 Create a ColdFusion page with the following content:
<head><title>Specify File to Upload</title></head>
<body>
<h2>Specify File to Upload</h2>
<!--- the action attribute is the name of the action page --->
<form action="uploadfileaction.cfm"

enctype="multipart/form-data"
method="post">

<p>Enter the complete path and filename of the file to upload:
<input type="file"

name="FiletoUpload"
size="45">

</p>
<input type="submit"

value="Upload">
</form>
</body>
846 Chapter 36 Managing Files on the Server

2 Save the file as uploadfileform.cfm in the myapps directory under your web_root and
view it in the browser:

Note: The form will not work until you write an action page for it (see the next procedure).

Reviewing the code

The following table describes the code and its function:

The user can enter a file path or browse the system and select a file to send.

1 Create a ColdFusion page with the following content:
<html>
<head> <title>Upload File</title> </head>
<body>
<h2>Upload File</h2>

<cffile action="upload"
destination="c:\temp\"
nameConflict="overwrite"
fileField="Form.FiletoUpload">

Code Description

<form action="uploadfileaction.cfm"
enctype="multipart/form-data"
method="post">

Create a form that contains file selection fields
for upload by the user. The action attribute
value specifies the ColdFusion template that
will process the submitted form. The enctype
attribute value tells the server that the form
submission contains an uploaded file. The
method attribute is set to post to submit a
ColdFusion form.

<input type="file"
name="FiletoUpload"
size="45">

Allow the user to specify the file to upload. The
file type instructs the browser to prepare to
read and transmit a file from the user's system
to your server. It automatically includes a
Browse button to allow the user to look for the
file instead of manually entering the entire path
and filename.
Using cffile 847

<cfoutput>
You uploaded #cffile.ClientFileName#.#cffile.ClientFileExt#

successfully to #cffile.ServerDirectory#.
</cfoutput>

</body>
</html>

2 Change the following line to point to an appropriate location on your server:
destination="c:\temp\"

Note: This directory must exist on the server.

3 Save the file as uploadfileaction.cfm in the myapps directory under your web_root.

4 View uploadfileform.cfm in the browser, enter a file to upload, and submit the form.

The file you specified uploads, as the following figure shows:

Reviewing the code

The following table describes the code and its function:

Note: This example performs no error checking and does not incorporate any security
measures. Before deploying an application that performs file uploads, be sure to incorporate
both error handling and security. For more information, see Chapter 16, “Securing
Applications” on page 347 and Chapter 14, “Handling Errors” on page 281.

Code Description

<cffile action="upload" Output the name and location of the
uploaded file on the client machine.

destination="c:\temp\" Specify the destination of the file.

nameConflict="overwrite" If the file already exists, overwrite it.

fileField="Form.FiletoUpload"> Specify the name of the file to upload. Do
not enclose the variable in pound signs.

You uploaded #cffile.ClientFileName#.#cffile.
ClientFileExt# successfully to
#cffile.ServerDirectory#.

Inform the user of the file that was uploaded
and its destination. For information on
cffile scope variables, see “Evaluating the
results of a file upload” on page 850.
848 Chapter 36 Managing Files on the Server

Resolving conflicting filenames

When you save a file to the server, there is a risk that a file with the same name might
already exist. To resolve this problem, assign one of these values to the nameConflict
attribute of the cffile tag:
• Error (default) ColdFusion stops processing the page and returns an error. The file

is not saved.
• Skip Allows custom behavior based on file properties. Neither saves the file nor

returns an error.
• Overwrite Overwrites a file that has the same name as the uploaded file.
• MakeUnique Generates a unique filename for the uploaded file. The name is stored

in the file object variables serverFile and serverFileName. You can use this variable to
record the name used when the file was saved. The unique name might not resemble
the attempted name. For more information on file upload status variables, see
“Evaluating the results of a file upload” on page 850.

Controlling the type of file uploaded

For some applications, you might want to restrict the type of file that is uploaded. For
example, you might not want to accept graphic files in a document library.

You use the accept attribute to restrict the type of file that you allow in an upload. When
an accept qualifier is present, the uploaded file’s MIME content type must match the
criteria specified or an error occurs. The accept attribute takes a comma-separated list of
MIME data names, optionally with wildcards.

A file’s MIME type is determined by the browser. Common types, such as image/gif and
text/plain, are registered in the browser.

Note: Modern versions of Internet Explorer and Netscape support MIME type
associations. Other browsers and older versions might ignore these associations.

ColdFusion saves any uploaded file if you omit the accept attribute or specify "*/*". You
can restrict the file types, as demonstrated in the following examples.

The following cffile tag saves an image file only if it is in the GIF format:

<cffile action="Upload"
fileField="Form.FiletoUpload"
destination="c:\uploads\"
nameConflict="Overwrite"
accept="image/gif">

The following cffile tag saves an image file only if it is in GIF or JPEG format:

<cffile action="Upload"
fileField="Form.FiletoUpload"
destination="c:\uploads\"
nameConflict="Overwrite"
accept="image/gif, image/jpeg">

Note: If you receive an error similar to "The MIME type of the uploaded file (image/jpeg)
was not accepted by the server", enter accept="image/pjpeg" to accept JPEG files.
Using cffile 849

This cffile tag saves any image file, regardless of the format:

<cffile action="Upload"
fileField="Form.FiletoUpload"
destination="c:\uploads\"
nameConflict="Overwrite"
accept="image/*">

Setting file and directory attributes

In Windows, you specify file attributes using the cffile attributes attribute. In UNIX,
you specify file or directory permissions using the mode attribute of the cffile or
cfdirectory tag.

Windows

In Windows, you can set the following file attributes:
• Archive
• Hidden
• Normal
• ReadOnly
• System

To specify several attributes in CFML, use a comma-separated list for the attributes
attribute; for example, attributes="ReadOnly,Archive". If you do not use attributes, the
file’s existing attributes are maintained. If you specify any other attributes in addition to
Normal, the additional attribute overrides the Normal setting.

UNIX

In UNIX, you can individually set permissions on files and directories for each of three
types of users—owner, group, and other. You use a number for each user type. This
number is the sum of the numbers for the individual permissions allowed. Values for the
mode attribute correspond to octal values for the UNIX chmod command:
• 4 = read
• 2 = write
• 1 = execute

You enter permissions values in the mode attribute for each type of user: owner, group, and
other in that order. For example, use the following code to assign read permissions for
everyone:

mode=444

To give a file or directory owner read/write/execute permissions and read only
permissions for everyone else:

mode=744

Evaluating the results of a file upload

After a file upload is completed, you can retrieve status information using file upload
status variables. This status information includes data about the file, such as its name and
the directory where it was saved.
850 Chapter 36 Managing Files on the Server

You can access file upload status variables using dot notation, using either file.varname or
cffile.varname. Although you can use either the File or cffile prefix for file upload status
variables, cffile is preferred; for example, cffile.ClientDirectory. The File prefix is retained
for backward compatibility.

Note: File status variables are read-only. They are set to the results of the most recent
cffile operation. If two cffile tags execute, the results of the first are overwritten by the
subsequent cffile operation.

The following table describes the file upload status variables that are available after an
upload:

Variable Description

attemptedServerFile Initial name that ColdFusion uses when attempting to save a file;
for example, myfile.txt. (see “Resolving conflicting filenames” on
page 849).

clientDirectory Directory on the client’s system from which the file was
uploaded.

clientFile Full name of the source file on the client’s system with the file
extension; for example, myfile.txt.

clientFileName Name of the source file on the client’s system without an
extension; for example, myfile.

clientFileExt Extension of the source file on the client’s system without a
period; for example, txt (not .txt).

contentType MIME content type of the saved file; for example, image for
image/gif.

contentSubType MIME content subtype of the saved file; for example, gif for
image/gif.

dateLastAccessed Date that the uploaded file was last accessed.

fileExisted Indicates (Yes or No) whether the file already existed with the
same path.

fileSize Size of the uploaded file.

fileWasAppended Indicates (Yes or No) whether ColdFusion appended the
uploaded file to an existing file.

fileWasOverwritten Indicates (Yes or No) whether ColdFusion overwrote a file.

fileWasRenamed Indicates (Yes or No) whether the uploaded file was renamed to
avoid a name conflict.

fileWasSaved Indicates (Yes or No) whether ColdFusion saved the uploaded
file.

oldFileSize Size of the file that was overwritten in the file upload operation.
Empty if no file was overwritten.

serverDirectory Directory where the file was saved on the server.

serverFile Full name of the file saved on the server with the file extension;
for example, myfile.txt.
Using cffile 851

Moving, renaming, copying, and deleting server files
With cffile, you can create application pages to manage files on your web server. You
can use the tag to move files from one directory to another, rename files, copy a file, or
delete a file.

The examples in the following table show static values for many of the attributes.
However, the value of all or part of any attribute in a cffile tag can be a dynamic
parameter.

This example sets the archive bit for the uploaded file:

<cffile action="Copy"
source="c:\files\upload\keymemo.doc"
destination="c:\files\backup\"
attributes="Archive">

Note: Ensure you include the trailing slash (\) when you specify the destination directory.
Otherwise, ColdFusion treats the last element in the pathname as a filename. This only
applies to copy actions.

Reading, writing, and appending to a text file
In addition to managing files on the server, you can use cffile to read, create, and
modify text files. As a result, you can do the following things:
• Create log files. (You can also use cflog to create and write to log files.)
• Generate static HTML documents.
• Use text files to store information that can be incorporated into web pages.

serverFileName Name of the file saved on the server without an extension; for
example, myfile.

serverFileExt Extension of the file saved on the server without a period; for
example, txt (not .txt).

timeCreated Date and time the uploaded file was created.

timeLastModified Date and time of the last modification to the uploaded file.

Variable Description

Action Example code

Move a file <cffile action="move"
source="c:\files\upload\KeyMemo.doc"
destination="c:\files\memo\">

Rename a file <cffile action="rename"
source="c:\files\memo\KeyMemo.doc"
destination="c:\files\memo\OldMemo.doc">

Copy a file <cffile action="copy"
source="c:\files\upload\KeyMemo.doc"
destination="c:\files\backup\">

Delete a file <cffile action="delete"
file="c:\files\upload\oldfile.txt">
852 Chapter 36 Managing Files on the Server

Reading a text file

You can use cffile to read an existing text file. The file is read into a local variable that
you can use anywhere in the application page. For example, you could read a text file and
then insert its contents into a database, or you could read a text file and then use one of
the string replacement functions to modify the contents.

To read a text file:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>Read a Text File</title>
</head>

<body>
Ready to read the file:

<cffile action="read"

file="C:\inetpub\wwwroot\mine\message.txt"
variable="Message">

<cfoutput>
#Message#

</cfoutput>
</body>
</html>

2 Replace C:\inetpub\wwwroot\mine\message.txt with the location and name of a text
file on the server.

3 Save the file as readtext.cfm in the myapps directory under your web_root and view it
in the browser:
Using cffile 853

Writing a text file on the server

You can use cffile to write a text file based on dynamic content. For example, you could
create static HTML files or log actions in a text file.

To create a form in to capture data for a text file:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>Put Information into a Text File</title>
</head>

<body>
<h2>Put Information into a Text File</h2>

<form action="writetextfileaction.cfm" method="Post">
<p>Enter your name: <input type="text" name="Name" size="25"></p>
<p>Enter the name of the file: <input type="text" name="FileName"

size="25">.txt</p>
<p>Enter your message:
<textarea name="message"cols=45 rows=6></textarea>
</p>
<input type="submit" name="submit" value="Submit">

</form>
</body>
</html>

2 Save the file as writetextfileform.cfm in the myapps directory under your web_root.

Note: The form will not work until you write an action page for it (see the next procedure).

To write a text file:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>Write a Text File</title>
</head>
<body>
<cffile action="write"

file="C:\inetpub\wwwroot\mine\#Form.FileName#.txt"
output="Created By: #Form.Name#

#Form.Message# ">
</body>
</html>

2 Modify the path C:\inetpub\wwwroot\mine\ to point to a path on your server.

3 Save the file as writetextfileaction.cfm in the myapps directory under your web_root.
854 Chapter 36 Managing Files on the Server

4 View the file writetextfileform.cfm in the browser, enter values, and submit the
form; as shown in the following figure.

The text file is written to the location you specified. If the file already exists, it is
replaced.

Appending a text file

You can use cffile to append additional text to the end of a text file; for example, when
you create log files.

To append a text file:

1 Open the writetextfileaction.cfm file in ColdFusion Studio.

2 Change the value for the action attribute from write to append so that the file appears
as follows:
<html>
<head>

<title>Append a Text File</title>
</head>
<body>
<cffile action="append"

file="C:\inetpub\wwwroot\mine\message.txt"
output="Appended By: #Form.Name#">

</body>
</html>

3 Save the file as writetextfileaction.cfm in the myapps directory under your web_root.

4 View the file in the browser, enter values, and submit the form.

The appended information displays at the end of the text file.
Using cffile 855

Using cfdirectory
Use the cfdirectory tag to return file information from a specified directory and to
create, delete, and rename directories.

As with cffile, you can disable cfdirectory processing in the ColdFusion Administrator.
For details on the syntax of this tag, see CFML Reference.

Returning file information
When you use the action="list" attribute setting, cfdirectory returns a query object as
specified in the name attribute. The name attribute is required when you use the
action="list" attribute setting. This query object contains five result columns that you
can reference in a cfoutput tag, using the name attribute:
• name Directory entry name.
• size Directory entry size.
• type File type: File or Dir.
• dateLastModified Date an entry was last modified.
• attributes (Windows only) File attributes, if applicable.
• mode (UNIX only) The octal value representing the permissions setting for the

specified directory.

Note: ColdFusion supports the ReadOnly and Hidden values for the attributes attribute
for cfdirectory sorting.

Depending on whether your server is on a UNIX system or a Windows system, either the
Attributes column or the Mode column is empty. Also, you can specify a filename in the
filter attribute to get information on a single file.

The following procedure describes how to create a ColdFusion page in which to view
directory information.

To view directory information:

1 Create a ColdFusion page with the following content:
<html>
<head>

<title>List Directory Information</title>
</head>

<body>
<h3>List Directory Information</h3>
<cfdirectory

directory="c:\inetpub\wwwroot\mine"
name="mydirectory"
sort="size ASC, name DESC, datelastmodified">

<table cellspacing=1 cellpadding=10>
<tr>

<th>Name</th>
<th>Size</th>
<th>Type</th>
<th>Modified</th>
<th>Attributes</th>
856 Chapter 36 Managing Files on the Server

<th>Mode</th>
</tr>
<cfoutput query="mydirectory">
<tr>

<td>#mydirectory.name#</td>
<td>#mydirectory.size#</td>
<td>#mydirectory.type#</td>
<td>#mydirectory.dateLastModified#</td>
<td>#mydirectory.attributes#</td>
<td>#mydirectory.mode#</td>

</tr>
</cfoutput>
</table>

</body>
</html>

2 Modify the path C:\inetpub\wwwroot\mine so that it points to a directory on your
server.

3 Save the file as directoryinfo.cfm in the myapps directory under your web_root and
view it in the browser:
Using cfdirectory 857

Using cfcontent
The cfcontent tag downloads files from the server to the client. You can use this tag to set
the MIME type of the content returned by a ColdFusion page and, optionally, define the
filename of a file to be downloaded by the current page. By default, ColdFusion returns a
MIME content type of text/html so that a web browser renders your template text as a
web page.

As with cffile and cfdirectory, you can disable cfcontent processing in the ColdFusion
Administrator.

About MIME types
A MIME type is a label that identifies the contents of a file. the browser uses the MIME
type specification to determine how to interact with the file. For example, the browser
could open a spreadsheet program when it encounters a file identified by its MIME
content type as a spreadsheet file.

A MIME content type consists of "type/subtype" format. The following are common
MIME content types:
• text/html
• image/gif
• application/pdf

Changing the MIME content type with cfcontent
You use the cfcontent tag to change the MIME content type that returns to the browser
along with the content generated from your ColdFusion page.

The cfcontent tag has one required attribute, type, which defines the MIME content
type returned by the current page.

To change the MIME content type with cfcontent:

1 Create an HTML page with the following content:
<h1>cfcontent_message.htm</h1>

<p>This is a test message written in HTML.</p>
<p>This is the second paragraph of the test message.
As you might expect, it is also written in HTML.</p>

2 Save the file as cfcontent_message.htm in the myapps directory under your web_root.
This HTML file will be called by the ColdFusion file that you write in steps 3
through 7.

3 Create a ColdFusion page with the following content:
<html>
<head>
<title>cfcontent Example</title>
</head>

<body>
<h3>cfcontent Example</h3>
858 Chapter 36 Managing Files on the Server

<cfcontent
type = "text/html"
file = "C:\CFusionMX\wwwroot\myapps\cfcontent_message.htm"
deleteFile = "No">

</body>
</html>

4 If necessary, edit the file = line to point to your myapps directory.

5 Save the file as cfcontent.cfm in the myapps directory under your web_root and view
it in the browser.

The text of the called file (cfcontent_message.htm) displays as normal HTML, as
shown in the following figure:

6 In cfcontent.cfm, change type = "text/html" to type = "text/plain".

7 Save the file and view it in the browser (refresh it if necessary).

The text displays as unformatted text, in which HTML tags are treated as text:
Using cfcontent 859

The following example shows how the cfcontent tag can create an Excel spreadsheet that
contains your data.

To create an Excel spreadsheet with cfcontent:

1 Create a ColdFusion page with the following content:
<!--- use cfsetting to block output of HTML
outside of cfoutput tags --->
<cfsetting enablecfoutputonly="Yes">

<!--- get employee info --->
<cfquery name="GetEmps" datasource="CompanyInfo">

SELECT * FROM Employees
</cfquery>

<!--- set vars for special chars --->
<cfset TabChar = Chr(9)>
<cfset NewLine = Chr(13) & Chr(10)>
<!--- set content type to invoke Excel --->
<cfcontent type="application/msexcel">

<!--- suggest default name for XLS file --->
<!--- use "Content-Disposition" in cfheader for
Internet Explorer --->
<cfheader name="Content-Disposition" value="filename=Employees.xls">
 <!--- output data using cfloop & cfoutput --->
<cfloop query="GetEmps">

<cfoutput>#Employee_ID##TabChar##LastName#
#TabChar##FirstName##TabChar##Salary##NewLine#</cfoutput>

</cfloop>

2 Save the file as employees_to_excel.cfm in the myapps directory under your web_root
and view it in the browser.
860 Chapter 36 Managing Files on the Server

The data appears in an Excel spreadsheet:
Using cfcontent 861

862 Chapter 36 Managing Files on the Server

INDEX
Special

, in search expressions 562

A

accessing
client variables 325, 331
generated content 210

action pages 585
ActionScript

on ColdFusion server 6
Active Server Pages 717
adding

data elements to structures 102
elements to an array 92

ancestor tags
data access 215
definition 212

AND operator, SQL,
definition 421

appearance, of charts 658
application 316
application framework

about 318
approaches to 266
custom error pages 293
mapping 265

application pages
errors 293
variables 22

Application scope 23, 56, 264, 316
JSP pages 765

application security, example 362
application servers, data exchange

across 718
application variables

configuring 333
description 264, 316
listing 335

usage tips 334
using 333

Application.cfm file
application-level settings 268
creating 268
example 270
processing 265
user-defined functions in 184

application-defined exception 286
application-level settings 263
applications

Application.cfm 265
authentication 354
caching 272
defaults 269
defined 262
directory structure 265, 266
elements of 262
error handling 270
framework 262
globalization of 374
in ColdFusion 262
internationalization 374
JSP tags 764
localization 374
login 269
naming 268
OnRequestEnd.cfm 265
optimizing 272
optimizing database access 277
page settings 269
reusable elements 264
security 264, 348
servlets in 764
shared variables 264
stored procedures in 277
storing variables 333
user security 362

variable options, setting 268
applications, unnamed 765
applicationToken 355
area chart

example 664
arguments

optional 175, 179
passing 180
user-defined function 180
using function names 186

Arguments scope 23, 56
as array 172
as structure 173
user-defined functions and 171

arithmetic operators 66
array variables 41
ArrayAppend CFML function 92
ArrayDeleteAt CFML function 93
ArrayInsertAt CFML function 93
ArrayNew CFML function 91
ArrayPrepend CFML function 93
arrays

2-dimensional 88
3-dimensional 89
adding data to 90
adding elements to 90, 92
as variables 41
copying 94
creating 90
description 88
dimensions 88
elements 88
elements, adding 92
elements, deleting 93
functions 98
in dynamic expressions 76
index 88
multidimensional 91
863

passing to functions 189
populating 95
referencing elements in 90
resizing 93
user-defined functions and 189

ArraySet CFML function 95
ArraySort CFML function 104
ASCII 377
assignment, CFScript

statements 122
attributes

for custom tags 203
passing values 202, 203

Attributes scope 22, 55
authentication

defined 351
example 363
login 354
logout 355
scenarios 357
web servers and 353

authorization
defined 351
web servers and 353

AVG SQL function 652

B

BabelFish 736
backreferences

about 144
case conversions with 145
in regular expression

searches 640
in replacement strings 144
omitting from 146

bar charts, specifying
appearance 660

base tags 212
Base64 variables 40
basic authentication 353

scenarios 356
web services and 750

basic exception types 285
BETWEEN SQL operator 421
binary data type 35
binary files, saving 833
binary variables 40
BOM

Dreamweaver MX and 379
setting 379
using 379

Boolean
operators 67
variables 38

break, CFScript statement 128
browsers

cfform considerations 610
displaying e-mail in 819
transferring data to a server 723

building
drop-down list boxes 619
queries 436
search interfaces 591
slider bar controls 621
text entry boxes 620
tree controls 611

built-in variables
client 326
custom tags 208
server 335
session 330

C

C++ CFX tags
implementing 256
LD_LIBRARY_PATH 256
registering 257
SHLIB_PATH 256

C++ development environment 256
caching

applications 272
attributes 273
flushing pages 273
locations of 273
page areas 274
pages 272
to variables 274

caching connections 843
Caller scope 22, 55
calling

CFX tags 247
COM objects 788
CORBA objects 797
Java objects 769
nested objects 771, 789
object methods 770, 788
user-defined functions 177

case sensitivity, of CFML 16
catching security exceptions 357
cfabort tag

about 30
OnRequestEnd.cfm 265

cfapplet tag
description 609
using 633, 635

cfapplication tag 321
cfassociate tag 214
cfbreak tag 28
cfcache tag 273

location of tag 273
cfcase tag 28
cfcatch tag 299, 300
cfchart tag 647

charting queries 650
common attributes 658
for bar charts 660
for pie charts 662
introduced 646

cfchartdata tag 647, 654
cfchartseries tag 647
cfcollection tag 535
cfcontent tag 841, 858

Excel spreadsheet 860
cfdefaultcase tag 28
cfdirectory tag 856

and queries 462
for file operations 841

cfelse tag 27
cfelseif tag 27
cfencode utility 207
cferror page 293
cfexit tag 30

and OnRequestEnd.cfm 265
behavior of 211

cffile tag 846
cfflush tag 280

and HTML headers 595
using 594

cfform controls
browser considerations 610
description 608

cfform tag
passthrough attribute 608
usage notes 609
using with HTML 608

cfftp tag
attributes 844
connection actions 844
using 841

cffunction tag 353
attributes 177
864 Index

creating user-defined
functions 170

web services, publishing 744
cfgrid tag

browser considerations 610
controlling cell contents 625
editing data in 627
handling failed validation 642
returning user edits 626
using 622
validating with JavaScript 642

cfhttp tag
and queries 462
creating queries 835
Get method 830
Post method 837
using 830

cfhttpparam tag 837
CFID

cookie 320
server-side variable 322

cfif tag 27
cfimport tag

about 200
calling custom tags 200

cfinclude tag
about 158
recommendations for 160
using 159

cfindex tag
and queries 462
external attribute 530

cfinput tag
handling failed validation 642
passthrough attribute 608
validating with JavaScript 642

cfinsert tag
creating action pages 448
form considerations 448
inserting data 446

cfinvoke tag
example 738
web services, consuming 736,

737
cfinvokeargument tag 738
cfldap tag 495

and queries 462
indexing queries 545
output 514
queries and 514

Verity and 514
cflocation tag 327
cflock tag

controlling time-outs 340
examples 343
for file access 346
name attribute 340
nesting 341
scope attribute 339
throwOnTimeout attribute 340
time-out attribute 340
using 336, 338

cflog tag 297
cflogin structure 356
cflogin tag 353, 354, 355
cfloginuser tag 353
cflogout tag 353
cfloop tag

about 28
emulating in custom tags 211
nested 96

cfmail tag
attributes 811
sample uses 813
sending mail as HTML 818

cfmailparam tag 817
CFML

case sensitivity 16
CFScript 26
Code Compatibility

Analyzer 409
code validation 409
comments 31
components 25
constants 21
converting data to JavaScript 723
data types 24
debugging 402
description 4
development tools 5
elements 16
expressions 21, 66
extending 244
extensions 5
flow control 27
functions 5, 19
reserved words 32
special characters 31
syntax errors 410
tags 4, 17

variables 22
CFML functions

ArrayAppend 92
ArrayDeleteAt 93
ArrayInsertAt 93
ArrayNew 91
ArrayPrepend 93
ArraySet 95
ArraySort 104
AtructKeyArray 104
CreateObject 736
CreateTimeSpan 279, 329, 466
DateFormat 605
DeleteClientVariablesList 327
DollarFormat 605
dynamic evaluation 77
evaluate 78
for arrays 98
for queries 462
for structures 113
formatting data 589
GetClientVariablesList 326
GetLocale 378
HTMLEditFormat 726, 822
IIF 80
IsAuthenticated 357
IsCustomFunction 188
IsDefined 60, 104, 587, 603
IsStruct 103
JavaCast 776
ListQualify 600, 602
ListSort 104
MonthAsString 95
Rand 596
RandRange 596
REFind 147
REFindNoCase

147
set Encoding 386
SetLocale 378
setVariable 80
StructClear 107
StructCount 103
StructDelete 107
StructIsEmpty 103
StructKeyExists 104
StructKeyList 104
StructNew 102
syntax 70
URLEncodedFormat 411
Index 865

CFML syntax
Code Compatibility

Analyzer 409
cfmodule tag 199

calling custom tags 199
cfoutput tag

data-type conversions 50
populating list boxes 597
use with cfquery tag 435
use with component objects 769,

788
cfparam tag 61, 325

testing and setting variables 61
validating data types 62

cfpop tag
and queries 462
query results 550
query variables 820
using 819
using cfindex with 545

cfprocessingdirective tag 380
cfquery tag

cachedWithin attribute 279
creating action pages 449, 457
debugging with 402
populating list boxes 597
syntax 435
using 435
using cfindex with 545

cfrethrow tag
about 301, 309
nesting 310
using 309

cfsavecontent tag 274
CFScript

comments 119
conditional processing 122
creating user-defined

functions 169
description 5
differences from JavaScript 120
example 116, 130
exception handling 129
expressions 118
function statement 174
introduction 26
language 118
looping 124
reserved words 120
return statement 175

statements 118
user-defined function syntax 174
using 116
var statement 175
variables 118
web services, consuming 739

CFScript syntax
for user-defined functions 174

cfsearch properties 542
cfsearch tag

about 522
external attribute 530

cfselect tag
handling failed validation 642
passthrough attribute 608
populating list boxes 619

cfset tag
and component objects 769, 788
creating variables 34

cfsetting tag
debugging with 402

cfslider tag
browser considerations 610
description 608
handling failed validation 642
validating with JavaScript 642

cfstat
enabling 391
Windows NT and 391

cfstoredproc tag 277
cfswitch tag 28
cftextinput tag

browser considerations 610
handling failed validation 642
validating with JavaScript 642

cfthrow tag
nesting 310
using 309

CFToken
Cookie 320
server-side variable 322

cftrace tag 404
attributes 407
using 404

cftree tag
browser considerations 610
description 609
form variables 613
handling failed validation 642
image names 616

URLs in 617
validating with JavaScript 642

cftry tag 299
example 304
nesting 310

cfupdate tag
creating action pages 455
using 455

cfwddx tag 718
CFX tags

calling 164, 247
cfx.jar 247
compiling 256
creating in Java 247
debugging in C++ 257
debugging in Java 253
description 244
developing in C++ 256
Java 245
LD_LIBRARY_PATH 256
locking 346
locking access to 336, 340
recommendations for 164
registering 257
sample C++ 256
sample Java 245
scopes and 59
SHLIB_PATH 256
testing Java 248
using 164

cfx.jar 247
cfxml tag 694
CGI

and cfhttp Post method 830
returning results to 840

CGI scope 22, 56
character classes 143
character encodings

COM 388
CORBA 388
databases 387
e-mail 387
files 387
forms 385, 386
introduction 377
LDAP 388
search 388
Unicode 377
WDDX 388
866 Index

character sets
default 380
determining in ColdFusion

page 379
introduction 375
of output 380
setting for output 380

charting 650
individual data points 653

charts
3-D 659
administering 649
appearance attributes 658
area 664
background color 658
bar charts 660
border 658
caching 649
column labels 658
curve chart considerations 666
data markers 660
dimensions 658
drill-down 667
embedding URLs 667
example 661
file type 658
foreground 658
labels 658
linking from 667
markers 659
multiple series 659
paint 660
pie chart 662
referencing JavaScript 667
rotation 659
threads 649
tips 659
types 646

check boxes
errors 587
lists of values 599
multipe 599

child tags 212
class loading

Java 250
mechanism 761

class reloading, automatic 250
classes, debugging 254

classpath
configuring 245
Java objects and 761

client cookies 320
Client scope 23, 56, 264, 316
client state management

clustering 322
described 318

Client variables 48
client variables

and cflocation tag 327
built-in 326
caching 327
characteristics of 264, 316
configuring 323
creating 325
deleting 327
description 319
exporting from Registry 327
listing 326
setting options for 323
storage method 323
using 325, 331

clustering, client state
management 322

Code Compatibility Analyzer
using 409

code reuse 157
code, protecting 336
ColdFusion

ActionScript and 6
applications 262
CFScript 116
development tools 5
EJBs and 778
J2EE and 8
JSP and 760
login 354
logout 355
searching 522
servlets and 761
variables 34
XML and 688

ColdFusion components 218
ColdFusion MX

about 4
action pages, extension for 585
application services 6
architecture 8
CFML 4

CORBA type support 800
dynamic evaluation 77
error handling 287
error types 284
Flash connectivity 7
functions 5
integrating e-mail with 810
Java applets 760
Java objects and 761
JavaScript and 760
scripting environment 4
security 348
security features 348
support for LDAP 493
tags 4
using component metadata 680

ColdFusion MX Administrator
creating collections 528
debugging settings 390
options 6
web services, consuming 741

ColdFusion Studio
SQL Editor 430

ColdFusion MX
features 10

collections
creating 528
creating with cfcollection 535
indexing 530, 539, 540
optimizing 530
populating 530
repairing 530
searching 522

column aliases 424
columns 416
COM

and WDDX 717
calling objects 788
character encodings 388
component ProgID and

methods 790
connecting to objects 793
creating objects 793
description 786
error messages 796
getting started 790
input arguments 795
output arguments 795
requirements 790
setting properties 794
Index 867

threading 795
using properties and

methods 794
viewing objects 791

commas, in search expressions 562
comments

CFScript 119
in CFML 31

commits 418
Common Object Request Broker

Architecture. See CORBA
compiler exception errors 287
compiling, C++ CFX tags 256
complex data type 35
complex data types

web services 753
web services, publishing 753

complex data types, returning 754
complex variables 41
Component Object Model. See COM
component objects

invoking 788
overview 786

components
applying design patterns 218
building 219
building secure components 234
calling 165
ColdFusion application

security 235
component metadata 240
component packages 237
defining component

methods 220
defining parameters 227
for web services 744, 748
inheritance 239
introductions 25
invoking component

methods 222
naming components 238
passing parameters 228
programmtic security 237
recommendations for 165
requirements for web

services 744
returned component method

results 232
role-based security 236
saving component files 238

using 165
web server authentication 234
web services and 744

connections, caching FTP 843
constants 21
constructors, using alternate 773
continue, CFScript statement 128
Cookie scope 22, 56
cookie scope, catching errors 595
cookie variables 48
cookies

client 320
client state management 318
for security 356
for storing client variables 323
sending with cfhttp 837

copying, server files 852
CORBA

calling objects 800
case considerations 799
character encodings 388
description 786
double-byte characters 804
example 805
exception handling 804
getting started 797
interface 787
interface methods 799
naming services 798
parameter passing 799

CreateObject CFML function 739
example 739
web services, consuming 736,

739
CreateTimeSpan CFML

function 279, 329, 466
creating

action pages 586
action pages to insert data 448
action pages to update data 455
Application.cfm 268
arrays 90
basic charts 647
charts 646
client variables 325
collections 528, 535
data grids 622
dynamic form elements 599
error application pages 294
forms with cfform 608

graphs 646
HTML insert forms 446
insert action pages 448, 449
Java CFX tags 247
multidimensional arrays 91
queries from text files 835
queries of queries 462
structures 102
update action pages 455, 457
update forms 452
updateable grids 624

criteria, multiple search 591
curve charts 666
custom exception types 286
custom functions. See user-defined

functions
custom tag paths 199
custom tags

ancestor 212
attributes 203
base 212
built-in variables 208
calling 162, 198, 199, 208
calling with cfimport 200
calling with cfmodule 199
CFX 244
children 212
data access example 215
data accessibility 213
data exchange 214
descendants 212
downloading 201
encoding 207
encrypting 207
example 204
execution modes 209
filename conflicts 201, 207
instance data 208
location of 199
managing 207
naming 199
nesting 212
parent 212
passing attributes 202, 203
passing data 212
path settings 199
recommendations for 163
restricting access to 201, 207
terminating execution 211
868 Index

types 18
using 162, 201

D

data
accessibility with custom

tags 213
charting 650
converting to JavaScript

object 723
exchanging across application

servers 718
exchanging with WDDX 718
graphing 650
passing between nested tags 213
selecting for retrieval 580
transferring from browser to

server 723
data sharing, JSP pages 765
data sources

configuration problems 411
storing client variables in 323
troubleshooting 411
types of 434

data types 22
binary 24, 35
complex 24, 35
considerations 36
conversions 49
default conversion 774
in CFML 24
object 24, 35
simple 24, 35
validating 62
variables 35

database exceptions 303
database failures 285
Database Management System. See

DBMS
databases

building queries 436
case sensitivity 422
character encodings 387
columns 416
commits 418
controlling access to 336
debug output 397
deleting data 459
deleting multiple records 460
deleting records 459
deleting rows 427

elements of 416
fields 416
forms for updating 446
insert form 448
inserting data 426
inserting data into 448
inserting records 446
introduction 415
locking 336
modifying 425
multiple tables 417
optimizing access 277
permissions 418
reading 422
record delete 459
record sets 423
records 416
retrieving data from 435
rollbacks 418
rows 416
SQL 420
stored procedures 277
stored procedures,

debugging 398
tables 416
transactions 418
update form 452
updating 426, 446, 452
updating records 452

data-type conversions
ambiguous types 52
case sensitivity 50
cfoutput tag and 50
considerations 50
date-time values 53
date-time variables 51
default Java 774
example 54
issues in 51
Java 774
Java and 53
JavaCast and 53
numeric values 51
process 49
quotes 54
types 49
web services and 741

DateFormat CFML function 605
date-time format 39
date-time values

conversions 53
date-time variables 39

conversions 51
format 39
locale specific 40
representation of 40

DBMS 419
DCOM

description 786
getting started 790
See also COM

deadlocks 341
debug information

for a query 402
outputting 253

debug pane 401
debugging

browser output 393
C++ CFX tags 257
ColdFusion MX Administrator

and 390
configuring 390
custom pages and tags 293
Dreamweaver MX 389
enabling 390
Java CFX tags 253
Java classes for 254, 255
output 392
output format 390
programmatic control of 402
SQL queries 397
stored procedures 398

debugging output
cfquery tag 402
cfsetting tag 402
classic 390
database activity 397
dockable 390, 400
exceptions 399
execution time 395
format 390
general 394
in browsers 393
IP address for 392
IsDebugMode function 403
programmatic control 402
queries 397
sample 392
scopes 400
Index 869

SQL queries 397
trace 399, 404

debugging output, classic 390
debugging output, dockable

about 390
application page 401
debug pane 401
format 400

debugging output, general 394
decision, or comparison,

operators 67
declaring

arrays 90
structures and sequences 799

default values, of variables 62
DELETE SQL statement 421, 427,

459
DeleteClientVariablesList CFML

function 327
deleting

client variables 327
data 459
database records 459, 460
e-mail 826
server files 852
structures 107

delimiters
search expression 563
text file 835

descendant tags 212
development environment

C++ 256
Java 245

directories
indexing 522
information about 856

directory operations 856, 858
directory structure,

application 265, 266
displaying

query results 438
query results, in tables 589

distinguished name 493
Distributed Component Object

Model. See DCOM
distributing CFX tags 258
do while loop, CFScript 126
DollarFormat function 605
DOM node structure

XmlName 693

XmlType 693
XmlValue 693

DOM node view
node types 690
XML 690

Dreamweaver MX
BOM 380
debugging and 389
SQL editor 428
web services and 733
WSDL files and 733

drop-down list boxes
See list boxes

dynamic evaluation
about 74
example 82
function arguments 77
functions 77
steps to 75

dynamic expressions
about 74
string expressions 74

dynamic variable names
about 74
arrays and 76
example 82
limitations 76
pound signs in 76
selecting 75
structures and 76
using 77

dynamic variables, about 74

E

editing, data in cfgrid 627
EJB

calling 778
requirements for 778
using 778

elements, of CFML 16
e-mail

adding custom header 817
attaching files 817
attachments 824
character encodings 387
checking for spooled 818
customizing 815
deleting 826
error logging 818
for multiple recipients 815
form-based 813

handling POP 821
headers 821
indexing 522, 550
integrating ColdFusion 810
multiple recipients 814
query-based 813
receiving 819
searching 550
sending 811
undelivered 818

embedding
Java applets 633, 635
URLs in a cftree 617

enabling, session variables 329
encoding custom tags 207
error handling

ColdFusion 282
custom 264
in user-defined functions 191
strategies 291

error messages
Administrator settings 289
COM 796
generating with cferror 293

error pages
custom 293
example 296
rules for 294
specifying 293
variables 295

errors
categories 283
causes 283
creating application pages 294
custom pages 293
input validation 296
logging 297
recovery 283
web services and 740

EUC-KR 377
evaluate CFML function 78

example 79
limitations 79

evaluating
file upload results 850
strings in functions 188

example
ancestor data access 215
Application.cfm 270, 363
caching a connection 843
870 Index

CFML Java exception
handling 777

CFScript 130
declaring CORBA structures 805
exception-throwing class 776
Java objects 771
JSP pages 766
JSP tags 763
LDAP security 369
locking CFX tags 346
regular expressions 640
request error page 296
setting default values 62
synchronizing file system

access 346
testing for variables 61
user authentication and

authorization 357
user security 360
user-defined functions 182
using Java objects 771, 772
using StructInsert 109
using structures 111
validating an e-mail address 643
validation error page 296
variable locking 343
web services, consuming 738
web services, publishing 747

Excel spreadsheet
from cfcontent tag 860

exception handling
cfcatch tag 299
cftry tag 299
CORBA objects 804
example 304, 310
in CFScript 129
in ColdFusion MX 299
Java 776
Java example 777
Java objects 776
nesting cftry tags 310
rules 300
tags 299

exception types
advanced 285
basic 285
custom 285, 286
Java 286
Java class 285
missing include file 285

exceptions
database 303
debugging output 399
expressions 303
handling 291
in user-defined functions 195
information returned 301
Java 776
locking 303
missing files 304
naming custom 308
types 285

exclusive locks
about 339
avoiding deadlocks 341

execution time 395
format 395
of ColdFusion pages 395
tree format 396
using 396

explicit queries 558
modifiers 558
operators 558
special characters 560
wildcards 559

exporting client variable
database 327

expression exceptions 285, 303
expressions 21

CFScript 118
dynamic 74
operands 21
operator types 66
operators 21, 66
pound signs in 74

extending CFML 244

F

field searches 574
fields 416
fields, database 416
file operations

cfftp actions 844
using cffile 846
using cfftp 841

file scope 208
file types, supported for

searching 523
files

appending 855
character encodings 387

controlling type uploaded 849
copying 852
deleting 852
downloading 858
locking access to 340, 346
moving 852
name conflicts 849
on server 846
reading 853
renaming 852
updating 336
uploading 846
writing 854, 855

Find CFML function 134
finding

a strucute key 104
component ProgID and

methods 790
with regular expressions 134

Flash
ColdFusion connectivity 7
Remoting service 7

Flash Remoting 7
ColdFusion Java objects 683
web services and 740

Flash Remoting service
arrays and structures 676
components 680
data types 675
Flash variable scope 675
handling errors 684
returning records in

increments 678
separating display code from

business logic 674
server-side ActionScript 682
Service Browser 681
using with ColdFusion

overview 674
Flash scope 23, 56
flow control

tags 27
for loop, CFScript 124
for-in loop, CFScript 127
form controls

cfform 608
description 581

form field validation errors 287
form fields, required 603
Form scope 22, 55
Index 871

form tag syntax 580
form variables

considerations 588
in queries 586
naming 585
processing 585
referring to 585
scope of 585, 588

formatting
data items 590
query results 590

forms
about 580
action pages 585
character encodings 386
check boxes 599
considerations for 584
creating with cfform 608
data encoding 385
deleting data 459
designing 584
drop-down list boxes 619
dynamically populating 597
HTML 580
inserting data 446
Java applets in 633
preserving data 609
requiring entries 588
slider bars 621
text entry boxes 620
tree controls 611
updating data 452
validating data in 603

FROM SQL clause
description 421

FTP 830
actions and attributes 844
caching connections 843
using cfftp 841

function local scope 23
function variable, definition 175
function, CFScript statement 174
function-only variables 181
Enterprise Java Beans

See EJB
functions

built in 19
calling 177
example custom 182
for arrays 98

introduction 19
JavaScript, for validation 642
structures 113
syntax 70
user defined 19
See also ColdFusion functions,

user-defined functions
JavaServer Pages

See JSP

G

generated content 210
Get method, cfhttp 830
GetAuthUser CFML function 353
GetClientVariablesList CFML

function 326
GetLocale CFML functions 378
GetPageContext 762
globalization 373

applications 374
character encodings 377
character sets 375
currency functions 383
date functions 383
functions 382
input data 385
locales 375
numeric functions 383
request processing 379
string functions 382
tags 382
time functions 383

graphing
queries 650
See also charts

grids
navigating 622
See also cfgrid tag

GROUP BY, SQL clause 421

H

handling
applet form variables 636
exceptions 299
failed validation 642
POP Mail 821

hidden fields 603
horizontal bar charts 660
HTML

using tables 589
using with cfform 608

HTMLEditFormat CFML
function 726, 822

HTTP 830
HTTP/URL problems 411

I

if-else, CFScript statements 122
IIF CFML function 80
implementing

C++ CFX tags 256
Java CFX tags 248

IN SQL operator 421
including ColdFusion pages 158
index, updating 530
indexing

cfldap query results 549
database query results 545
directories 522
e-mail 522, 550
external Verity collections 530
LDAP query results 549
query results 522
websites 522

indexing collections
about 530
with Administrator 540
with cfindex 539

infix notation, search string 562
inout parameters 740
input validation

cftree 614
with cfform Controls 637
with JavaScript 642

INSERT SQL statement 421, 426
inserting data

description 446
with cfinsert 448
with cfquery 449

installation, support xxiv
instance data, custom tag 208
integer variables 37
international languages, search

support 526
internationalization

applications 374
Internet

applications 2
ColdFusion and 2
dynamic applications 2
HTML and 2
872 Index

invoking
COM methods 794
component objects 788
methods in cfobject 794
objects 769

IP address, debugging and 392
IsCustomFunction CFML

function 188
IsDebugMode CFML function

debugging with 403
IsDefined CFML function 60, 104,

587, 603
IsStruct CFML function 103
IsUserInRole CFML function 353
IsXmlDoc CFML function 695
IsXmlElem CFML function 695
IsXMLRoot CFML function 695

J

J2EE
about 760
benefits 9
ColdFusion and 8
GetPageContext 762
infrastructure 8
introduction 8
PageContext 762

J2EE application server 8
Java

about 760
alternate constructor 773
and ColdFusion data 774
and WDDX 717
class loading mechanism 761
class reloading 250
considerations 773
custom class 780
customizing and configuring 246
data-type conversions 774
data-type conversions with 53
development enviroment 245
EJB 778
exceptions 776
getting started 771
JavaCast function 776
objects 761
user-defined functions 777

Java applets 760
embedding 633, 635
form variables 636

overriding default values 635
registering 633

Java CFX tags
cfx.jar 247
class loading 250
debugging 253, 254
example 251
life cycle of 251
registering 247
writing 247

Java classes
custom 780
loading 761

Java exception classes 286
Java exceptions 286

handling 776
tags for 776

Java objects 761
calling 767
considerations 773
example 771
exception handling 776
invoking 769
JavaBeans and 770
methods, calling 770
nested 771
properties 769
using 769

JavaBeans, calling 770
JavaCast 53
JavaCast CFML function 776
JavaScript

ColdFusion MX and 760
differences from CFScript 120
in charts 670
validating with 642

joins
queries of queries 474

JSP pages
accessing 764
Application scope 765
calling from ColdFusion 767
example 766
Session scope 765
sharing data with 765

JSP tags
ColdFusion and 760
example 763
in ColdFusion applications 764
standard 762

tag libraries 762
using 762, 763

K

keys, listing structure 104

L

Latin-1 377
LD_LIBRARY_PATH

about 256
C++ CFX tags 256

LDAP
adding attributes 512
asymmetric directory

structure 491
attribute values 514
attributes 492, 514
character encodings 388
deleting attributes 512
deleting entries 509
description of 490
directory attributes 512
directory DN 513
distinguished name 493
DN 513
entry 492
object classes 493
querying directories 496
referrals 519
schema 493
schema attribute type 494
scope 496
search filters 496
security 369
security and 369
symmetrical directory

structure 490
updating directories 503, 510

LDAP query results
indexing 549
searching 549

LIKE SQL operator 421
linking from charts 667
list boxes

populating 619
populating dynamically 597

listing
Application variables 335
Client variables 326

ListQualify CFML function 600,
602
Index 873

ListSort CFML function 104
loading, Java CFX classes 250
locales

introduction 375
language 378
regional variation 378
setting 378
variant 378

localization
applications 374
dates 40

lock management 341
locking

avoiding deadlocks 341
CFX tags 346
exceptions 303
file access 346
granularity 341
scopes 339
with cflock 336
write-once variables 338

locking exceptions 285
locks

controlling time-outs 340
exclusive 339
naming 340
read-only 339
scopes and names 339
types 339

log files
example 297
using 297

logging errors 297
login

applicationToken 355
browser support for 368
internet domains 355
structure 356
tags 354
tokens 354

logout, performing 355
looping through structures 107

M

Macromedia ColdFusion MX. See
ColdFusion MX

Macromedia Dreamweaver MX. See
Dreamweaver MX

Macromedia Flash Remoting. See
Flash Remoting

Macromedia HomeSite+, SQL
editor 430

mail servers, and ColdFusion
MX 810

managing
client state 318
client state, in clusters 322
custom tags 207

mapping, application
framework 265

matched subexpressions
len array 147
minimal matching 149
pos array 147
result arrays 147

matches, pattern 640
method attribute, cfhttp tag 830,

837
migration

Code Compatibility
Analyzer 409

MIME type 858
missing files, exceptions 304
missing template errors 287
modifiers, searching 572
MonthAsString CFML function 95
moving, data across the web 717
multicharacter regular expressions

for searching 137
for validation 639

multiple selection lists 601

N

naming
applications 268
variables 203

naming conventions, for custom
exceptions 308

navigating grids 622
nested pound signs in

expressions 73
nesting

cflock tags 341
cfloops for arrays 96
custom tags 212
object calls 771
tags, using Request scope 213

NOT SQL operator 421
numeric variables 36

converting 51

O

object data type 35
object exceptions 285
objects

calling methods 770, 788
calling nested 771, 789
COM 786
CORBA 786
DCOM 786
invoking 769
Java 761, 769
nesting object calls 789
query 249
Request 248
Response 248
using properties 769, 788

OLE/COM Object Viewer 791
OnRequestEnd.cfm 265
opening, SQL Builder 430
operands 21
operators 21

alternative notation 68
arithmetic 66
Boolean 67
comparison 67
concept 564
decision, or comparison 67
evidence 568
precedence 69
proximity 569
relational 565
score 571
search 563
SQL 421
string operators 69
types 66

optimizing
applications 272
caching 272
database access 277

optional arguments
about 175, 179
in functions 70

OR SQL operator 421
ORDER BY SQL clause 421, 424
out parameters 740
outputting

debug information 253
query data 438

overriding default Java applet
values 635
874 Index

P

page encoding
BOM 380
default 380
determining 380
setting 380

page execution time 395
tree format 396

page settings 269
PageContext 762
pages

cache flushing 273
caching 272

parent tags 212
passing

arguments 180
arrays to user-defined

functions 189
custom tag attributes 202, 203
custom tag data 212
queries to user-defined

functions 187
passthrough attribute 608
paths

custom tags 199
performing a query on a query 465
Perl

regular expression
compliance 154

WDDX and 717
persistent scope variables 316
persistent variables

in clustered system 317
scopes 317
using 317

pie charts
example 662
setting appearance 662

populating
arrays from queries 97
arrays with ArraySet 95
arrays with cfloop 95
arrays with nested loops 96

Post method, cfhttp 830, 837
pound signs

in cfoutput tags 72
in general expressions 74
inside strings 72
inside tag attributes 71
nested 73
using 71

precedence rules, search 563
prefix notation, search strings 562
preservedata cfform attribute 609
problems, troubleshooting 410
processing

Application.cfm 265
form variables on action

pages 585
Java CFX requests 248
OnRequestEnd.cfm 265

protecting data 336
proximity operators 569
punctuation, searching 560
Python, WDDX and 717

Q

queries 650
as function parameters 187
as variables 43
building 420, 436
charting 650
converting to XML 709
creating from text files 835
graphing 650
grouping output 612
guidelines for outputting 439
outputting 438
referencing 44
scopes 44
syntax 435
troubleshooting 411
using form variables 586
web services, consuming 742
web services, publishing 756,

757
XML and 708

queries of queries
aggregate functions 480
aliases 475, 482
benefits 465
BNF syntax 486
case sensitivity 479
cfdump tag and 470
combining record sets 472
conditional operators 477
displaying record sets 468
escaping reserved words 483
escaping wildcards 480
evaluation order 476
example 466
joins 474

non-SQL record sets and 470
null support 483
ORDER BY clause 481
performing 465
reserved words 483
syntax 486
unions 474
user guide 474
using 462

Query CFX object 249
query columns 44
query functions 462
Query objects 249
query objects 43, 462
query properties, guidelines for 442
query results

about 441
cfpop 550
columns in 441
current row 441
displaying 438
indexing 522
LDAP 549
no records 593
records returned 441
returning 593
returning incrementally 594
variables 441

query variables 43
querying, LDAP directories 496
queryNew() CFML function 463
quotes

for IsDefined CFML function 60
using 60, 436

R

Rand CFML function 596
RandRange CFML function 596
RDN (Relative Distinguished

Names) 493
reading, a text file 853
read-only locks 339
real number variables 37
receiving e-mail 819
record sets 423

combining 472
creating 462
displaying 468
example 463
queries of queries 462
Index 875

searching 545
with functions 463

records 416
definition 416

recoverable expressions 284
recursion

with user-defined functions 190
referencing array elements 90
referrals, LDAP 519
REFind CFML function 147
REFindNoCase CFML

function 147
registering

CFX tags 257
COM objects 790
CORBA objects 798
Java applets 633

regular expressions
backreferences 144, 640
basic syntax 135
case sensitivity 138
character classes 143
character sets 136
common uses 152
escape sequences 141
examples 152, 640
for form validation 637
for searching and replacing

text 133
hyphens in 137
minimal matching 149
partial matches 640
Perl compliance 154
repeating characters 137
replacing with 134
returning matched

subexpressions 147
single-character 136, 638
special characters 136, 138
technologies 154

relational operators 565
remote servers 830
renaming server files 852
Replace CFML function 134
replacing using regular

expressions 134
Request object 248, 249
Request scope

about 22, 56, 213
user-defined functions and 186

requests
globalization and 379
processing 379

requiring form entries 588
reserved words

in CFML 32
list of 32

reserved words, CFScript 120
reset buttons 581
resolving

custom tag file conflicts 201, 207
filename conflicts 849

resource security
resources 349
using 349

resources, regular expressions 641
Response object 248, 249
results, returning incrementally 594
retrieving

binary files 830
e-mail attachments 824
e-mail headers 821
e-mail messages 823
files 841
query data 435
text 830

return CFScript statement 175
returning

file information 856
query results 593
results incrementally 594
subexpressions 147

reusing code
cfinclude 198
custom tags 198
method comparison 166
methods 157
options 158
techniques 158

roles
checking 357
defined 351
setting 357
source for 351
using 351
web services and 751

rollbacks 418
rows in tables 416

S

sample CFX tags
C++ 256
Java 245

sandbox security, resource security
and 349

saving
binary files 833
web pages 832

schema
LDAP directory 515

scopes
about 55
and user-defined functions 180
Application 56, 264, 316, 333
Arguments 56
as structures 59
Attributes 55
Caller 55
CFX tags 59
CGI 56
Client 56, 264, 316, 319, 323
Cookie 56
debug output 400
evaluating 59
File 208
Flash 56
Form 55, 585
function local 57
LDAP 496
locking 339
managing locking of 342
of Form variables 588
persistent variables 316
Request 56, 213
Server 56, 264, 316, 335
Session 56, 264, 316, 319, 328
This 57
ThisTag 55
types 55
URL 55
using 59
Variables 55
variables 44, 57

score search operators 571
search criteria, multiple 591
search expressions

case sensitivity 562
commas in 562
composing 562
delimiters 563
876 Index

operators 563
with wildcards 559

search, character encodings 388
searching

case sensitivity 562
cfsearch tag 542
collections 522
collections, creating 528
creating index summaries 544
database records 545
external Verity collections 530
fields 573
file types 523
for special characters 560
full-text 522
international languages 526
LDAP query results 549
modifiers 572
numeric values 599, 601
operators 563
performing 542
prefix and infix notation 562
punctuation 560
query results 549
record sets 545
refining 573
results of 542
search expressions 562
special characters 560
string values 600, 601
wildcards for 559
zones 573

searching e-mail 550
securing, custom tags 201, 207
security

application 264
application security 347
basic authentication 353
cookies and 356
functions 353
IsAuthenticated CFML

function 357
LDAP and 369
login 354
logout 355
resource types 348
resources 349
roles 351
sandbox security 349
scenarios 357

tags 353
types 348
user 351
web servers and 353, 750
web services 749, 750

security exceptions 285
SELECT SQL statement 421, 422
selection lists, multiple 601
sending

e-mail 811
e-mail to multiple recipients 814
form-based e-mail 813
mail as HTML 818
query-based e-mail 813

Server scope 23, 56, 264, 316
server variables

about 264, 316
built-in 335
using 335

servers
remote 830, 841
retrieving files from 830
uploading files 846

server-side ActionScript 6
servlets

ColdFusion and 761
in ColdFusion applications 764

Session scope
about 23, 56, 264, 316
JSP pages 765

Session variables
about 23, 56, 264, 316, 319, 330
built-in 330
enabling 329
using 328

session, definition of 328
setEncoding CFML function 386
SetLocale CFML function 378
setting

application defaults 269
bar chart characteristics 660
Client variable options 323
file and directory attributes 850
pie chart characteristics 662

setting up
C++ development

environment 256
Java development

environment 245
settings, application-level 263

SetVariable CFML functions 80
Shift-JIS 377
SHLIB_PATH

about 256
C++ CFX tags 256

shorthand notation, for Boolean
operators 68

simple queries 555
simple queries, stemming 555
simple variables 35
single quotes, in SQL 436, 602
single-character regular

expressions 136, 638
slider bar controls 621
SMTP 811
SOAP

about web services and 731
defined 731

special characters 560, 638
entering 31
list 31

specifying
Client variable storage 325
tree items in URLs 618

SQL
AVG function 652
case sensitivity 422
column aliases 424
debugging output 397
DELETE statement 427, 459
Dreamweaver MX for 428
example 420
filtering 423
generating dynamically 585
guidelines 422
INSERT statement 426, 449
introduction 415, 420
nonstandard 422
operators 421
ORDER BY clause 424
ordering results 424
query editors 428
record sets 423
results 423
SELECT statement 422
single quotes in 436, 602
sorting 424
statement clauses 421
statements 421
SUM function 663
Index 877

syntax 421
text literals in 436
UPDATE statement 426, 452
use in cfquery 435
WHERE clause 423, 585
writing 420

standard variables. See built-in
variables

statement clauses, SQL 421
statements

CFScript 118
SQL 421

status output
with user-defined functions 192

stemming
preventing 557
simple queries 555

stored procedures 277
string operators 69
string variables 37
strings

a variables 37
empty 37
escaping 37
evaluating in functions 188
quoting 37
storing complex data in 726

StructClear CFML function 107
StructCount CFML function 103
StructDelete CFML function 107
StructIsEmpty CFML function 103
StructKeyArray CFML

function 104
StructKeyExists CFML

function 104
StructKeyList CFML function 104
StructNew CFML function 102
structures

about 99
adding data to 102
as variables 42
copying 105
creating 102
custom tag 203
deleting 107
example 109
finding keys 104
functions 113
getting information on 103
in dynamic expressions 76

listing keys in 104
looping through 107
notation for 99
passing tag arguments 205
referencing 44
scopes 44
scopes and 59
sorting keys 104
updating 102
web services, consuming 753
web services, publishing 756

sub tags, definition 212
submit buttons 581
SUM SQL function 663
summaries, search 544
switch-case, CFScript 123
syntax, errors in CFML 410

T

tables 416
displaying queries 589
using HTML 589

tag libraries 762
tags 694

built in 17
custom 18
syntax 17

TCP network directory services 495
template errors 285
testing, a variable’s existence 587
text control 581
text files

column headings 835
creating queries from 835
delimiters 835

This scope 23, 57
ThisTag scope 22, 55
throwOnTimeout, cflock

attribute 340
time zone processing, WDDX 721
time-out attribute, cflock 340
ToString CFML function 695
tracing 404

cftrace tag 404
considerations for 406
enabling 390
format 405
messages 405
options 404
output 399, 404

transactions 418

transferring data, from browser to
server 723

cftree tagcftree tag
See also tree controls

tree controls, structuring 614
troubleshooting 410

CFML syntax 410
common problems 410
data sources 411
HTTP 411

U

UCS-2 377
UDDI

about 731
defined 732

UDF. See user-defined functions
Unicode

and ColdFusion 377
character encoding 377

unions, queries of queries 474
Universal Description, Discovery and

Integration 732
UNIX, permissions 850
UPDATE SQL statement 426
updating

a database with cfgridupdate 629
a database with cfquery 630
data using forms 452
files 336
values in structures 102

uploading files 846
uploads, controlling file type 849
URL scope 22, 55
URLEncodedFormat CFML

function 411
URLs

character sets 385
encoding 385

user authentication
example 363
IsAuthenticated CFML

function 357
user edits, returning 626
user roles 351
user security 351

application based 362
basic authentication 360
example 360
flow of control 351
878 Index

implementing 360
overview 351

user-defined functions
argument naming 174
arguments 180, 186
Arguments scope and 171, 172
array arguments 189
calling 161, 169, 177
CFML tags in 179
CFScript syntax 174
creating 169
creating with tags 170
creation rules 170
defining 174
described 168
effective use of 184
error handling 191
evaluating strings 188
example 177, 182
exception handling 195
function-only variables 174
generating exceptions 196
identifying 188
in Application.cfm 184
Java and 777
passing arrays 189
queries as arguments 187
recommendations for 161
recursion 190
Request scope and 186
status output 192
using with queries 184
variables 180

users, keeping track of 318
UTF-8 377

V

validating
data types 62
form attributes 637
form field data types 603
form input 614
JavaScript functions 642
user input 603
using regular expressions 637

validation, error handling 642
var, CFScript statement 175
variable names, periods in 45, 47
variable naming 34
variable scopes 22

Application 23

Arguments 23
Attributes 22
Caller 22
CGI 22
Client 23
Cookie 22
Flash 23
Form 22
function local scope 23
Request 22
Server 23
Sessions 23
This 23
ThisTag 22
URL 22
Variables 22

variables
Application 333
Application scope 264, 316, 333
array 41
Base64 40
binary 35, 40
Boolean 38
caching 327
CFScript 118
cfset tag and 34
client 48
Client scope 264, 316, 319
complex 35, 41
configuring Client 323
cookie 48
creating 34
data types 22
datatypes 24
date-time 39
default 61, 62, 269
dynamic naming 74
ensuring existence of 60
evaluating 49
Form 585
formatting 590
forms 580
getting 46
in user-defined functions 180
integer 37
kinds of 22
locking example 343
naming 203
naming rules 34
numeric 36

objects 35
passing 830
persistent 316
processing 580
queries 43
real numbers 37
Request scope 213
scopes 22, 44, 57
scopes for custom pages 213
sending 837
Server 335
Server scope 264, 316
Session scope 264, 316, 319,

328, 330
setting 46
setting default values 62
shared 264
simple 35
string 37
structures 42
testing for existence 60, 61, 587
validating 603
See also built-in variables

Variables scope 22, 55
verbs, SQL 421
Verity

case sensitivity 562
explicit queries 558
query types 554
refining search 573
searching with 523
simple queries 555
wizard 530
zone filter 573

Verity Search engine exception 286
Verity Wizard 530

W

WDDX
character encodings 388
components 717
converting CFML to

JavaScript 723
exchanging data 718
operation of 718
purpose of 717
storing data in strings 726
time zone processing 721
transferring data 723
Index 879

web
accessing with cfhttp 717, 830
application framework 318

web application servers
request handling 3
tasks 3
web servers and 3

web pages
dynamic 434
saving 832
static 434

web servers
Apache 2
authorization 353
basic authorization 353
IIS 2
overview 2
security 353

web services
accessing 730
basic authentication and 750
CFScript and 739
ColdFusion MX

Administrator 741
complex data types 753
components for 744
concepts 731
consuming 730, 736
Dreamweaver MX and 733
error handling 740
Flash Remoting and 740
introduction 730
parameter passing 736
publishing 730, 744
return values 737
securing 749
SOAP and 731
type conversions 741
UDDI and 731
WSDL file

Web Services Description Language
file 730

See alsoWSDL
web services, consuming 730

cfinvoke tag 736, 737
CFScript for 739
ColdFusion MX 742
ColdFusion MX

Administrator 741
complex data types 753

CreateObject function 739
error handling 740
example 738
inout parameters 740
methods for 736
out parameters 740
parameter passing 736
queries 742
return values 737
structures 742, 753
type conversions 741

web services, publishing 730, 744
best practices for 752
complex data types 756
components and 744
components as data types 748
data types for 744
example 747
queries 756
requirements 744
securing 749
structures 756
WSDL files 745

web services, security
about 750
example 750
in ColdFusion 750
programmatic 751
roles for 751
using web servers 750

websites, indexing 522
WHERE SQL clause 423

comparing with 585
description 421

while loop, CFScript 126
wildcards, in searches 559
Windows file attributes 850
Windows NT, debugging C++ CFX

tags 257
writing SQL statements 431
WSDL files

components 735
creating 733
defined
described 732
reading 734
viewing in Dreamweaver

MX 733
web services, publishing 745

X

XML 694
basic document view 690
ColdFusion and 688
converting to query 708
DOM node view 690
elements 703
example 712
functions 694
queries and 708
using 688
XML document object 689

XML document object
assigning data to 697
basic view 690
changing 703
child elements 701
converting to query 708
creating 698, 699
definition 689
deleting 702
DOM node view 690
example 712
exporting 699
extracting data with XPath 711
modifying 700
referencing summary 702
referencing syntax 697
saving 698
structure 691, 692
syntax for referencing 696
transforming, XSLT 710
using 696
XmlComment 692
XmlDocType 692
XmlRoot 692
XPath 711
XSLT 710

XML elements
adding 704, 705
attributes 707
child elements 703
children of 701
copying 706
counting 703
deleting 706
deleting multiple elements 707
finding 703
properties 707
properties, modifying 707
replacing 708
880 Index

XmlAttributes 692
XmlChildren 692
XmlComment 692
XmlName 692
XmlNodes 692
XmlNsPrefix 692
XmlNsURI 692
XmlParent 692
XmlText 692

XmlAttributes 692
XmlChildPos CFML function 694
XmlChildren 692
XmlComment 692
XmlDocType 692
XmlElemNew CFML function 694
XmlName 692
XmlNew CFML function 694
XmlNodes 692
XmlNsPrefix 692
XmlNsURI 692
XmlParent 692
XmlParse CFML function 694
XmlRoot 692
XMLSearch CFML function 695
XmlText 692
XMLTransform CFML

function 695
XmlType 693
XmlValue 693
XPath

extracting XML data 711
XSL transformation with 711

XSLT
example 710
transforming XML

documents 710

Z

zone searches 573
Index 881

882 Index

	Developing ColdFusion MX Applications with CFML
	Contents
	About This Book
	Using this book
	Book structure and contents
	Approaches to using this book

	Developer resources
	About Macromedia ColdFusion MX documentation
	Printed and online documentation set
	Viewing online documentation

	Getting answers
	Contacting Macromedia
	Introduction to ColdFusion MX
	About Internet applications and web application servers
	About web pages and Internet applications
	About web application servers

	About ColdFusion MX
	The ColdFusion scripting environment
	ColdFusion Markup Language
	ColdFusion application services
	The ColdFusion MX Administrator

	Using ColdFusion MX with Macromedia Flash MX
	About J2EE and the ColdFusion architecture
	About ColdFusion and the J2EE platform
	J2EE infrastructure services and J2EE application server

	ColdFusion features described in this book

	Part I The CFML Programming Language
	Elements of CFML
	Introduction
	Character case
	Tags
	Tag syntax
	Built-in tags
	Custom tags

	Functions
	Built-in functions
	User-defined functions

	Expressions
	Constants
	Variables
	Variable scopes

	Data types
	ColdFusion components
	CFScript
	Flow control
	cfif, cfelseif, and cfelse
	cfswitch, cfcase, and cfdefaultcase
	cfloop and cfbreak
	cfabort and cfexit

	Comments
	Special characters
	Reserved words

	Using ColdFusion Variables
	Creating variables
	Variable naming rules

	Variable characteristics
	Data types
	Numbers
	Strings
	Booleans
	Date-Time values
	Binary data type and Base64 encoding
	Complex data types

	Using periods in variable references
	Understanding variables and periods
	Creating variables with periods

	Data type conversion
	Operation-driven evaluation
	Conversion between types
	Evaluation and type conversion issues
	Examples of type conversion in expression evaluation

	About scopes
	Scope types
	Creating and using variables in scopes
	Using scopes

	Ensuring variable existence
	Testing for a variable’s existence
	Using the cfparam tag

	Validating data types
	Using cfparam to validate the data type

	Passing variables to custom tags and UDFs
	Passing variables to CFML tags and UDFs
	Passing variables to CFX tags

	Using Expressions and Pound Signs
	Expressions
	Operator types
	Operator precedence and evaluation ordering
	Using functions as operators

	Using pound signs
	Using pound signs in ColdFusion tag attribute values
	Using pound signs in tag bodies
	Using pound signs in strings
	Nested pound signs
	Using pound signs in expressions

	Dynamic expressions and dynamic variables
	About dynamic variables
	About dynamic expressions and dynamic evaluation
	Dynamic variable naming without dynamic evaluation
	Using dynamic evaluation
	Using the IIF function
	Example: a dynamic shopping cart

	Using Arrays and Structures
	About arrays
	Basic array concepts
	About ColdFusion arrays

	Basic array techniques
	Referencing array elements
	Creating arrays
	Adding elements to an array
	Deleting elements from an array
	Copying arrays

	Populating arrays with data
	Populating an array with the ArraySet function
	Populating an array with the cfloop tag
	Populating an array from a query

	Array functions
	About structures
	Structure notation
	Referencing complex structures

	Creating and using structures
	Creating structures
	Adding data elements to structures
	Updating values in structures
	Getting information about structures and keys
	Copying structures
	Deleting structure elements and structures
	Looping through structures

	Structure example
	Structure functions

	Extending ColdFusion Pages with CFML Scripting
	About CFScript
	Comparing tags and CFScript

	The CFScript language
	Identifying CFScript
	Variables
	Expressions
	Statements
	Statement blocks
	Comments
	Reserved words
	Differences from JavaScript
	CFScript limitation
	CFScript functional equivalents to ColdFusion tags

	Using CFScript statements
	Using assignment statements and functions
	Using conditional processing statements
	Using looping statements

	Handling exceptions
	CFScript example

	Using Regular Expressions in Functions
	About regular expressions
	Using ColdFusion regular expression functions
	Basic regular expression syntax

	Regular expression syntax
	Using character sets
	Finding repeating characters
	Case sensitivity in regular expressions
	Using subexpressions
	Using special characters
	Using escape sequences
	Using character classes

	Using backreferences
	Using backreferences in replacement strings
	Omitting subexpressions from backreferences

	Returning matched subexpressions
	Specifying minimal matching

	Regular expression examples
	Regular expressions in CFML

	Types of regular expression technologies

	Part II Reusing CFML Code
	Reusing Code in ColdFusion Pages
	About reusable CFML elements
	Including pages with the cfinclude tag
	Using the cfinclude tag
	Recommended uses

	Calling user-defined functions
	Calling UDFs
	Recommended uses
	For more information

	Using custom CFML tags
	Calling custom CFML tags
	Recommended uses
	For more information

	Using CFX tags
	Calling CFX tags
	Recommended uses
	For more information

	Using ColdFusion components
	Creating and using ColdFusion components
	Recommended uses
	For more information

	Selecting among ColdFusion code reuse methods

	Writing and Calling User-Defined Functions
	About user-defined functions
	Calling user-defined functions
	Creating user-defined functions
	Creating functions using CFScript
	Creating functions using tags
	Rules for function definitions
	Defining functions in CFScript
	Defining functions using the cffunction tag

	Calling functions and using variables
	Passing arguments
	Referencing caller variables
	Using function-only variables
	Using arguments

	A User-defined function example
	Defining the function using CFScript
	Defining the function using the cffunction tag

	Using UDFs effectively
	Using Application.cfm and function include files
	Specifying the scope of a function
	Using the Request scope for static variables and constants
	Using function names as function arguments
	Handling query results using UDFs
	Identifying and checking for UDFs
	Using the Evaluate function
	Passing complex data
	Using recursion
	Handling errors in UDFs

	Creating and Using Custom CFML Tags
	Creating custom tags
	Creating and calling custom tags
	Securing custom tags
	Accessing existing custom tags

	Passing data to custom tags
	Passing values to and from custom tags
	Using tag attributes summary
	Custom tag example with attributes
	Passing custom tag attributes using CFML structures

	Managing custom tags
	Securing custom tags
	Encoding custom tags

	Executing custom tags
	Accessing tag instance data
	Handling end tags
	Processing body text
	Terminating tag execution

	Nesting custom tags
	Passing data between nested custom tags
	Variable scopes and special variables
	High-level data exchange

	Building and Using ColdFusion Components
	About ColdFusion components
	Applying design patterns to component development

	Building ColdFusion components
	Defining component methods

	Interacting with component methods
	Invoking component methods
	Passing parameters to component methods
	Returning values from component methods

	Using advanced ColdFusion component functionality
	Building secure ColdFusion components
	Using component packages
	Using component inheritance
	Using component metadata

	Building Custom CFXAPI Tags
	What are CFX tags?
	Before you begin developing CFX tags in Java
	Sample Java CFX tags
	Setting up your development environment to develop CFX tags in Java
	Customizing and configuring Java

	Writing a Java CFX tag
	Calling the CFX tag from a ColdFusion page
	Processing requests
	Loading Java CFX classes
	Automatic class reloading
	Life cycle of Java CFX tags

	ZipBrowser example
	Approaches to debugging Java CFX tags
	Outputting debugging information
	Debugging in a Java IDE
	Using the debugging classes

	Developing CFX tags in C++
	Sample C++ CFX tags
	Setting up your C++ development environment
	Compiling C++ CFX tags
	Locating your C++ library files on Unix
	Implementing C++ CFX tags
	Debugging C++ CFX tags
	Registering CFX tags

	Part III Developing CFML Applications
	Designing and Optimizing a ColdFusion Application
	About applications
	Elements of a ColdFusion application
	The application framework
	Application-level settings and functions
	Reusable application elements
	Shared variables
	Application security and user identification

	Mapping an application
	Processing the Application.cfm and OnRequestEnd.cfm pages
	Defining the directory structure

	Creating the Application.cfm page
	Naming the application
	Setting the client, application, and session variables options
	Defining page processing settings
	Setting application default variables and constants
	Processing logins
	Handling errors
	Example: an Application.cfm page

	Optimizing ColdFusion applications
	Caching ColdFusion pages that change infrequently
	Caching parts of ColdFusion pages
	Optimizing database use
	Providing visual feedback to the user

	Handling Errors
	About error handling in ColdFusion
	Understanding errors
	About error causes and recovery
	ColdFusion error types
	About ColdFusion exceptions
	How ColdFusion handles errors

	Error messages and the standard error format
	Determining error-handling strategies
	Handling missing template errors
	Handling form field validation errors
	Handling compiler exceptions
	Handling runtime exceptions

	Specifying custom error messages with cferror
	Specifying a custom error page
	Creating an error application page

	Logging errors with the cflog tag
	Handling runtime exceptions with ColdFusion tags
	Exception-handling tags
	Using cftry and cfcatch tags
	Using cftry: an example
	Using the cfthrow tag
	Using the cfrethrow tag
	Example: using nested tags, cfthrow, and cfrethrow

	Using Persistent Data and Locking
	About persistent scope variables
	ColdFusion persistent variables and ColdFusion structures
	ColdFusion persistent variable issues

	Managing the client state
	About client and session variables
	Maintaining client identity

	Configuring and using client variables
	Enabling client variables
	Using client variables

	Configuring and using session variables
	What is a session?
	Configuring and enabling session variables
	Storing session data in session variables
	Standard session variables
	Getting a list of session variables
	Creating and deleting session variables
	Accessing and changing session variables
	Ending a session

	Configuring and using application variables
	Configuring and enabling application variables
	Storing application data in application variables
	Using application variables

	Using server variables
	Locking code with cflock
	Sample locking scenarios
	Using the cflock tag with write-once variables
	Using the cflock tag
	Considering lock granularity
	Nesting locks and avoiding deadlocks

	Examples of cflock

	Securing Applications
	ColdFusion security features
	About resource security
	About user security
	Security tags and functions
	About web server authentication and application authentication
	Controlling ColdFusion login behavior
	The cflogin structure
	Using ColdFusion security without cookies
	A basic authentication security scenario
	An application authentication security scenario

	Implementing user security
	Basic authentication user security example
	Application-based user security example
	Using application-based security with a browser’s login dialog
	Using an LDAP Directory for security information

	Developing Globalized Applications
	Introduction to globalization
	Defining globalization
	Importance of globalization ColdFusion applications
	How ColdFusion supports globalization
	Character sets and locales

	About character encodings
	The Unicode character encoding

	Locales
	Setting the locale

	Processing a request in ColdFusion
	Determining the character set of a ColdFusion page
	Determining the character set of server output

	Tags and functions for globalizing
	Using tags for globalizing applications
	Using functions for globalizing applications

	Handling data in ColdFusion
	Input data from URLs and HTML forms
	Reading and writing file data
	Databases
	E-mail
	HTTP
	LDAP
	WDDX
	COM
	CORBA
	Searching and indexing

	Debugging and Troubleshooting Applications
	Configuring debugging in the ColdFusion MX Administrator
	Debugging Settings page
	Debugging IP addresses page

	Using debugging information from browser pages
	General debugging information
	Execution Time
	Database Activity
	Exceptions
	Trace points
	Scope variables
	Using the dockable.cfm output format

	Controlling debugging information in CFML
	Generating debugging information for an individual query
	Controlling debugging output with the cfsetting tag
	Using the IsDebugMode function to run code selectively

	Using the cftrace tag to trace execution
	About the cftrace tag
	Using tracing
	Calling the cftrace tag

	Using the Code Compatibility Analyzer
	Troubleshooting common problems
	CFML syntax errors
	Data source access and queries
	HTTP/URL

	Part IV Accessing and Using Data
	Introduction to Databases and SQL
	What is a database?
	Using multiple database tables
	Database permissions
	Commits, rollbacks, and transactions
	Database design guidelines

	Using SQL
	SQL example
	Basic SQL syntax elements
	Reading data from a database
	Modifying a database

	Writing queries using an editor
	Writing queries using Dreamweaver MX
	Writing queries using ColdFusion Studio and Macromedia HomeSite+

	Accessing and Retrieving Data
	Working with dynamic data
	Retrieving data
	The cfquery tag
	The cfquery tag syntax
	Building queries

	Outputting query data
	Query output notes and considerations

	Getting information about query results
	Query variable notes and considerations

	Enhancing security with cfqueryparam
	About query string parameters
	Using cfqueryparam

	Updating Your Database
	About updating your database
	Inserting data
	Creating an HTML insert form
	Data entry form notes and considerations
	Creating an action page to insert data

	Updating data
	Creating an update form
	Creating an action page to update data

	Deleting data
	Deleting a single record
	Deleting multiple records

	Using Query of Queries
	About record sets
	Referencing queries as objects
	Creating a record set
	Creating a record set with a function

	About Query of Queries
	Benefits of Query of Queries
	Performing a Query of Queries

	Query of Queries user guide
	Using dot notation
	Using joins
	Using unions
	Using conditional operators
	Using aggregate functions
	Using group by and having expressions
	Using ORDER BY clauses
	Using aliases
	Handling null values
	Escaping reserved keywords

	BNF for Query of Queries

	Managing LDAP Directories
	About LDAP
	The LDAP information structure
	Entry
	Attribute
	Distinguished name (DN)
	Schema

	Using LDAP with ColdFusion
	Querying an LDAP directory
	Scope
	Search filter
	Getting all the attributes of an entry
	Example: querying an LDAP directory

	Updating an LDAP directory
	Adding a directory entry
	Deleting a directory entry
	Updating a directory entry
	Adding and deleting attributes of a directory entry
	Changing a directory entry’s DN

	Advanced topics
	Specifying an attribute that includes a comma or semicolon
	Using cfldap output
	Viewing a directory schema
	Referrals
	Managing LDAP security

	Building a Search Interface
	About Verity
	Using Verity with ColdFusion
	Advantages of using Verity
	Supported file types
	Support for international languages

	Creating a search tool for ColdFusion applications
	Creating a collection with the ColdFusion MX Administrator
	About indexing a collection
	Indexing and building a search interface with the Verity Wizard
	Creating a ColdFusion search tool programmatically

	Using the cfsearch tag
	Working with record sets
	Indexing database record sets
	Indexing cfldap query results
	Indexing cfpop query results
	Using database-directed indexing

	Using Verity Search Expressions
	About Verity query types
	Using simple queries
	Stemming in simple queries
	Preventing stemming

	Using explicit queries
	Using AND, OR, and NOT
	Using wildcards and special characters

	Composing search expressions
	Case sensitivity
	Prefix and infix notation
	Commas in expressions
	Precedence rules
	Delimiters in expressions
	Operators and modifiers

	Refining your searches with zones and fields

	Part V Requesting and Presenting Information
	Retrieving and Formatting Data
	Using forms to specify the data to retrieve
	HTML form tag syntax
	Form controls
	Form notes and considerations

	Working with action pages
	Processing form variables on action pages
	Dynamically generating SQL statements
	Creating action pages
	Testing for a variable's existence
	Requiring users to enter values in form fields
	Form variable notes and considerations

	Working with queries and data
	Using HTML tables to display query results
	Formatting individual data items
	Building flexible search interfaces

	Returning results to the user
	Handling no query results
	Returning results incrementally

	Dynamically populating list boxes
	Creating dynamic check boxes and multiple-selection list boxes
	Check boxes
	Multiple selection lists

	Validating form field data types

	Building Dynamic Forms
	Creating forms with the cfform tag
	Using HTML and cfform
	The cfform controls
	Preserving input data with preservedata
	Browser considerations

	Building tree controls with cftree
	Grouping output from a query
	The cftree form variables
	Input validation
	Structuring tree controls
	Image names in a cftree
	Embedding URLs in a cftree
	Specifying the tree item in the URL

	Building drop-down list boxes
	Building text input boxes
	Building slider bar controls
	Creating data grids with cfgrid
	Working with a data grid and entering data
	Creating an editable grid

	Embedding Java applets
	Registering a Java applet
	Using cfapplet to embed an applet
	Handling form variables from an applet

	Input validation with cfform controls
	Validating with regular expressions

	Input validation with JavaScript
	Handling failed validation
	Example: validating an e-mail address

	Charting and Graphing Data
	Creating a chart
	Chart types
	Creating a basic chart

	Administering charts
	Charting data
	Charting a query
	Charting individual data points
	Combining a query and data points
	Charting multiple data collections
	Writing a chart to a variable

	Controlling chart appearance
	Common chart characteristics
	Setting x-axis and y-axis characteristics
	Creating a bar chart
	Setting pie chart characteristics
	Creating an area chart
	Setting curve chart characteristics

	Linking charts to URLs
	Dynamically linking from a pie chart
	Linking to JavaScript from a pie chart

	Using the Flash Remoting Service
	About using the Flash Remoting service with ColdFusion
	Planning your Flash application

	Using the Flash Remoting service with ColdFusion pages
	Using Flash with ColdFusion components
	Using the Flash Remoting service with server-side ActionScript
	Using the Flash Remoting service with ColdFusion Java objects
	Handling errors with ColdFusion and Flash

	Part VI Using Web Elements and External Objects
	Using XML and WDDX
	About XML and ColdFusion
	The XML document object
	A simple XML document
	Basic view
	DOM node view
	XML document structures

	ColdFusion XML tag and functions
	Using an XML object
	Referencing the contents of an XML object
	Assigning data to an XML object

	Creating and saving an XML document object
	Creating a new XML document object using the cfxml tag
	Creating a new XML document object using the XmlNew function
	Creating an XML document object from existing XML
	Saving and exporting an XML document object

	Modifying a ColdFusion XML object
	Functions for XML object management
	Treating elements with the same name as an array
	XML document object management reference
	Adding, deleting, and modifying XML elements
	Using XML and ColdFusion queries

	Transforming documents with XSLT
	Extracting data with XPath
	Example: using XML in a ColdFusion application
	Moving complex data across the web with WDDX
	Uses of WDDX
	How WDDX works

	Using WDDX
	Using the cfwddx tag
	Validating WDDX data
	Using JavaScript objects
	Converting CFML data to a JavaScript object
	Transferring data from the browser to the server
	Storing complex data in a string

	Using Web Services
	Web services
	Accessing a web service
	Basic web service concepts

	Working with WSDL files
	Creating a WSDL file
	Viewing a WSDL file using Dreamweaver MX
	Reading a WSDL file

	Consuming web services
	About the examples in this section
	Passing parameters to a web service
	Handling return values from a web service
	Using cfinvoke to consume a web service
	Using CFScript to consume a web service
	Calling web services from a Flash client
	Catching errors when consuming web services
	Handling inout and out parameters
	Configuring web services in the ColdFusion Administrator
	Data conversions between ColdFusion and WSDL data types
	Consuming ColdFusion web services

	Publishing web services
	Creating components for web services
	Specifying data types of function arguments and return values
	Producing WSDL files
	Using ColdFusion components to define data types for web services
	Securing your web services
	Best practices for publishing web services

	Handling complex data types
	Consuming web services that use complex data types
	Publishing web services that use complex data types

	Integrating J2EE and Java Elements in CFML Applications
	About ColdFusion, Java, and J2EE
	About ColdFusion and client-side JavaScript and applets
	About ColdFusion and JSP
	About ColdFusion and Servlets
	About ColdFusion and Java objects

	Using JSP tags and tag libraries
	Using a JSP tag in a ColdFusion page
	Example: using the random tag library

	Interoperating with JSP pages and servlets
	Integrating JSP and servlets in a ColdFusion application
	Examples: using JSP with CFML

	Using Java objects
	Using basic object techniques
	Creating and using a simple Java class
	Java and ColdFusion data type conversions
	Handling Java exceptions
	Examples: using Java with CFML

	Integrating COM and CORBA Objects in CFML Applications
	About COM and CORBA
	About objects
	About COM and DCOM
	About CORBA

	Creating and using objects
	Creating objects
	Using properties
	Calling methods
	Calling nested objects

	Getting started with COM and DCOM
	COM Requirements
	Registering the object
	Finding the component ProgID and methods
	Using the OLE/COM Object Viewer

	Creating and using COM objects
	Connecting to COM objects
	Setting properties and invoking methods
	COM object considerations

	Getting started with CORBA
	Creating and using CORBA objects
	Creating CORBA objects
	Using CORBA objects in ColdFusion
	Handling exceptions

	CORBA example

	Part VII Using External Resources
	Sending and Receiving E-Mail
	Using ColdFusion with mail servers
	Sending e-mail messages
	Sending SMTP e-mail with cfmail

	Sample uses of cfmail
	Sending form-based e-mail
	Sending query-based e-mail
	Sending e-mail to multiple recipients

	Customizing e-mail for multiple recipients
	Using cfmailparam
	Attaching files to a message
	Adding a custom header to a message

	Advanced sending options
	Sending mail as HTML
	Error logging and undelivered messages

	Receiving e-mail messages
	Using cfpop
	The cfpop query variables

	Handling POP mail

	Interacting with Remote Servers
	About interacting with remote servers
	Using cfhttp to interact with the web
	Using the cfhttp Get method

	Creating a query object from a text file
	Using the cfhttp Post method
	Performing file operations with cfftp
	Caching connections across multiple pages
	Connection actions and attributes

	Managing Files on the Server
	About file management
	Using cffile
	Uploading files
	Moving, renaming, copying, and deleting server files
	Reading, writing, and appending to a text file

	Using cfdirectory
	Returning file information

	Using cfcontent
	About MIME types
	Changing the MIME content type with cfcontent

	Index

