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1. INTRODUCTION AND OVERVIEW

In recent years, increasing attention has been given to the statistical aspects of contingent valuation
(CV) survey design and data analysis. The main reason for the growing interest in statistical issues is the
shift in CV practice from using an open-ended question to ask about willingness to pay (WTP) to using
a closed-ended question. The open-ended format confronts respondents with a question on the lines of
"What is the most you would be willing to pay for ..?" The closed-ended format uses a question like "If
it cost $x to obtain... , would you be willing to pay that amount?" The closed-ended format was introduced
into CV by Bishop and Heberlein (1979). Since the mid-1980’s it has gained widespread acceptance as
the preferred way to cast the valuation question, a position that was recently endorsed by NOAA’s Blue
Ribbon Panel on CV (Arrow et al., 1993). For reasons mentioned in Section 5, we share this preference
against the open-ended approach and in favor of the closed ended approach. However, the closed-ended
approach creates a heavy demand for statistical technique. Statistical issues are not pressing with the open-
ended format because the data essentially speak for themselves—the survey responses yield a direct
measure of WTP which requires little or no further analysis. With the closed-ended format, by contrast,
the CV responses are not dollar amounts but answers of "yes" or "no," and one obtains a WTP value from
these responses by introducing a statistical model that links them to the dollar amounts which people faced
in the survey.

Since the CV responses are binary variables, one needs a statistical model appropriate for a
discrete dependent variable. Such models have come to play an important role in many areas of micro-
economics since the 1970s. A major reason was the growth in the availability of disaggregated survey data
on specific choices by individual agents—when economic behavior is observed at that level, the outcomes
often turn out to be discrete variables, or mixed discrete/continuous variables, rather than purely
continuous variables. Some of the most important statistical models for discrete dependent variables used
in field like labor economics were first developed in the field of biometrics—logit and probit are obvious
examples—but they found ready application to microeconomic data. Discrete response CV is no
exception—logit and probit play a key role in the analysis of CV data. Moreover, there is a direct analogy
between the response-generating mechanism in some biometrics applications and that in a CV survey. A
common setting in biometrics is the dose-response study, where the stimulus is an administered dose of
some substance and the outcome is a discrete measure of health status (e.g., alive or dead). The aim is to
measure the probability distribution of susceptibility to the substance in question. In a CV survey, the
monetary amount presented to subjects (the "bid") can be thought of as the dose, and the yes/no reply as
the response; the equivalent of susceptibility is the WTP amount. Another fruitful analogy is with
reliability analysis and life testing in industrial engineering, where equipment is stressed until it fails.
Sometimes one does not know when it failed, only that it failed after more than 7,000 hours, say, or less
than 10,00 hours. The aim is to estimate a probability distribution for the true life of the item—analogous
to the true WTP in a CV setting—using information on upper or lower bounds. Statistically, the data look
just like responses from a discrete-response CV survey. In CV the bids are subject to the control of the

1 We gratefully acknowledge helpful comments and suggestions from Anna Alberini, Ian Bateman,
Richard Carson, Anni Huhtala, and Kerry Smith, as well as excellent research assistance by Craig Mohn.
We are deeply indebted to Ian Bateman for his great kindness and forbearance.
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researcher, just as the dose or stress are subject to control by the researcher in dose-response and life-
testing experiments. Thus, one can apply to the selection of CV bids statistical techniques for optimal
experimental design that have been developed in biometrics and reliability analysis. These analogies with
other branches of applied statistics have substantially transformed the statistical side of CV research in
recent years.

In this chapter we survey the statistical issues associated with discrete-response CV. Our aim is
to make the reader aware of the recent developments in the design and analysis of CV surveys. A major
theme is the close interplay between economics and statistics. The CV responses are analyzed using
statistical models. But, the models must make sense from the point of view of economic theory. This
places significant restrictions on the statistical models that can be used. These implications were first
developed by Hanemann (1984a), but his analysis was incomplete and incorrect in some particulars. Here
we extend his analysis and correct the errors. We show that many of the models in the current literature
violate some of the restrictions of economic theory. Another major theme is the value of richness in the
statistical models in order to accommodate heterogeneity of preferences in the population of interest and,
also, heterogeneity of response behavior in a survey setting. Richness typically requires introducing
additional parameters into the model; the question is how this should be done. Again, there are interesting
interactions between the statistics and the economics. Structural models provide the most information from
an economic point of view, but they can be fragile if the structure is misspecified. Nonparametric models
are more robust and offer greater flexibility in the shape of the response function, but they provide less
economic information. Moreover, which economic welfare measure one wants to use can affect the choice
of statistical methodology; for example, nonparametric models generally have more trouble providing an
estimate of mean than median WTP.

This chapter consists of three main sections. Section 2 presents the economic theory of responses
to CV survey questions, set within the framework of a random utility maximization model, and shows how
this generates statistical models for the survey responses. Section 3 reviews the statistical issues that arise
in the estimation of economic welfare measures from data on CV responses using the maximum likelihood
method; it also describes procedures for selecting the bids to be used in CV surveys and for interpreting
the results after the data have been collected, based on the principles of optimal experimental design.
Section 4 considers some advanced topics in the statistical design and analysis of discrete-response CV
data that are both of practical interest and on the current frontiers of research. Section 5 offers some brief
conclusions.

2. ECONOMIC THEORY AND STATISTICAL MODELS

2.1 Types of Discrete Response Format

We start by reviewing the different types of closed-ended question that could be used in a CV
survey. In what follows, we denote the object of the valuation by q.2 The CV study could involve just
two levels of q or multiple levels of q, depending on whether the goal is to value a single program, to
value multiple programs, or indeed to estimate an entire valuation function.

When valuing a single program, one asks people about their WTP to obtain a change from q0 (the

2 Depending on the circumstances, q could be a scalar or a vector.
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status quo) to some particular alternative q1. With closed-ended questions, there aresingle-boundedand
multiple-boundedways to do this. The single-bounded approach is the original format of Bishop and
Heberlein (1979) where respondents were presented with a specific dollar cost to obtain a commodity and
asked whether they would be willing to pay this amount. With a public program, the question can be
framed in terms of whether they would vote for or against the program if it involved a specified increase
in their taxes.3 Their response provides qualitative information in the form of a bound on their WTP for
the item—a lower bound if they answer "yes," and an upper bound if they answer "no." The double-
bounded format, proposed by Hanemann (1985a) and Carson (1985) and first applied by Carson and
Steinberg (1990) and Hanemann, Loomis and Kanninen (1991), follows up on the initial question with
a second question, again involving a specific dollar cost to which they can respond with a "yes" or a "no."
The amount presented in this second bid depends on their response to the first bid: if they answered "no"
to the first bid the second bid is some lower amount, while if they answered "yes" it is some higher
amount. Consequently, if they answer "yes" to one of the questions and "no" to the other, this provides
both upper and lower bounds on their WTP for the change. Similarly, the triple-bounded format has an
additional follow-up question with a bid amount that depends on the responses to the first two questions
(Bateman, Langford and Rasbash, this volume; Cooper and Hanemann, 1995). The additional bids can lead
to sharper bounds on the estimate of WTP.

Other formulations of the survey question also generate bounds on WTP. For example, subjects
can be shown apayment cardlisting various dollar amounts and asked to circle the one that comes closest
to their own value (Mitchell and Carson, 1981). The response can be interpreted not as an exact statement
of WTP but, rather, as an indication that the WTP lies somewhere between the highest number below the
amount circled and the smallest number above it (Cameron and James, 1987). Equivalently, they can be
shown a list of dollar amounts and asked to mark off the amounts they are sure they would be willing to
pay and those they are sure they would not (Welsh and Bishop, 1993). Similarly, they can be presented
with alternative dollarrangesand asked to identify the one that comes closest to their own value. These
approaches all yield upper and lower bounds on WTP for the change in q.

When dealing with multiple programs, one can proceed similarly, comparing each program q1, q2,
q3, ... in turn with the baseline status quo, q0, using either a single- or multiple-bounded format. This is
like valuing a single program, but repeated many times over. Alternatively, one can ask respondents to
assess several programs simultaneously. Withcontingent ranking, introduced by Beggs et al. (1981) and
Chapman and Staelin (1982), respondents are presented with a set of programs each involving a specific
action and a specific cost, and asked to rank them.4 For example, they might be offered programs to save
5,000 acres of wetlands at a cost of $30 per taxpayer, 10,000 acres at a cost of $60 per taxpayer, and
15,000 acres at a cost of $150 per taxpayer, and asked to rank these from most to least preferred.

In each case, whether it is yes/no or a ranking, the response to the CV question provides only
qualitative information about WTP. Thus, from the raw responses alone, one cannot obtain a quantitative

3 Because of this, the closed-ended format is sometimes calledreferendumCV. Strand (1981) appears
to have been the first CV study to use the frame of voting.

4 If q is a vector, one must ask about not only differentlevelsof q but also differentcombinationsof
the elements of q, in order to span the full range covered by the multi-attribute valuation function. When
valuing a single program, by contrast, it matters little whether q is a scalar or a vector because one is
simply asking for a global valuation of q1 versus q0.
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measure of WTP. To obtain that, one must embed the data in a model relating the responses to the
monetary stimuli that induced them. How this is done—what models to use, and how then to derive
quantitative measures of value—is the subject of this section.

2.2 The Economic Foundations of a Statistical Model

Statistically, the CV responses are discrete dependent variables since they are measured on a
nominal or ordinal scale. There is a variety of statistical models for analyzing such data.5 While we
consider specific models below, their common structure can be summarized as follows. In the general case,
the CV responses can assume a finite number of values, which we index j = 1,..,M. For the ith observed
response, the probability that it takes a particular value can be expressed as some function

(1) Pr{ responsei = j } = H j (Ai; Zi; γ)

where Ai is the bid on that occasion, Zi represents other covariates describing the subject, the item being
valued, or any other pertinent aspect of the survey, andγ is a vector of parameters to be estimated from
the data. In order for the probabilities to be well defined, the right hand side (RHS) of (1) must return a
value between zero and one, and it must sum to unity over all possible outcomes j = 1,..,M. In binary
response models where there are just two possible outcomes, "yes" and "no," (1) reduces to

Pr {response is "yes"} = H(A; Z;γ)
(1’)

Pr {response is "no"} = 1 - H(A; Z; γ).

It is common to write the H(·) function as the composition of two subfunctions

(2) H(A; Z; γ) ≡ 1 - F[T(A; Z; γ)],

which then permits the statistical response model to be cast in the form

"yes" if T(A; Z; γ) - η ≥ 0
(3) Response =

"no" otherwise,

where T(·) is some function of A and Z,η is some random variable with cumulative distribution function
(cdf) F(·), andγ represents both coefficients associated with T(·) and parameters of the cdf. The
composition ensures that the RHS of (1’) returns a value within the range [0,1]. As we show below,
different discrete response models involve different formulas on the RHS of (1) or (1’).

This statistical perspective can be distinguished from what might be called the economic
perspective, which requires that the survey responses be economically meaningful in the sense that they
constitute a utility-maximizing response to the survey question. To satisfy both perspectives, one wants

5 Econometric texts with good coverage of these models include Maddala (1983), Amemiya (1985),
and Greene (1993). More specialized references include Collett (1991) and Morgan (1992); the latter calls
these "quantal response" models.

4



to formulate a statistical model for the CV responses that is consistent with an economic model of utility
maximization. In this section, we sketch how that is done.

We assume an individual consumer with a utility function defined over both market commodities,
denoted x, and some non-market item which is to be valued, denoted q; perhaps there are other arguments
that shift her preferences for x and q such as attributes of the individual or the market goods, which we
denote s. The corresponding indirect utility function depends on the prices of the market goods, p; the
individual’s income, y, and her characteristics, s; and the non-market item q.6 The other key component
of the indirect utility function is a stochastic component representing the notion of random utility
maximization (RUM). It is the RUM concept which provides the link between a statistical model of
observed data and an economic model of utility maximization. In a RUM model it is assumed that, while
the individual knows her preferences with certainty and does not consider them stochastic, they contain
some components which are unobservable to the econometric investigator and are treated by the
investigator as random (Hanemann, 1984b). These unobservables could be characteristics of the individual
and/or attributes of the item; they can stand for both variation in preferences among members of a
population and measurement error. We represent the stochastic component of preferences byε without
specifying whether it is a scalar or a vector, so that the indirect utility function is v(p,q,y,s,ε).

To fix ideas, we focus on the valuation of a single program using the single-bounded approach.7

Thus, the individual is confronted with the possibility of securing a change from q0 to q1 > q0. We assume
she regards this as an improvement, so that v(p,q1,y,s,ε) ≥ v(p,q0,y,s,ε). She is told this change will cost
$A, and she is then asked whether she would be in favor of it at that price. By the logic of utility
maximization, she answers "yes" only if v(p,q1,y-A,s,ε) ≥ v(p,q0,y,s,ε), and "no" otherwise. Hence,

(4) Pr {response is "yes"} = Pr {v(p,q1,y-A,s,ε) ≥ v(p,q0,y,s,ε)}.

An equivalent way to express this same outcome uses the compensating variation measure, which is the
quantity C that satisfies

(5) v(p,q1,y-C,s,ε) = v(p.q0,y,s,ε).

Thus, C = C(p,q0,q1,y,s,ε) is her maximum WTP for the change from q0 to q1. It follows that she answers
"yes" if the stated price islessthan this WTP, and "no" otherwise. Hence, an equivalent condition to (4)
is

(6a) Pr {response is "yes"} = Pr { C(p,q0,q1,y,s,ε) ≥ A }.

In a RUM model, C(p,q0,q1,y,s,ε) itself is a random variable—while the respondent’s WTP for the change
in q is something that she herself knows, it is something thatthe investigatordoes not know but treats as
a random variable. Let GC(·) be what the investigator assumes is the cdf of C, and gC(·) the corresponding

6 Following the suggestion in McFadden and Leonard (1993), the variable y could besupernumerary
income that remains after allowing for committed expenditures on market or non-market goods; i.e., y≡
y - κ, where y is full income andκ is committed expenditure. The parameterκ could be known
exogenously or it could, in principle, be estimated from the CV responses.

7 The double bounded approach and the valuation of multiple items are taken up in Section 4.
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density function (the investigator will estimate the parameters from the CV data); then, (6a) becomes

(6b) Pr {response is "yes"} = 1 - GC(A).

Equations (4) and (6a,b) constitute not only an economic model of respondent behavior but also
a statistical model, since the RHS defines a particular form of the H(·) function in (1’), viz. H(A;Z;γ)) ≡
1 - GC(A). In effect, this represents the integrability condition for the single-bounded case: the statistical
model (1’) is consistent with an economic model of maximizing behavior if and only if the RHS of (1’)
can be interpreted as the cdf of a random WTP function, C(p,q0,q1,y,s,ε).8 To simplify the notation, we
now suppress the arguments (p,s) and write the utility and WTP functions as v(q,y,ε), and C(p,q0,q1,y,ε).

There are two ways to formulate a statistical model with this property. One approach, associated
with Cameron (1988), is to directly specify a particular cdf for the individual’s random WTP. Let E{C}
= µ (in a regression model one would have µ = Xβ), let var{C} = σ2, and let G(·) be the cdf of the
standardized variate z = (C-µ)/σ; then

(7) Pr {response is "yes"} .1 GC(A) 1 G








A µ
σ

For example, when G(x) =Φ(x), the standard normal cdf, one has a probit model

(8) Pr {response is "yes"} ,Φ 







µ A
σ

while G(x) = [1 + e-x]-1, the standard logistic, yields a logit model

(9) Pr {response is "yes"} = 1

1 e
A µ

θ

whereθ ≡ σ√3/π.9

The other approach, emphasized by Hanemann (1984a), starts by specifying a particular indirect
utility function v(q,y,ε) and a particular cdf forε, and then constructs the corresponding GC(·). For
example, the following Box-Cox utility function nests many of the models used in the existing literature

(10a) , q = 0 or 1uq αq βq









y λ 1
λ

εq

whereα1 ≥ α0 andβ1 ≥ β0 > 0.10 This can be regarded as a form of CES utility function in q and y. The

8 A specific implication of the RUM hypothesis is that∂Pr{"yes"}/∂A = ∂H(A)/∂A = -gC(A) ≤ 0:
regardless of the form of the utility function, the "demand function" for the change in q slopes downward.

9 The cdf of a logistic with scale parameterτ > 0 and location parameter µ is F(x) = [1 + e-(x-µ)/τ]-1; this
has a mean and median of µ, and a variance ofτ2π2/3. In the standard logistic, µ = 0 andτ = 1. In (9),
G(·) is taken to be the cdf of z = (C-µ)/θ.

10 The coefficientsαq, βq andλ can be functions of (p,s). Since y > 0, theproblems raised by Burbidge
et al. (1988) with the Box-Cox transformation do not arise.
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corresponding formula for WTP is

(10b) C y










β0y λ

β1

λα
β1

β1 β0

β1

λη
β1

1
λ

whereα ≡ α1 - α0 andη ≡ ε1 - ε0.
11 McFadden and Leonard (1993) proposed a restricted version of this

model withβ1 = β0 ≡ β > 0, yielding

(11) C y








y λ α
b

η
b

1
λ

where b≡ β/λ. This includes as special cases the two utility models used by Hanemann (1984a), the linear
model whereλ = 1

uq = αq + βy + εq

(12)

,C α η
β

and the logarithmic model whereλ = 0
uq = αq + β lny + εq

(13)

.C y 1 e
( α η

β
)

The model is completed by specifying a probability distribution forη. Let Gη(·) be this cdf; the response
probability formulas for the models (10) - (13) are given by:12

(10’) Pr {response is "yes"} = 1 Gη











β0y
λ

λ
β1(y A)λ

λ
β1 β0

λ
α

(11’) Pr {response is "yes"} = 1 - Gη[byλ - b(y-A)λ - α].

(12’) Pr {response is "yes"} = 1 - Gη[-α + βA]

(13’) Pr {response is "yes"} = .1 Gη








α β ln








1 A
Y

11 Note thatα1 andα0 are not separately identifiable here, only their differenceα. Similarly, in this
model the cdfs ofε1 and ε0 are not separately identifiable, only the cdf ofη. Depending on the model
structure, there will generally be some identifiability restrictions such as these.

12 The models in this paragraph all involve an additively random structure, of the general form uq =
v(q,y) + εq, q = 0 or 1. Given this structure, the individual responds "no" if∆v - η ≥ 0 where∆v ≡
[v(q0,y) - v(q1,y-A)] and η ≡ (ε1 - ε0). Hanemann (1984a) called∆v a utility difference; it corresponds
to t(A;Z) in (3). This utility difference formulation doesnot apply when the random term enters the utility
model nonlinearly, as in (19) below.
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The linear and logarithmic models have been widely used in CV because of their simplicity.
However, they impose quite stringent restrictions on the shape of the WTP function: the linear model (12)
implies that the income elasticity of C is zero; the logarithmic model (13) implies that it is unity. The
Box-Cox models are more flexible in this regard, since they permit other values for the income elasticity
of C. The income elasticity is negative whenλ > 1, positive whenλ < 1, and is approximately equal to
(1-λ). Though more flexible than the linear and logarithmic models, the Box-Cox models provide a
relatively restricted shape for the graph of WTP against income; more flexible functional forms (with
additional parameters) may be needed. Nevertheless, for convenience we will frequently use (11) in this
chapter to illustrate points of modelling methodology.

Observe that, when one uses the linear model with Gη(·) a standard normal cdf, (12’) becomes

(14) Pr {response is "yes"} =Φ(α - βA),

which is a probit model that becomes identical to the model in (8) whenα = µ/σ andβ = 1/σ. This can
be verified by inspection of the formula for C: sinceη has zero mean and unit variance, it follows directly
from (12) that E{C} ≡ µ = (α/β) and var{C} ≡ σ2 = 1/β2. Similarly, when Gη(·) is the standard logistic
cdf, (12’) becomes

(15) Pr {response is "yes"} = ,1

1 e α βA

which is a logit model that becomes identical to the model in (9) whenα = µ/θ andβ = 1/θ.13 14 These
examples illustrate the point that, with an appropriate choice of distributions, the two alternative
approaches to generating a statistical model for the CV responses yield the same formula. This result holds
generally. There is no essential difference between the two approaches because any formula for an indirect
utility function, v(q, y,ε), implies a corresponding formula for WTP, C(q0, q1, y, ε). The converse is also
true since, from (3), one has

C = y - m[q1, v(q0, y, ε), ε]
(16)

≡ y - K(q0, q1, y, ε)

where m(q, u,ε) is the expenditure function associated with v(q, y,ε), and K(q0, q1, y, ε) is the income-
compensation function which, as Hurwicz and Uzawa (1971) showed, provides a complete representation
of consumer preferences. Thus, C(·) and v(·) are alternative representations of the same preference
ordering; any probability distribution of u implies a corresponding probability distribution of C, and
conversely.

13 In this case, sinceη has a variance ofπ2/3, (12) implies that var{C}≡ σ2 = var{η}/ β2 = θ2π2/3.

14 The probit model arises ifε1 andε0 are normally distributed; if they are iid normal with mean zero
and variance 0.5, their difference,η, is standard normal. Similarly, the logit model arises if theε’s are
extreme value variates. The cdf of an extreme value variate with location parameterζ and scale parameter
τ > 0 is F(ε) = exp[ - exp( - (ε-ζ)/τ)]; the mean isζ + 0.5772τ and the variance isτ2π2/6. In the standard
extreme value,ζ = 0 andτ = 1. If ε1 andε0 are independent extreme value variates with separate location
parametersζ1 andζ0 and common scale parameterτ, η = ε1 - ε0 has a logistic distribution with location
parameter µ =ζ1 - ζ0 and scale parameterτ. The standard logistic arises whenζ1 = ζ0 andτ = 1.
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There are two important implications. First, just as economic theory places certain restrictions on
v(·), it also places restrictions on C(·). These must be reckoned with whatever the approach to model
formulation. The existing literature—our own work included—has not always paid adequate attention to
these restrictions. We discuss them further in the next section.

Second, an essential feature of RUM models is that the stochastic and deterministic components
are commingled. In conventional economic analysis, one generally formulates a deterministic economic
model and then adds a random term for the purpose of statistical estimation. The random term is assumed
to arise outside the economic model and it plays no role in the economic analysis once the model has been
estimated. In a RUM model, by contrast, the stochastic component is an essential part of the economic
model and it plays a substantive role in the use of the model for both prediction of behavior and
evaluation of welfare.

We have already seen an example of this in connection with the variance parameterσ2 ≡ Var{C}.
Assuming a regression setting where µi = Xiβ for the ith respondent, the response probability formula in
(7) can be written

(7’) Pr {i th respondent says "yes"} ,1 G










Ai

σ
Xiβ
σ

which implies that the term 1/σ serves as the "coefficient" of the bid amount in the statistical model of
respondent behavior. Thus, what might have been thought a purely statistical parameter also has a
behavioral significance. This is a general result, not limited to any particular RUM specification.15 16

Some insight into the reason for it can be obtained from the Box-Cox utility model; (10b) implies that
var{C} is a function of not only the stochastic terms in the utility function but also the structural
parameters, such asα, βq, or λ. Moreover, in (10), (11) and (13), var{C} is a function of income, y, so
that C has a heteroscedastic distribution. It is inappropriate, therefore, to think of var{C} as merely a
statistical constant. Many other examples of the commingling of stochastic and deterministic components
in RUM models will be encountered below.

15 Holding all else constant, changes inσ affect response behavior since, from (7),∂Pr{"yes"}/∂σ ≥
(≤) 0 according as Ai ≥ (≤) µi. Note that (7’) assumes a homoscedastic distribution of WTP whereσ is
the same across all survey responses. This is not a necessary feature of RUM models; one can formulate
models whereσ varies as a function of attributes of the individuals, attributes of the item being valued,
and/or attributes of the survey administration. Examples appear in several parts of this chapter.

16 Assuming a homoscedastic WTP distribution, Cameron (1988) points out thatσ can be identified
from the CV responses only because there is variation in Ai. If the same bid were used for all respondents,
σ would be unidentified. In that case, one could still identify the ratioβ/σ if X i varied across respondents;
but, one needs variation in Ai to obtain separate estimates ofσ andβ. Even with variation in Ai, there still
can be circumstances that create an identification problem. Suppose subjects believe that the price of the
item will actually turn out be different from what is stated in the CV survey and their subjective
perception of price is some function of A, denotedψ(A). Then, the RHS of (7) becomes 1 - G[ψ(Ai)/σ -
(µi/σ)]. Depending on the form ofψ(·), it may not be possible to identifyσ. This happens, for example,

if ψ(A) = θA for someθ > 0. If something like this is possible, it reinforces the behavioral interpretation
of the parameterσ.
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In their original paper, Bishop and Heberlein (1979) used the following model for the CV
responses:

(17) Pr {response is "yes"} .1

1 e α β lnA

Like (15), this is a logit model where the response probability is independent of income; the difference
is that (15) uses A, whereas (17) uses (ln A). Hanemann (1984a) asserted that (17) was not consistent with
economic theory because it was not a valid RUM model. As we now show, that assertion was incorrect.

The definition in (16) implies that C(q0, q1, y, ε) is independent of y if and only if mu(q
1, u0, ε)

= mu(q
0, u0, ε). As shown in Chapter 3, this comes about if

(18a) u = T[y +θ(q,ε), ε]

for some increasing function T(·). The resulting formula for C is

(18b) C =θ(q1,ε) - θ(q0,ε),

which implies response probabilities of the form

(18’) Pr {response is "yes"} = Pr {C≥ A} = Pr { θ(q1,ε) - θ(q0,ε) ≥ A}.

Any RUM model with response probabilities independent of income must be nested within this structure.
By inspection, the linear model (12) fits the structure in (18a), but not other versions of the Box-Cox
model. The Bishop-Heberlein model (17) corresponds to the particular version of (18) where

(19a) ,C e (α ε)/β eα/βυ
whereυ ≡ exp(ε/β). This formula for C is generated by the utility model

v(q0, y, ε) = y + δ
(19b)

v(q1, y, ε) = y + δ + exp α ε
β

for some arbitraryδ. The resulting response probability is

(19’) Pr {response is "yes"} = 1 - Gε( - α + β lnA )

where Gε(·) is the cdf ofε. This model (19) combined with various distributions for Gε(·) appears
commonly in the CV literature. To obtain (17), Bishop and Heberlein used the logistic distribution for
Gε(·), which makesυ and C log-logistic. Ifε is standard normal,υ and C are lognormal, and (19’)
becomes

(20) Pr {response is "yes"} =Φ(α - βlna).

If (-ε) has the standard extreme value distribution,υ and C have a cdf that corresponds to a two-parameter
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Weibull distribution, so that (19’) becomes17

(21) Pr {response is "yes"} = exp[ - e-α + βlna ].

The utility model (19), especially in its log-logistic, lognormal and Weibull versions (17), (20) and
(21) respectively, appears frequently in the CV literature.18 Another very common model is the linear
Box-Cox model, (12), in its probit and logit versions (14) and (15). These particular models are so popular
because they can readily be estimated with canned programs available in well-known statistical packages
such as LIMDEP, SAS, STATA and SYSTAT.19 While the models (12) and (19) may seem somewhat
similar, they are fundamentally different because the random termη enters (12)additively, whereas the
random termε enters (19)nonlinearly. Thus, if one uses a log-logistic, lognormal or Weibull cdf for Gη(·)
in (12), the result isnot (17), (20), or (21) but, rather, models with a different response probability
formula. Those are indicated in Appendix Table 1, which summarizes the various parametric statistical
models that have been discussed in this section. For reasons we now explain, these models must be
modified further in order to make them fully consistent with economic theory.

2.3 Utility Theoretic Restrictions

For convenience of exposition, we continue to focus on the valuation of a change from q0 to q1

using the single-bounded approach. We showed in the previous section that the statistical model for these
CV responses can be cast in the form of (1) or (6). The economic integrability condition is that the RHS
in these equations be interpretable as the survivor function of a random WTP distribution. We now
examine some of the implications for the stochastic specification of the RUM models, focusing in
particular on the upper and lower bounds on C that are implied by economic theory.

Economic theory implies that a person’s maximum willingness to pay for an item is bounded by
her income; in terms of the WTP function, the constraint is that

(22a) C(q0, q1, y, ε) ≤ y.20

17 The two-parameter Weibull with scale parameterθ > 0 and shape parameterγ > 0 has a survivor
function S(x) = exp[-(x/θ)γ]. Settingγ = 1 produces the exponential distribution; settingγ = 2 produces
the Rayleigh distribution. When (-ε) has the standard extreme value distribution, the cdf of C corresponds
to a Weibull withθ = eα/β andγ = β.

18 In the literature on reliability and life testing these are referred to as survival or life distributions
(Kalbfleisch and Prentice, 1980; Nelson, 1982). Being distributions for a non-negative random variable,
they are commonly used to model the length of life; hence the name.

19 Those packages parametrize the log-logistic, lognormal and Weibull distributions in terms of µ≡
E{lnC} = α/β andσ = 1/β. In order to convert the parameter estimates reported by those packages to our
parametrization, one setsα = µ/σ andβ = 1/σ.

20 Two qualifications should be noted. First, we observed earlier that the relevant income variable
could besupernumeraryincome rather than full income. Second, the individual’s preferences could be
such that her WTP has an upper bound which isless than y: C ≤ Cmax < y. If so, Cmax should be
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In terms of the response probability formula, the constraint is that

(22b) Pr {response is "yes"} = 0 when A≥ y.

In terms of the RUM indirect utility function, conditions sufficient to ensure (22) are that

(23a) limy→0 v(q, y, ε) = -∞

or that, given any q’ and any y’ > 0, there exists no q" such that

(23b) v(q",0,ε) = v(q’, y’, ε).21

However, most of the models in the existing CV literature violate these restrictions. In the Box-Cox
family, only the logarithmic model (13) satisfies (22). To make the other Box-Cox models satisfy (22) one
needs to modify the cdf ofη so that, focusing on (11),

(24) η ≤ ηmax ≡ - α + byλ.

Similarly, the nonlinear model (19) fails to satisfy (22) unless one modifies the cdf ofε so that

(25) ε ≤ εmax ≡ - α + β lny.

There are two ways to generate a cdf that satisfies (24) or (25)—truncating the distribution, and
inserting a probability mass (a "spike"). We illustrate these for the nonlinear model (19).22 Truncating
at εmax means changing the distribution ofε from whatever it was originally, say Gε(·), to a new cdf, say
Gε(·), defined by23 24

substituted for y in the discussion below. In principle, Cmax could be estimated from the data along with
the other model parameters -- see, for example, Ready and Hu (1995).

21 This implies that the market goods x in the underlying direct utility function u(x,q,ε), taken as a
group, are essential.

22 For the Box-Cox model, substituteη for ε, ηmax for εmax, and (byλ) for βlny.

23 This was suggested by Boyle, Welsh and Bishop (1988) for the Bishop-Heberlein model (17), which
they proposed truncating from above at some value Cmax < y.

24 Ready and Hu (1995) suggest an alternative to truncation which they call "pinching". They pinch
the WTP distribution down to some Cmax < y by replacing the original response probability function that
lacks a finite upper bound, denoted by P˜ r̃, with a new response probability, denoted by Pr, defined by

Pr{response is "yes"} = [1 - (A/Cmax)] · P̃r̃{response is "yes"}.

They apply this to the Bishop-Heberlein model (17) and find that it fits their data better than the truncated
model. However, when one does this, the utility model is no longer given by (17). The shrinking factor
implicitly changes both the utility model and the formula for C, not just the cdf ofε.
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(26) Gε(ε)







Gε(ε) / Gε( α β lny) ε ≤ α β lny

1 ε > α β lny .

Inserting a probability mass means replacingε with a new random termε ≡ min(ε, εmax), which has a cdf
Gε(·) defined by

(27) Gε(ε)







Gε(ε) ε < α β lny

1 ε ≥ α β lny.

This is also calledcensoringthe distribution Gε(·). The censored distribution has a spike atεmax since, by
construction, Pr {ε = εmax} = 1 - Gε(- α + β lny).25 In both cases, the response probability formula
becomes

(28) Pr {response is "yes"} = 1 - Gε( - α + β lnA ).

A graphical illustration of truncation and censoring may be useful. Figure 1(a) shows the graph of the
response probability as a function of the bid amount, A. It has been drawn for a model that fails to satisfy
(22b). Figure 1(b) illustrates how this is remedied by truncating the distribution, thus "shrinking" the
response probability graph to the horizontal axis at A = y. Figure 1(c) illustrates censoring via the insertion
of a spike at A = y. While both approaches produce a response function that satisfies (22b), they have
different implications for model estimation. Inserting a spike atεmax is a simple adjustment that can be
performedafter the original response model has been estimated, whereas truncation (and, for that matter,
pinching) requires re-estimation of the modified response probability model.26

Turning from the upper to the lower bound on C, when we defined WTP in (5) we assumed that
the increase in q would be viewed asan improvement. Of course, it is an empirical question how people
feel about the change in q. For the purpose of further analysis, we now consider three cases: (1) the
individual views the change as an improvement; (2) the individual views the change as an improvement
or is indifferent to it (i.e., places zero value on it); (3) the individual could view the change as a good
thing, or as a bad thing, or be indifferent. We start with the first case which we refer to as thecanonical
case. This is because, as shown below, models for the other two cases can always be constructed by
appropriate modification of this canonical case.

In the canonical case, the individual sees the change as an improvement and, with probability one,

(29a) C(q0, q1, y, ε) ≥ 0.

25 Replacingε by ε is equivalent to replacing C by C≡ min {exp[(α+ε)/β], y}, a Tobit-like model.
There is some confusion over terminology in the CV literature; Ready and Hu (1995) refer to (27) as a
truncated model, and to the truncated model (26) as a normalized truncated model.

26 If the CV survey used bids that exceeded respondents’ incomes, then even under censoring it would
be necessary to re-estimate the response probability function; but not otherwise.
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In terms of the response probability formula, the constraint is that

(29b) Pr {response is "yes"} = 1 when A = 0.

In terms of the RUM indirect utility function, this is equivalent to requiring that u1 ≡ v(q1, y, ε) first-order
stochastically dominatesu0 ≡ v(q0, y, ε). This stochastic dominance is automatically satisfied by the
nonlinear model (19), given thatα > 0. For the nonlinear family, therefore, the response probability
formula (28) meetsboth of the restrictions on the range of C that are imposed by economic theory.
However, the Box-Cox family fails to satisfy (29) unless the lower support of the additive stochastic term
η is adjusted appropriately. Existing Box-Cox models use distributions for Gη(·) which are defined over
either (-∞, ∞) or [0, ∞). The former give C a lower support of Cmin = - ∞. The latter make Cmin positive.
Neither produces Cmin = 0.

With (11), for example, whenη has a lower support ofηmin = 0, then Cmin = y - [yλ - (α/b)](1/λ)

> 0; in this case, therefore, it is necessary to restrict Gη(·) so thatηmin = -α.27 There are two ways to
accomplish this, both involving truncation. One is to employ a distribution forη with a finite, negative
lower support, such as the beta. The beta density function is

gη(η) 1
B(r ,s)

η ηmin r 1 ηmax η s 1

ηmax ηmin r s 1

where r > 0 and s > 0 are parameters, and B(r,s) is the beta function.28 In this case, one setsηmin = -α
in order to satisfy (29), while settingηmax = - α + byλ to satisfy (22). Then, instead of (11’), the response
probability formula becomes, for 0≤ A ≤ y,

(30) .Pr yes ⌡
⌠ byλ b(y A)λ α

byλ α











(η α) r 1 (byλ α η) s 1

B(r ,s) (byλ) r s 1
dη

The other way is truncation of a cdf defined over (-∞, ∞) such as the normal or logistic.29 In order to
satisfy (22), the cdf would already have been modified at the upper end by truncation or censoring, as in
(26) or (27). To satisfy (29) it would now be truncated from below at -α. If truncation had been used at
the upper end to satisfy (22), the cdf would now bedoublytruncated to satisfy (29) as well. If Gη(·) is the
untruncated cdf, the doubly truncated cdf is [Gη(η) - Gη(-α)]/[Gη(-α + byλ) - Gη(-α)] and, instead of (11’),
the response probability formula becomes, for 0≤ A ≤ y,

(31) Pr {response is "yes"} = 1 - {[G η(- α + byλ - b(y-A)λ) - Gη(-α)] / [Gη(-α + byλ) - Gη(-α)]}.

If censoring had been used at the upper end to satisfy (22), the cdf would be truncated at the lower end

27 More generally, with any additively random model v(q,y) +εq, whereη ≡ ε1 - ε0, it is necessary
to restrict Gη(·) so thatηmin = v(q0,y) - v(q1,y) < 0 in order to have Cmin = 0.

28 Special cases include the uniform distribution (r=s=1), the arcsine (r=s=0.5), and the half triangular
(r=1 and s=2, or r=2 and s=1).

29 There does not appear to be any way to adjust a Gη(·) defined over [0,∞), such as the lognormal,
log-logistic or Weibull, so that it generates a Box-Cox model satisfying (29).
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to satisfy (29). With the combination of censoring and truncation, the response probability formula
becomes

(32) Pr yes







1 { [ Gη ( α byλ b(y A)λ ) Gη ( α ) ] / [1 Gη( α) ] } 0 ≤ A < y

0 A ≥ y.

To summarize, in the canonical case where the individual sees the change as an improvement,
economic theory imposes the restriction that 0≤ C ≤ y. One way or another, this is violated by most of
the RUM models in the existing literature, including those listed in Appendix Table 1. Appendix Table
2 presents some models that do satisfy this requirement, based on (28) and (30) - (32); we shall refer to
these as canonical models.

Now suppose one wants to allow for indifference—with some positive probability, the individual
has a zero WTP for the change in q. Indifference is equivalent to a probability mass at C = 0. There are
at least two ways to introduce this. One is to combine a canonical model, denoted GC(·), with a degenerate
distribution for C consisting of a spike at zero,γ, so as to form the mixture distribution30

(33) Pr{C ≤ x} ≡ GC(x) = γ + (1-γ) GC(x) x ≥ 0.

By construction,γ ≡ Pr {C = 0}. This formulation can be interpreted as representing a population which
consists of two distinct types: a group of people, amounting to 100γ% of the population, who are simply
indifferent, for whom Pr {C = 0} = 1; and another group which has a varying but positive WTP for the
change in q, with a cdf given by GC(·). For the mixture to make sense, the lower support of GC(·) should
be zero. Hence, GC(·) should be a canonical model like those listed in Appendix Table 2, rather than a
model like those listed in Appendix Table 1. With the mixture approach, the response probability created
by the mixture model, which we denote Pr, is related to the response probability associated with the
canonical model, which we denote P˜ r̃, as follows:

Pr{response is "no"} = γ + (1 - γ) P̃r̃{response is "no"}
(33’)

Pr{response is "yes"} = (1 -γ) P̃r̃{response is "yes"}.

Any of the formulas in Appendix Table 2 could be used as the formula for P˜ r̃. The "downweighting" in
the response probability Pr is illustrated in Figure 2; Figure 2(a) depicts the response probability graph
associated with a canonical model, while Figure 2(b) shows the response probability graph associated with
the mixture model.

30 For a CV application see Kriström, Nyquist and Hanemann (1992). Schmidt and Witte (1989) apply
this model to recidivism, calling it a "split population" survival model. In one version of their model,γ
is treated as a constant to be estimated from the data; in another, they makeγ a function of covariates, Z,
by writing γ = [1 + eθZ]-1, whereθ are coefficients to be estimated. Werner (1994) shows that, ifγ does
depend on covariates in the true model, and the canonical WTP distribution also depends on the same
covariates (e.g. throughα), estimating a misspecified model that treatsγ as a constant seriously biases both
the estimate ofγ and the coefficient estimates for the covariates in the canonical WTP distribution.
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The other way to introduce indifference is to use a response probability model with censoring at
C = 0. In the case of the Box-Cox model (11), for example, truncation generated the response probability
formula in (31). Now, one starts with a random termη defined over (-∞, -α + byλ]—for example a normal
or logistic distribution that has been modified at the upper end by truncation or censoring, as in (26) or
(27)—and one censors rather than truncates this from below. Thus, one replacesη with η ≡ max (η, -α).
The distribution ofη has a spike at -α since, by construction, Pr {η = -α} = Gη(-α). This is equivalent
to replacing C as defined in (11) with C≡ max (C,0). This use of censoring to represent indifference is
illustrated in Figure 2(c). Response probability formulas for such censored models are given in Appendix
Table 3.

The first of these methods for putting a spike at C = 0, themixture approach (33), can be applied
to the nonlinear utility model (19) as well as the Box-Cox model (11); the second approach, based on
censoring, requires an additive error and thus can only be applied to the Box-Cox model. The difference
is that the former introduces an extra parameter,γ, to account for the spike, while the latter uses the model
parametersα, β, andλ to represent both the spike and the rest of the response probability function. The
first approach implies a population consisting of two distinct types, as described above, while the second
assumes a single group with homogeneous preferences.

Lastly, we consider the case where the individual could view the change in q as either good or
bad. As in the previous case, there are several ways to model this. One approach uses a mixture
distribution combiningtwo models, one representing positive preferences (C≥ 0) and the other negative
preferences (C≤ 0). The positive preferences are represented by a canonical cdf G+(·) defined over [0, y]
with G+(0) = 0. The negative preferences are represented by a cdf G—(·) defined over the negative domain
with G—(0) = 1.31 In addition, there can be a spike at zero to allow for indifference. The resulting mixture
distribution is

(34) Pr{C ≤ x} ≡ GC(x) = γ1 G—(x) + γ2 G+(x) + (1 - γ1 - γ2).

Here, one can think of the population as consisting of three groups—a fractionγ1 who dislike the change,
a fractionγ2 who like it, and the remainder who are indifferent.32

It is important to note that, when the individual dislikes the change, -C as defined in (5) represents
minimum willingness to acceptto suffer the change, rather than maximum WTP to avoid it.33 The
exception is any utility model like (18) that has no income effects, such as the linear Box-Cox model (12).

31 If one takes the Box-Cox model (11) and setsα < 0 instead ofα > 0, this would generate a model
of negative preferences. This does not work with the nonlinear model (19) since that formula yields C≥
0 regardless of the sign of (α + ε)/β.

32 The parametersγ1 andγ2 can be taken as constants or made functions of covariates, in the manner
described in footnote 30.

33 As defined in (5), C is the Hicksian compensating variation measure. When C < 0, WTP toavoid
the change is measured by the equivalent variation, rather than the compensating variation. The equivalent
variation is the quantity E that satisfies v(q1, y, ε) = v(q0, y + E,ε). It is shown in chapter 3 in this volume
that, if C’ is the compensating variation for a change from q’ to q", and E" the equivalent variation for
the reverse change from q" to q’, then E" = -C’.
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With no income effects, the (negative) WTP and WTA coincide. Therefore, with dispreference in that
model, -C must satisfy the restriction that -C≤ y since it measures WTP as well as WTA. Otherwise, in
models with non-zero income effects such as the general Box-Cox model (11), when C < 0, there is no
restriction that -C≤ y since -C measures only WTA. Hence, C is potentially unbounded from below in
the negative domain.

Therefore, another approach to modelling both positive and negative preferences is to use the Box-
Cox family with a distribution forη that ranges from -∞ to - α + byλ. This ensures Cmax ≤ y while leaving
C unbounded in the negative left tail. This model is intermediate between the Box-Cox models listed in
Appendix Tables 1 and 2—like those in Appendix Table 2,η is bounded from above while, like those
in Appendix Table 1, it is unbounded from below. Response probability formulas for such models are
presented in Appendix Table 4.34

The two approaches to modelling both positive and negative preferences are illustrated in Figure
3. The upper panel illustrates the mixture approach, (34); the lower panel illustrates the modified Box-Cox
model. In general when one uses a mixture distribution, the mixing parameters—γ in (33), γ1 and γ2 in
(34)—are either known exogenously or else treated as unknowns to be estimated from the response data
along with the other model parameters. The mixture approach provides the most flexibility—it allows for
differentparameters (and different covariates) in the nonstochastic component of the RUM, depending on
whether the individual likes or dislikes q. By contrast, the modified Box-Cox model imposes thesame
deterministic tastes on the whole population, leaving the burden of differentiating between preference and
dispreference to the distribution of the stochastic component,η.

In this section, we have emphasized the importance of modifying statistical models for CV
responses to incorporate restrictions imposed by economic theory on the range of C. Without this, the
statistical models are not in fact consistent with the economic hypothesis of utility maximization. As
outlined in Appendix Tables 2-4, there are several different possible restrictions, depending on what one
assumes about indifference or negative preferences. Two points should be emphasized. First, it is an
empirical question which is the appropriate set of restrictions to impose—economic theoryper secannot
prescribe whether people like, dislike or are indifferent to the change in q. The analyst either has to know
ahead of time which of these to assume, taking that as a maintained assumption, or she has to make a
point of collecting data which can resolve this, for example by asking respondents directly whether they
like or dislike the change.35 Indeed, if there is a chance that respondents dislike the change, one should
ask about thisat the beginning of the survey, since this permits the CV question to be framed
appropriately—those who like the change can be asked their WTP to secure it, while those who dislike
the change can be asked their WTP to avoid it.36 The responses to the initial question can be used to

34 We have noted that, in these models, C < 0 measures WTA rather than WTP. Using the result
mentioned in the previous footnote, one obtains the equivalent variation measure, E, that corresponds to
WTP when E < 0 byreplacing (α + η) in these formulas with -(α + η).

35 Failure to allow for the possibility of negative preferences towards the item being valued has figured
in several CV disputes (e.g., Cameron and Quiggin, 1994).

36 Duffield (1993) and Huhtala (1994) are examples of CV studies which follow this approach. Note
that it entails asking the compensating variation for those who like the change, and the equivalent variation
for those who dislike it. This difference should be reflected in the response probability models applied to
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estimateγ1 and γ2 in (34). Similarly, if one believes that people either like the change or might be
indifferent, as in (33), one could start off assuming that respondents like it but then ask those who say
"no" to the CV bid a follow-up question on the lines of "would you be willing to pay anything at all for
this change in q?"37 The proportion who say "no" provides a direct estimate ofγ in (33).

Secondly, the restrictions are inherently non-parametric. As illustrated in Figures 1-3, they
constrain the lower and upper ends of the empirical response probability function. Therefore, once one has
decided which restrictions to impose, they are consistent with many different statistical models. Although
we have focused so far on the particularparametricmodels in Appendix Tables 1 - 4, other parametric
models can be used as long as they satisfy (22b) and, if one assumes positive preferences, (29b).
Moreover, semiparametric and nonparametric models can also be used. As discussed in Section 4.5, these
models effectively censor the WTP distribution at the lowest and highest observed bids, which has the
effect of guaranteeing that they satisfy (22b) and (29b).

What are the practical consequences if one disregards the restrictions on the range of C? As shown
below, there are two possible effects—the formulas for welfare measures may be wrong and/or the
estimates of model parameters may be biased due to the incorrect specification of the response probability
model. The welfare measures are discussed in the following section. Estimation of model parameters is
discussed in Section 3.

2.4 Welfare Evaluation

So far we have discussed how to formulate statistical models for the CV responses that are
consistent with utility theory. We turn now to the question of how one derives useful measures of
monetary value once the statistical models have been estimated.38 As we noted earlier, by virtue of the
RUM hypothesis, rather than being a fixed number, a person’s WTP for the change is actually a random
variable with a cdf given by GC(·). The survey responses permit one to estimate this WTP distribution.
Indeed, this is a basic difference between conventional regression models for continuous dependent
variables (e.g., responses to open-ended CV questions) and quantal response models. Conventional
regression models estimate theconditional meanof the dependent variable given the regressors. Quantal
response models for discrete dependent variables estimate theconditional distributionof the dependent
variable given the regressors, i.e. the entire cdf. The question then arises how one might summarize this
distribution for practical purposes. As we show in this section, that is a nontrivial question.

The literature has generally focused on two summary statistics. One is themeanof the estimated
WTP distribution

(35) C+ ≡ E{ C(q0, q1, y, ε) }.

the data.

37 In practice, finding a way to ask this requires some care since one wants to avoid any appearance
of pressuring the respondent to express a positive value.

38 In this section, when we refer to parameters such asα and β, we mean theestimatesof these
parameters. The statistical properties of these parameter estimates are discussed in Section 3.
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The other, advocated by Hanemann (1984a), is themedianof the estimated WTP distribution, i.e., the
quantity C* such that

(36) 1 - GC (C*) = 0.5.

It follows from (6a) that Pr {response is "yes"} = 0.5 when A = C*, i.e. there is a 50:50 chance that the
individual would be willing to pay at least C*. In addition, Hanemann (1989) has suggested giving
consideration toother quantiles of the GC(·) distribution. Theθ-percentile of the WTP distribution, Cθ,
satisfies

(37) θ = 1 - GC (Cθ);

i.e., there is a 100θ% probability that the individual would be willing to pay at least Cθ.
39 By way of

example, for the Box-Cox model (11) the mean is

(38) C+ = y - E
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while the median is
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whereη* is the median of distribution ofη. In the linear model (12) whereλ = 1, one has C+ = (α +
E{η})/ β and C* = (α + η*)/β. If E{ η} = η* in that model, C+ = C*. Otherwise, the two welfare measures
are numerically different.

Deciding which measure is appropriate involves considerations of both statistics and economics.
Suppose that the survey data came from repeated questioning of a single individual—while this is fairly
impractical, one could imagine it happening. In that case, even though we were estimating a single
individual’s WTP, it still would be a random variable for us as outside observers because of the RUM
hypothesis. The issue would then be just one of representation—what is the best way to summarize the
probability distribution? The answer depends on the statistical loss function: with a sum-of-squared-errors
loss function, the mean is the optimal measure of central tendency; with a sum-of-absolute errors loss
function, the median is optimal. For this reason, the mean is more sensitive to skewness or kurtosis in the
WTP distribution (Stavig and Gibbons, 1977). This could be important because most RUM models with
non-negative preferences imply a skewed distribution of WTP. As shown below, it can often happen that
the point estimate of the median is more robust, or has a much smaller sampling error, than the point
estimate of the mean.

Now consider the more realistic situation where the survey data come from questioning different
individuals in a population. In that case, the summary measure of the WTP distribution would be

39 The analogs of Cθ in the biometrics literature are what is known as theED100θ or LD100θ. These are
the dose levels or concentrations at which, on average, 100θ% of subjects respond;E denotes "effective,"
andL denotes "lethal." The distribution of which they are the quantiles is called a tolerance distribution.
Much of the attention in the biometrics literature is focused on the mediansED50 or LD50.
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multiplied by the number of people in the population to produce an estimate of aggregate value. Thus, the
choice of a summary statistic implies a particular approach to the aggregation of welfare across the
population. The mean, C+, is equivalent to adopting the Kaldor-Hicks potential compensation principle.
Suppose there are both positive and negative preferences for the change in q, as in the response probability
models listed in Appendix Table 4. Then, C+ > 0 if and only if those who are better off as a result of the
change in q could fully compensate those who are worse off, and still gain by it. The Kaldor-Hicks
criterion is commonly used, but it can lead to logical inconsistencies and it has been severely criticized
on ethical grounds (Little, 1957). As a means of aggregating values, the median C* is equivalent to
applying the principle of majority voting: the change is desirable if a majority of the population would
vote for it. Using a lower quantile of the WTP distribution would correspond to super-majority voting;
for example, C0.67 would correspond to requiring a two-thirds majority vote. It is known that majority
voting rules do not satisfy Pareto efficiency; but they still may be considered ethically superior. In view
of these welfare-theoretic implications, choosing a measure of central tendency is essentially a value
judgment. Moreover, different circumstances may call for different welfare measures. For example, Carson,
Flores and Hanemann (1992) make a distinction between benefit-cost analysis and natural resource damage
assessment, recommending the use of median WTP for the former and mean WTA for the latter because
of the difference in the implied property right and the legal requirement in the latter case (but not the
former) to restore all those who were injured to their original position. These are judgments that the
researcher must make.

The reason why C+ is more sensitive than C* to skewness in the WTP distribution becomes
evident when one considers graphical representations of these welfare measures. The graphical approach
permits one to calculate the welfare measures even with a non-parametric model that has no closed-form
representation for the response probability function. The median, C*, can be read directly from the
empirical response probability function—it is the dollar amount that corresponds to a 50% probability of
saying "yes" (see Figure 4a). The graphical representation of C+ comes from a standard result in statistics
about the relation between the mean of a random variable and the integral of its cdf (Parzen, 1960):

(40a) C ⌡
⌠0

∞
GC(A)dA ⌡

⌠∞

0
[1 GC(A)]dA.

This corresponds to the shaded areas over/under the empirical response probability function in Figure 4b.
When C is restricted to being non-negative, the formula for the mean reduces to

(40b) C ⌡
⌠∞

0
[1 GC(A)]dA.

which corresponds to the shaded area under the response probability function in Figure 4c.

Two implications follow from the graphical representation of welfare measures. The first concerns
the relationship between the two welfare measures. Whereas the median depends on the location of the
response probability graph at a particular point, viz., the 50% probability level, the mean depends on the
location of response probability graph throughout its entire length, from tail to tail. When C≥ 0, while
small differences in the right tail of the distribution have essentially no effect on the median, they can
affect the mean greatly.40 This explains why the relation between the mean and median can vary with

40 Boyle, Welsh and Bishop (1988) refer to this as the "fat tails" problem.
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the specification of the WTP distribution. By way of illustration, consider the various versions of the
nonlinear utility model (19). With the lognormal model (20), application of (36) and (40b) yields the
following formulas for median and mean

(41a) C e
α
β

(41b) .C e
α
β exp








1

β2

With the log-logistic model (17), while the formula for the median is the same as for the lognormal

(42a) ,C e
α
β

the mean turns out to be
eα/β Γ[1 + (1/β)] Γ[1 - (1/β)] if β > 1

(42b) C+ =
∞ if β ≤ 1.

With the Weibull model (21), one has

(43a) C* = eα/β (ln 2)-1/β

eα/β Γ[1 - (1/β)] if β > 1
(43b) C+ =

∞ if β ≤ 1.

In each case, the ratio C+/C* depends crucially on the value ofβ, which is related toω2 ≡ var{lnc}. In
the lognormal case,β = 1/ω, and C+ grows larger withω but remains finite as long asβ > 0. In the log-
logistic case,β = π/ω√3 and C+ blows up ifβ ≤ 1, i.e., if ω2 ≥ π2/3 ≈ 3.29. In the Weibull case,β = π/ω√6
and C+ blows up ifω2 ≥ π2/6 ≈ 1.65. In terms of Figure 4c, the integral corresponding to the shaded area
fails to converge whenβ ≤ 1. This is yet another example of the fact that the stochastic specification of
a RUM can have substantive economic implications, since different probability distributions constrain the
relation between mean and median in such different ways.

The second implication concerns the restrictions on the range of C. Welfare formulas such as those
in (41a,b) and (42a,b), which were first presented in Hanemann (1984a), or in (43a,b) are in fact incorrect
since they ignore the restriction that C≤ y. When this restriction is imposed, as in Appendix Tables 2 or
3, it will probably not affect the formula for the median, C*, but it certainly will affect the formula for
the mean, C+.41 This can be seen by decomposing the formula in (40b)

41 The discussion in this paragraph focuses on the case where C≥ 0. Analogous results hold for the
case of negative preferences (i.e., for the probability response models in Appendix Table 4).
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(44a) C+

⌡
⌠y

0
Pr yes dA ⌡

⌠∞

y
Pr yes dA

(44b) .⌡
⌠y

0
Pr yes dA

When one takes account of the restriction that C≤ y, the second term on the RHS of (44a) vanishes by
virtue of (22b). Equivalently, (40b) can be manipulated into the form

(45) C+ y ⌡
⌠y

0
Pr no dA.

Hence, C+ is always finite and bounded from above by the person’s income. Corrected formulas for C+

and C* that incorporate the restrictions on the range of C are included along with the response probability
formulas in Appendix Tables 2-3.

Although the existing analytic formulas for C+ in Hanemann (1984a,1989) incorrectly ignore the
restrictions on the range of C, not all of the empirical estimates of C+ in the literature should be considered
erroneous because some researchers used other formulas or procedures when calculating C+. This started,
in fact, with Bishop and Heberlein who truncated the WTP distribution at the highest bid in their survey,
Amax, when estimating mean WTP. Instead of (44a), they calculated

(46) C̃+ ≡ ⌡
⌠A max

0
Pr yes dA.

Since Amax < y, C̃+ is a conservative estimate of C+. Computer programs to calculate C˜ + are quite readily
available, and this welfare measure has been used quite widely in the literature. We show in Section 4.5
that non-parametric estimators of the response probability function estimate the mean in essentially the
same way, since they truncate the cdf of C at the highest observed data point. Instead of Amax, other
researchers have proposed truncating the cdf at some amount, Cmax, that represents the analyst’s assessment
of an upper bound on individuals’ WTP, perhaps based on non-sample data.42 43

A different type of approach was adopted by Werner (1994), who advocated partitioning the
population into groups and computing the average of the medians for each group. The groups could be
identified in various ways—according to administrative or political criteria, for example, or on the basis
of socio-demographic, behavioral or attitudinal covariates. Suppose there are K groups; each group has
a WTP distribution with a cdf, Gk(Ck), that has a mean C+k and a median C*k. Depending on how the
groups are defined, these distributions would be obtained by fitting response probability functions to the
data for each group separately or by fitting a single response probability function to data pooled over all
groups but parametrized on group indicator covariates. Werner’s statistic, the average of group

42 See Boyle, Welsh and Bishop (1988), and Ready and Hu (1995). Carson et al. (1992) test for the
presence of a Cmax < y and find they cannot reject the hypothesis that Cmax = 0.02y with their data.

43 Related approaches are constrained estimation and Bayesian estimation where, at the stage of model
estimation rather than when calculating the welfare measure, one imposes a constraint on the location of
the right-hand tail of the response probability function or one introduces prior information about the
location of this tail.
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(conditional) medians, is CW ≡ (1/K) Σ C*k. Of course, if there is only one group, this measure corresponds
to the overall median, C*; if each group has only a single member, it corresponds to the overall mean,
C+. Otherwise, she establishes that CW generally lies between C* and C+ and that, for a given sample size,
while estimates of CW do not have quite as low a variance as C*, they have a considerably lower variance
than estimates of C+.

2.5 Summary

Most of the existing CV literature uses response probability models based on either the Box-Cox
utility model (11), including its linear and logarithmic versions, or the nonlinear utility model (19). As
summarized in Appendix Table 1, depending on the stochastic specification the former gives rise to probit
and logit response probability models, while the latter generates lognormal, log-logistic and Weibull
models. Most of these models violate restrictions on the range of C from economic theory. This problem
can be avoided by using the modified response probability models listed in Appendix Tables 2-4. These
generally satisfy the economic restrictions by either censoring (introducing a spike) or truncating the
corresponding response probability model in Appendix Table 1. Censoring may not affect parameter
estimation -- one can get the same parameter estimates for the censored and uncensored models -- but it
does change the formula for the mean WTP and it could affect the median. Truncation invariably affects
both parameter estimation and the formulas for mean as well as median WTP. How much difference this
makes in practice is an empirical question that remains to be investigated. The choice between the
response probability models listed in Appendix Tables 2, 3, and 4 involves a judgment by the analyst as
to whether to allow for indifference and/or dispreference for the item in question. The choice of welfare
measure -- mean, median, or some other quantile of the WTP distribution -- also calls for a judgment by
the analyst that can involve both ethical and statistical considerations. The mean is the conventional
measure in benefit-cost analysis and reflects the Kaldor-Hicks potential compensation criterion; the median
may be more realistic in a world where decisions are based on voting and there is concern for the
distribution of benefits and costs. From a statistical point of view, the mean is generally far more sensitive
than the median to the choice of a response probability model or the method of estimation.

3. STATISTICAL ESTIMATION AND DESIGN

This section discusses practical issues in the estimation of CV data based on the maximum
likelihood method. Section 3.1 reviews maximum likelihood procedures. Section 3.2 discusses the
asymptotic properties of maximum likelihood estimators and approaches for calculating the variance of
estimated WTP. Section 3.3 discusses procedures for checking model misspecification including
hypothesis testing and goodness of fit. Section 3.4 discusses optimal experimental design.

3.1 The Maximum Likelihood Approach

The method of maximum likelihood seeks the values of the unknown parameters that are most
likely to have generated the data that were observed. In the present context, the data consist of yes/no
responses from survey participants. Let yi denote the response of the ith individual—we can think of yi =
1 as "yes", and yi = 0 as "no." In addition, we observe a vector of explanatory variables for each
respondent that includes the bid amount presented to her, Ai, and any covariates that might have been
recorded, such as income (if the utility model exhibits non-zero income effects), socio-demographic
variables, attitudinal variables, etc. We now follow the notational convention in statistics by expressing
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all the exogenous variables for the ith respondent as a vector xi. Finally, we represent the unknown
parameters, such asα, β, and λ, in a single vectorθ. The response probability formulas discussed in
Section 2, including those in Appendix Tables 1 - 4, can each be thought of as a likelihood function for
the ith observation—they express the likelihood (or probability) of observing the response that was
observed, yi, given the exogenous variables xi and the (unknown) parameters,θ. Following the convention
in statistics, we now refer to these response probabilities using the notation P(yi | xi, θ). Since the
responses from a random sample represent independent observations, the likelihood function for the overall
set of responses{y1,...,yn} given the corresponding set of explanatory variables{x1,...,xn} and the true but
unknown parametersθ is simply the product of the individual likelihood functions for each observation
in the sample. Taking the logarithm, the log-likelihood function for the sample is the sum of the individual
likelihoods44

(47) .L(θ | y1,...yn , x1,...xn)
n

i 1

ln P(yi | xi, θ)

In forming equation (47), one substitutes forP(yi | xi, θ) the specific formula for the response probability
function that the analyst has selected. Maximum likelihood estimation of the model parameters involves
maximizing (47) with respect toθ; the maximum likelihood estimator is denotedθ^ .

With the single-bounded approach, the CV survey collects one response from each participant, and
the log-likelihood function can be expressed as a series of Bernoulli trials:

(48) L
n

i 1

yi ln Pi (1 yi) ln (1 Pi)

where Pi = P(yi | xi, θ), the ith individual’s response probability. Maximization of the log-likelihood
function (48) yields a set of first-order conditions:

(49) .∂ L(θ)
∂θ

N

i 1

∂ ln P(yi | xi, θ)

∂θ
0

In general, these first order conditions are a set of nonlinear equations that require iterative numerical
solution techniques. Solution algorithms are discussed further in the appendix to this chapter.45

Two practical issues that the researcher must address when using maximum likelihood estimation
are the choice of starting values for the parameter vectorθ, and the convergence criterion. There is no
generally accepted procedure for determining starting values. Fortunately, logit and probit models are well-
behaved and generally converge quite quickly regardless of the starting values. With more complicated
models, such as those in Appendix Tables 2 - 4 or some of the models to be discussed in Section 4, it
may be useful to first estimate a simpler version of the model that takes the form of a logit or probit
model and use the resulting coefficients as starting values for the more complicated model. Otherwise,
starting values can be set on the basis of the researcher’s intuition and knowledge of the data. In some

44 In what follows, we useL = L(θ) to denote thelog-likelihood function.

45 See Judge et al. (1988) Appendix B or Greene (1993) Chapter 12 for discussions of numerical
optimization algorithms. Gill, Murray and Wright (1981) provide an excellent general reference for the
issues discussed in the next few paragraphs.
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cases, trial and error is the only option.

The iterative estimation procedure ends when a convergence criterion is met. The best
criterion is usually based on evaluating the first derivative vectors: when they are zero, the maximum has
been reached. Some software packages assume convergence when there is only a very small change
between successive estimates of the value of the likelihood function, or successive estimates of the vector
of parameters. However, this can halt estimation prematurely. Even with fairly simple likelihood
functions, it may be difficult to obtain convergence, especially in models with a large number of
parameters. In this case, one can try changing the starting values for the parameters. When starting
values are far from the true values, the algorithm for picking the next iteration may move in a direction
that leads away from the optimum, or sometimes the function is flat in the region of the starting values
and the algorithm cannot find an improving direction so that parameters barely change at each iteration.
Another useful trick is to scale the data so that the parameters are expected to be of the same order of
magnitude. The GAUSS manual states that 90% of technical support calls about failure to converge are
solved by re-scaling the data appropriately.

Many econometric software packages offer a variety of binary response specifications, including
logit, probit and Weibull, that use analytical derivatives and converge quite quickly. Estimation of these
models involves little more on the part of the user than a one line command. Some packages, such as
GAUSS, LIMDEP and STATA, allow the user to program his or her own likelihood function and
derivatives, and to specify the starting points, algorithm and convergence criterion. The main reason for
programming one’s own likelihood function is to estimate models that are more complex than those in
the standard software packages, such as those in Appendix Tables 2 - 4 or themodels to be discussed in
Section 4.

3.2 Asymptotic Properties of Maximum Likelihood Estimators

Once we leave the world of the standard normal linear model, properties such as unbiasedness are
very difficult to evaluate. The linear model allows straightforward evaluation of the distributions of
estimators and test statistics. For most other situations, however, we resort toMonte Carlosimulations
or asymptotic evaluations of the limiting distributions of estimators at sample sizes of infinity. Two
asymptotic properties of maximum likelihood estimators are of particular interest to us: one is the
asymptotic behavior of the estimator itself; the second is the asymptotic behavior of the estimator
standardized by sample size so that its limiting behavior is nondegenerate.

3.2.1 Consistency

The maximum likelihood estimator,θ^ , converges in probability to the true parameter value,θ, a
property known asconsistency.46 This is a large sample property and does not ensure unbiasedness,
especially in small samples.47

46 See Amemiya (1985) or Huber (1981) for discussions of the asymptotic properties of maximum
likelihood estimators.

47 Anderson and Richardson (1979) and Griffiths, Hill and Pope (1987) found biases in numerical
simulations of logit and probit models with small samples.
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Small sample results are available from Copas (1988) for the logit model (15). He uses a Taylor
expansion to derive analytically the bias of maximum likelihood parameter estimates (Cox and Hinkley,
1974). The bias of thejth parameter estimate can be defined implicitly using a Taylor expansion of the
jth element of the score vector of a log-likelihood function:

(50) Lθ j Lθ̂ j Hj (θ θ̂) 1
2

(θ θ̂) Mj (θ θ̂) 0

whereH is the jth column of the Hessian matrix andM is the jth matrix of third derivatives of the log-
likelihood function. The bias is equal to the expected value of (θ^ - θ ). In general, the expectation of
the expressions in equation (50) involve covariances between H andθ^ cannot be simplified. In the case
of the logit model, and only for this case, however, H is a constant and is not dependent on the particular
response vector. Using this property, Copas obtains an approximate expression for the bias of thesth
maximum likelihood parameter estimate for the logit model:

(51) bs ≅
j k l

H sj H kl M jkl

whereHjk is the inverse ofH = {Hjk}. Expressions forH andM are presented in Kanninen (1995).

The bias is a function of the maximum likelihood estimate,θ^ and the bid vector. Equation (51)
provides an analytical formula for the small sample bias of the maximum likelihood estimator in the logit
model. This can be used to examine the effect of the choice of bids on the bias of the maximum likelihood
estimator. However, analytical formulas for small sample bias do not appear to be available for other
binary response models besides logit. We might surmise that probit models would have similar bias
properties to the logit model but we are not aware that this has yet been proven in the literature, nor are
we aware of small sample results for any of the other models listed in Appendix Tables 1 - 4.

3.2.2 Efficiency

The second asymptotic property of maximum likelihood estimators is the convergence ofθ^ scaled
by the sample size, N:√N (θ^ - θ) converges in distribution to a normal distribution with mean 0 and
variance [I (θ^ )/N]-1, whereI(θ^ ) is the Fisher Information matrix (the negative of the expectation of the
Hessian matrix), also known as theCramer-Rao Lower Bound. For the binary response model, the Fisher
information matrix is:

(52) I(θ)
N

i 1

f 2

F (1 F)
xixi

where f is the p.d.f. and F the c.d.f. of the response vector, and xi is the vector of independent variables
including the bid value and a one for the constant term. The Cramer-Rao inequality states that no
consistent estimator can have lower variance than the inverse of the Fisher information matrix. This
implies thatθ^ is anefficientestimator. We refer to the inverse of [I(θ^ )/N] as the asymptotic variance of
the maximum likelihood estimator.

3.2.3 Calculating the Variance of WTP

Although we know the asymptotic distribution of the maximum likelihood estimator forθ, we do
not necessarily know the asymptotic distribution of the maximum likelihood estimator of the welfare
measures C* or C+ since those arefunctionsof the elements ofθ. For example, we might be interested
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in the parameter µ =α/β which corresponds to both C* and C+ for the simple logit and probit models (14)
and (15), and to C* for censored versions of those models as well as for nonlinear models based on (19).
While the maximum likelihood estimators ofα and β are asymptotically normal, the distribution of a
function of them such as µ isnot asymptotically normal. Sometimes, this can be tackled by
reparametrizing the likelihood function; as noted earlier, the logit and probit models can be parametrized
in terms of µ =α/β andσ = 1/β instead ofα andβ (Cameron, 1988). Because the maximum likelihood
estimator satisfies an invariance principle, both parameterizations yield exactly the same estimate of µˆ.48

But, this does not apply to thevarianceof the maximum likelihood estimate of µˆ. One obtains different
estimates of this variance depending on whether the model is parametrized in terms of (µ,σ) or (α,β). The
former provides a direct estimate of var(µˆ) via the appropriate element of the inverse of the information
matrix; the latter provides an asymptotic variance matrix for (α̂,β̂) from which one must somehow extract
an estimate of var(µˆ).49

When one cannot obtain the asymptotic distribution of the welfare measure via reparametrization,
there are three ways to proceed. One approach is to apply the delta method based on a truncated Taylor
series expansion which yields the following convergence in distribution of a functionf(θ):

(53) .N [f(θ̂) f(θ)] → N[ 0, f (θ̂) I(θ̂) f (θ̂) ]

For the logit or probit models (14) and (15), the resulting asymptotic variance of µ =α/β is
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where σαα and σββ are the variances ofα and β and σαβ their covariance. In practice, one uses the
maximum likelihood estimates of the coefficientsα̂ andβ̂ and the variance matrix [I(θ^ )/N ]-1. Cox (1990)
shows that the resulting estimate of the var(µˆ) is the same as that which arises from asymptotic theory if
the model is parametrized directly in terms of (µ,σ). However, two qualifications should be noted. First,
since it is an asymptotic approximation, this variance formula may be unreliable with small samples.
Second, it forces the confidence intervals for µˆ or other quantiles of the WTP distribution to be symmetric,
which may be implausible. The other methods discussed below do not possess this feature.

In the biometrics literature, Finney (1964) popularized the use of Fieller’s (1954) theorem on ratios
of normally distributed random variables to obtain a confidence intervals for theED50. Fieller’s theorem
generates the following 100(1-γ)% confidence interval for µ =α/β, ciγ(µ),

48 The invariance principle states that the maximum likelihood estimator of a function is the function
of the maximum likelihood estimator.

49 Many standard software packages force one to parametrize the response probability model in terms
of (α,β) rather than (µ,σ), which could be an argument against using them. Note that, in cases where the
welfare measure is a more complicated function of the model coefficients than the simple ratio (α/β), there
may be no convenient reparametrization that permits direct estimation of the welfare measure even if one
does program one’s own likelihood function.
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where zγ/2 is the upper (γ/2) point of the standard normal distribution and g≡ (zγ/2)
2σββ/β2. Again, one uses

maximum likelihood estimates of coefficients and variance/covariance terms to construct the confidence
interval. The moreβ is significantly different from zero, the smaller the term g. If g were zero, the
confidence interval for µˆ generated by (55) would be exactly the same as that generated by the asymptotic
variance in (54). When g is small (say g < 0.05) the two confidence intervals are similar. They become
different as g increases, and the confidence interval in (55) becomes increasingly asymmetric. Recent
literature, summarized by Morgan (1992), suggests that the Fieller interval is generally preferable to the
confidence interval generated by (54).

The Fieller approach to confidence intervals has been relatively neglected in the CV literature in
favor of other methods involving Monte Carlo simulation or bootstrapping. The former simulates the
asymptotic distribution of the coefficients (i.e., a multivariate normal distribution with means given by the
maximum likelihood estimates of the coefficients and a variance-covariance matrix given by [I(θ^ )/N ]-1),
taking repeated random draws of coefficient vectors from this distribution and using them to generate an
empirical distribution for the welfare measure, from which a confidence interval is computed. This
approach was proposed by Krinsky and Robb (1986) and first applied to CV by Park, Loomis and Creel
(1991). Bootstrapping and jackknife procedures (Efron & Tibshirani, 1993) simulate the distribution of
the explanatory variables in the data set (i.e., the CV bid and any other covariates), using the actual data
sample ofN observations to simulate this distribution. Bootstrapping creates multiple simulated data sets,
each formed by samplingN times with replacement from the actual data. The jackknife createsN
simulated data sets, each formed by dropping one observation from the actual data. GivenN simulated
data sets for the explanatory variables, both approaches use the actual estimated maximum likelihood
coefficients to generate a set ofN quantal responses, and then apply maximum likelihood to these
simulated data to obtain a new set of coefficient estimates, from which the welfare measure is computed.
This is repeated over many simulated data sets to generate an empirical distribution for the welfare
measure from which a confidence interval is computed. This was first applied to CV by Duffield and
Patterson (1991). Cooper (1994) compares these methods for constructing confidence intervals for the
welfare measure µ, along with the delta method (54), and finds they all perform fairly well, with the
ranking of methods varying according to the size of the sample, the specification of the response
probability distribution (e.g., logistic versus Weibull), and whether or not one allows for dispreference or
indifference in the formula for the welfare measure. Poe et al. (1994) use bootstrapping to test for
differences in WTP distributions (obtained, for example, through different elicitation procedures); they
bootstrap the convolution distribution of the difference∆ ≡ (WTP1 - WTP2) and use the resulting
confidence interval to test the null hypothesis that∆ = 0.

3.3 Checking Model Misspecification

Fitting a response probability model and estimating a welfare measure is often only part of the
work. The researcher may want to know whether the results are vulnerable to misspecification in the fitted
model. This could arise in several ways, including specifying the wrong response probability model,
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omitting relevant regressors, or errors in variables used as regressors. Moreover, there could be
heterogeneity of preferences among the respondents so that different observations correspond to different
response probability models. Since the true model is unknown, misspecification is always a possibility.
But, its consequences are considerably more severe in nonlinear models such as logit or probit than in
conventional linear regression models. In the linear model, the ordinary least squares estimator possesses
a robustness which makes it still consistent (although biased) even if the model is misspecified. In
nonlinear models, by contrast, the maximum likelihood estimator is not consistent if the model is
misspecified. This could undermine the reliability of both point estimates and confidence intervals for
model coefficients and welfare measures. How serious this is depends on the circumstances.

Given misspecification of the form of the response probability model, Ruud (1983) showed
analytically that, despite this, maximum likelihood estimates of slope coefficients in a quantal response
model (but not the intercept) could still be consistent under fairly general conditions, except for a common
scaling factor. Hence,ratios of slope coefficients could be estimated consistently. This result, however,
would not help with welfare measures, since those depend on the interceptα as well as the slope
coefficientβ. A simulation analysis by Horowitz (1993) suggests that errors in estimating these are likely
to be small as long as the assumed WTP distribution has the samequalitative shape as the true
distribution, e.g., they both are unimodal and homoskedastic. But otherwise, for example when one fits
a logit model (15) to data generated from a true distribution that departs significantly from an ogive (S-
shaped) curve because it is bi-modal or heteroscedastic, maximum likelihood estimation of a misspecified
model can bring large errors in coefficient estimates and response predictions.50 51

Heteroscedasticity in quantal response models was considered by Yatchew and Griliches (1985)
who found that, for small departures from homoscedasticity in a probit model, there is only a rescaling
effect as long as the variance is uncorrelated with the explanatory variables. But, they found that there
could be a substantial bias in coefficient estimates when the variance is correlated with the explanatory
variables in question.

Omitting relevant regressors affects the estimates of both the intercept and the slope coefficients.
With the latter, Yatchew and Griliches show that there is a combination of two effects. The first effect,
as in linear regression, is that the coefficients of the included variables are in general biased, the bias being
equal to the true coefficient of the omitted variable multiplied by the coefficient from a regression of the
omitted variable on the included variable. In addition, unlike linear regression, there is a second effect
resulting from the nonlinearity of the quantal response model. This is a rescaling of the slope coefficient
which applies regardless of the first effect. Thus, with missing variables in a quantal response model the
coefficients of the included variables may be biased even if the omitted variables are uncorrelated with
included variables (see also Lee, 1982). Moreover, in contrast to linear regression, the biases depend on
the shape of the conditional distribution of the omitted variable, not just the conditional mean.

50 Bi-modality can arise from heterogeneity of preferences. Heteroscedasticity can arise for reasons
discussed in footnotes 15 and 16.

51 We showed in Section 2 that most of the response probability models in the existing literature fail
to satisfy bounds on the WTP distribution imposed by economic theory and therefore are misspecified to
some degree. Horowitz’s findings suggest that the consequences might not be too severe since the response
probability models in Appendix Table 1 and those in Appendix Tables 2 - 4have similar shapes.
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Errors in variables in quantal response models has been investigated by Yatchew and Griliches,
Carroll et al. (1984), Kao and Schnell (1987), and many others; Carroll et al. (1995) provide a
comprehensive review of the recent literature. When explanatory variables are measured with error, the
maximum likelihood estimates of the intercept and slope coefficients are inconsistent. While the bias
depends on the specific distribution of the measurement errors, there is a general tendency for maximum
likelihood estimation toattenuatethe coefficient of the variables measured with error, i.e. shrink them
towards zero. The coefficients of other variablesnot measured with error will also be affected, often in
an offsetting manner. In the case of a probit model with normal measurement errors, the maximum
likelihood coefficient estimates are scaled down in a manner that leads to a consistent estimate forα/β
but not for the mean and other quantiles of the WTP distribution. In small samples, however, even the
estimate ofα/β may be seriously biased.

3.3.1 Model Checking

While it is well known that there exists a variety of diagnostic techniques for checking model
adequacy in the case of linear regression (Cook and Weisberg 1982, 1994), it is less well known that
analogous techniques exist for logit and other quantal response models. These have so far received too
little attention from CV researchers. In both linear and nonlinear models, the two main pillars of diagnostic
testing are the analysis of residuals and the assessment of influence.

Residuals are used to identify ill-fitting data -- observations that do not gibe with the estimated
model. There are several ways to define residuals for nonlinear models. The raw residual isri = [yi - E(yi)]
= [yi - P(yi | xi, θ)]. For a binary response model whereyi = 0 or 1, ri takes one of two possible values,
- P(yi | xi, θ) or 1 - P(yi | xi, θ). Since a large difference between y and E(y) should matter less when y
has low rather than high precision, it is conventional to divider by the standard deviation of y, producing
the standardized residual
(56) rS = [y - E(y)] / s.e.(y).

In the binomial case with nj observations per bid, the standardized residual is simply

(56a) ,rSj

yj nj P̂j

nj P̂j (1 P̂j)

the normalized difference between the observed and predicted number of "yes" responses at the jth bid.
This is known as thePearson residualsince the sum of the squares of these residuals

(57) X2 = Σj r2
Sj

is Pearsons’ chi-squared statistic for measuring the goodness of fit of a quantal response model. These
residuals thus measure the contribution that each observation makes to the overall fit of the model. An
alternative is thestandardized Pearson residual, in which the raw residualr is normalized by its standard
error in order to allow for the variation inE(y) as well asy:

(58) rP = [y - E(y)] / s.e.[y - E(y)].

By construction, these residuals have unit variance. Another approach is to find some transform of the
responses, T(y), which renders them approximately normally distributed and then construct the analog of
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the standardized Pearson residual, which is known as theAnscombe residual:

(59) rA = [T(y) - E(T(y))] / s.e.[T(y) - E(T(y))].52

A different type of residual can be formed from thedeviance statistic

(60) ,D 2 [ L c L f ]

whereLc ≡ Σi l i
c is the log-likelihood function for the "current" model that is being estimated, withl i

c the
log-likelihood term for the ith (grouped) observation, andLf ≡ Σi li

f is the log-likelihood for the "full"
model, i.e., a model that would have as many parameters as observations and therefore would fit the data
perfectly. D measures the model’s overall discrepancy with the data and thus can be considered an
alternative to Pearson’s chi-squared statistic. The signed square root of the ith observation’s contribution
to this statistic,

(60a) di = - sgn[yi - E(yi)]·{2(l i
c - li

f)} 1/2,

whereD = Σi di
2, is known as thedeviance residual. Thestandardized deviance residualis

(61) rDi = di / s.e.(di)

where s.e.(di) is (an approximation to) the standard error of di. Another way of using the deviance statistic
to define a residual is to compare the change in the value of the deviance when each of the observations
in turn is omitted from the data set. The signed square root of the change in deviance for the ith

observation, known as thelikelihood residual,can be approximated by a linear combination of the
standardized Pearson residual and the standardized deviance residual for that observation (Collett, 1991).

Although the Anscombe residuals, standardized deviance residuals and likelihood residuals have
very different formulas, the values that they take are often remarkably similar, and they tend to rank
extreme observations in the same way (Pierce and Schafer, 1986). By contrast, the standardized Pearson
residuals are not as closely approximated by a normal distribution and may not rank extreme observations
correctly. Since the Anscombe residuals are much more difficult to compute than others, there is no great
advantage in using them. The standardized deviance residuals or the likelihood residuals do not suffer from
this disadvantage and should routinely be considered.

Residuals are used for two main purposes -- model checking and the identification of outliers
(observation checking). First, by plotting residuals in various ways one can check for the omission of
relevant variables, the inclusion of inappropriate variables, the use of inappropriate transformations for
included variables, or the use of an inappropriate functional form or probability distribution in the quantal
response model. Second, through plots or statistical tests of residuals one can identify observations that
are discordant with the rest of the data with a view to investigating the causes of the discrepancy or
handling them as outliers. Chesher and Irish (1987) and Collett (1991) are useful sources on this topic.

An observation is influential if its deletion from the data would cause major changes in coefficient
estimates, confidence intervals, or other statistics of interest. An observation that is an outlier need not be

52 Formulas for the standard errors in the denominators of (58) and (59) as well as for the
transformation T(y) are discussed in Pierce and Schafer (1986) and Collett (1991).
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influential, andvice versa. An influential observation that is not an outlier occurs when the observation
distorts the form of the fitted model so much that there is only a small residual for that observation (the
classic example is extreme observations in ordinary least squares regression). Since residualsper sedo
not necessarily reveal the presence of influential observations, additional diagnostic techniques are needed.
In linear regression, the key tool for assessing influence is thehat matrix H = X(X’X)-1X’ where X is the
matrix of observations on the explanatory variables.H maps the observed value of the dependent variable,
y, into the predicted value,ŷ: ŷ = Hy. Its diagonal elements,hii, measure the effect that the observedyi

has on the fittedŷi, and are known as theleverageof the ith observation (Cook and Weisberg, 1982). In
nonlinear models estimated by maximum likelihood there is no analogous exact formula linkingy to
E(y|θ̂), but Pregibon (1981) obtained some useful results based on thecase deletionprinciple which
considers the change in the maximum likelihood coefficients when one observation is omitted. Pregibon
developed a convenient approximation analogous to the hat matrix which can be used to measure the
leverage of an observation on the estimated coefficients or some linear combination of them. The details
can be found in Collett (1991), Morgan (1992) or Santner and Duffy (1989). Another approach uses
infinitesimal perturbation of the maximum likelihood normal equations rather than case deletion to assess
influence. This has been applied by James and James (1983) to assess influence on the estimate of the
ED50 in a logit dose-response model, and is discussed in Morgan (1992).

In summary, despite its desirable asymptotic properties, maximum likelihood is still sensitive to
errors in the data or deviations from the assumed model. There are three main ways to deal with this --
modifying the estimation procedure to make it less sensitive to influential or outlying observations,
dropping outliers from the data, or modelling the outlier generating process itself.

Approaches that offer better protection than maximum likelihood against violations of the model
assumptions include robust estimation (Huber, 1981), bounded-influence estimation (Hampel, 1974), and
resistant fitting (Hoaglin Mosteller and Tukey, 1983). Technically,robust estimationrefers to techniques
that are robust against deviations from the assumed stochastic distribution (e.g. the random elements come
from a distribution with a much heavier tail than the normal distribution), while the other two terms refer
to techniques that are robust against more general violations of the assumptions such as gross errors in
the variables or misspecification of the functional form. InM-estimation, one of the main methods of
robust regression, coefficient estimates are chosen so as to minimizeΣi ψ(ri) for some loss functionψ(·).
Ordinary least squares and least-absolute-deviations are special cases whereψ(r) = r2 and ψ(r) = |r|,
respectively; the first is highly sensitive to large values of ri, the latter highly insensitive. Most M-
estimates use some loss function that is a compromise between those two; the Huber loss function is equal
to r2 when r is near 0, but close to |r| when r is far from 0. This has the effect of downweighting
observations that are discordant with the rest of the data. The limiting form of downweighting is deleting
the observation entirely. M-estimation can thus be regarded as a generalization of more traditional
approaches in statistics such as removing outliers when they are detected ortrimming, in which one
automatically removes a fixed proportion of the sample from one or both tails. Theinfluence functionof
an estimator measures the rate of change in the estimator with respect to the proportion of observations
that come from a contamination point rather than from the assumed model. Robust estimators generally
have an influence function that is continuous and bounded.Bounded-influence estimatorsare those with
minimum variance subject to a specified upper bound on the value of the influence function.

Robust and resistant estimators were first developed for linear regression but have subsequently
been extended to nonlinear models. Early applications to logit were Hamilton et al. (1977) for trimmed
estimation of the LA50, Miller and Halpern (1980) for robust estimation, and Pregibon (1981, 1982) for
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bounded influence estimation. See Kunsch et al. (1989) and Morgan (1992) for some more recent
developments. Nonparametric estimation, discussed below in Section 4.4, can be seen as yet another way
of estimating a probability response model that protects against error in specifying a parametric model.

Finally, Copas (1988) has explored the possibility of dealing with outliers by modeling the
contamination process explicitly. With a binary dependent variable, outliers must take a simple form --
the recorded response is "yes" when the model yields a high probability of "no," or conversely. Thus,
Copas proposes a "transposition" model where some fraction of the responses,γ, is mis-classified:

(62) Pr{recorded response is "yes"} = (1 -γ) Pr{true response is "yes"} +γPr{true response is "no"}

where γ is a parameter to be estimated from the data along with the parameters of the true response
probability model.53 This may be regarded as a structural approach to the problem of contamination, as
opposed to that of resistant estimation.54

3.3.2 Hypothesis Tests

Given maximum likelihood coefficient estimates, formal hypothesis tests can be used to test the
inclusion of a set of variables in the model. The classical approaches to hypothesis testing are the Wald
Test, which relies on parameter estimates from the unrestricted model only, the Likelihood Ratio Test,
which relies on parameter estimates from the restricted and unrestricted models and the Lagrange
Multiplier Test which relies only on parameter estimates from the restricted model. The choice of test
is generally based on ease of computation, which for most practitioners, depends on the statistics provided
by the software package used.

Most software packages provide t-statistics for each estimated coefficient. The t-test is equal to
the square root of the Wald test and is used to test the null hypothesis that a coefficient,β0, is equal to
some value,z:

(63) t
β̂0 z

s.e.(β̂0)

where s.e.(β̂0) is equal to the asymptotic standard error ofβ̂0. The critical value for a two-tailed t-test with
95% confidence is 1.96; for a one-tailed t-test with 95% confidence it is 1.645.

The Likelihood Ratio Test compares the maximized log-likelihood function under the hypothesized
restriction (LR) with the unrestricted maximized likelihood function (L). The greater the difference between
these two values, the less likely the restriction is to be true. This test is more flexible than the t-statistic
because it can be used to compare any number of restrictions simultaneously. The test statistic is:

(64) LRT 2 (LR L)

53 Observe that this is a mixture model like (33’), but with a different structure.

54 There is some debate in the literature as to which is preferable. Copas (1988) and Jennings (1986)
argue that the techniques of resistant estimation do not carry over well from the linear model to quantal
response models; Pregibon (1988) disagrees.
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which has aχ2 distribution under the null hypothesis with the number of degrees of freedom equal to the
number of restrictions. Rejection of the null hypothesis simultaneously rejects the set of restrictions being
tested. The likelihood ratio test can be used to test for a variety of misspecification problems such as the
inclusion of variables, functional specifications or heteroscedasticity of known form.55

Lagrange multiplier tests, or score tests, have also been shown to be useful for testing a variety
of misspecification problems. These tests compare the value of the score function, or first-derivative of
the likelihood function, to see if it is significantly different from zero and are convenient because they
require only estimates of the score function under the null hypothesis (the restricted model). Davidson
and MacKinnon (1984) and McFadden (1987) show that Lagrange multiplier tests for binary response
models can be computed using linear regressions of the residual values from the restricted models.

3.3.3 Goodness of Fit Measures

Goodness of fit measures are used to assess how well a model fits the observed data. We have
already mentioned the Pearson chi-square statistic (57), which compares fitted and observed response
frequencies, and the deviance statistic (60), which compares the maximized loglikelihood function with
the "full" model, as measures of goodness of fit. Under the null hypothesis that the fitted model is the
true one, both test statistics are asymptotically distributedχ2 with M-K degrees of freedom, where M is
the number of groups defined by the bid values and categorical variables and K is the number of estimated
parameters in the model. The test statistics are attractive as goodness of fit measures because they can
use statistical inference to explicitly test the fitted model. Unfortunately, when a large number of groups
are defined, with a limited number of observations per group, the asymptoticχ2 distribution is a poor
approximation to the true distribution and statistical inference cannot be used. The approximation is
especially poor when the data are ungrouped, i.e., there is a single observation per group (Collett, 1991,
McFadden, 1976).56

Other approaches to measuring goodness of fit do not provide statistical tests but can be used as
indicators of model adequacy, perhaps for comparing different models. The McFadden pseudo-R2 is widely
used and is available in most standard software packages. It can be written as:

(65) R2 1
Lmax

L0

where L0 is the log-likelihood in the null case (where all coefficients other than the constant are assumed
to be zero) and Lmax is the unrestricted log-likelihood. There is no commonly accepted threshold value for
the pseudo-R2 that denotes a satisfactory or well-specified model; higher values are preferred. Ben-Akiva

55 Note that this procedure cannot be used to compare different model specifications that are non-
nested. Horowitz (1983) specifically addresses non-nested hypothesis testing for discrete choice models.
See also Gourieroux, Monfort and Trognon (1983), Kent (1986), Pesaran and Deaton (1978), MacKinnon
(1983) and Davidson and MacKinnon (1981).

56Furthermore, Collett (1991) has shown that, in this case, the deviance statistic does not measure
goodness of fit because the "full" model will always equal exactly zero. The deviance statistic then
depends only on the maximized log-likelihood function and not the actual observations.
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and Lerman (1985) suggest that a shortcoming of the pseudo-R2 measure is that it increases, or at least
does not decrease, when new variables are added to the model. However, if the new variables do not add
sufficient explanatory power to the model, one might prefer a more parsimonious specification. An
adjustedpseudo-R2 measure addresses this concern:

(66) .R
2

1
Lmax A

L0

Two proposals for the adjustment factor,A, have been offered. Ben-Akiva and Lerman suggest setting
A equal to the number of parameters in the model, K; Horowitz (1982) proposes setting it equal to K/2.

The classification procedure is another common approach to evaluating goodness of fit. One
generates a 2x2 classification table of hits and misses by comparing the predicted and actual outcomes.
Prediction typically uses the simple rule that an outcome is predicted to be positive when the predicted
response probability is greater than 0.5, and negative otherwise. The diagonal elements of the table
display the numbers of correctly predicted positive and negative outcomes and the off-diagonal elements
contain the numbers of mis-classified outcomes. There is no specific requirement for the minimum number
of correct predictions. The main disadvantage of this technique is that the prediction rule is simplistic and
can greatly misrepresent situations where the predicted probability is close to 0.5.

3.4 Alternatives to Maximum Likelihood Estimation

Alternatives to maximum likelihood estimation that are sometimes used in the CV literature
include minimum chi-squared estimation, the generalized linear model and quasi-maximum likelihood
estimation. Minimum chi-squared estimation is based on the Pearson chi-square statistic (57), or some
transformed version of it, taken as an overall measure of goodness of fit. It was first developed by Berkson
(1953) for logit, where the transformz = ψ(P) ≡ ln[P/(1-P)] applied to (15) yields a simple linear model

(15’) zj = α - βAj.

Let ẑj = ψ(P̂j), whereP̂j is the observed proportion of yes responses for bidAj. Then, (15’) suggests an
ordinary least squares regression ofẑj on Aj

(15") ẑj = α - βAj + υj

where υj ≡ ẑj - zj is a random error term, with E{υj} = 0.57 However, var (υj) is not a constant, and
therefore the model is heteroscedastic and must be estimated by weighted least squares. Provided thatP̂j

is not too near 0 or 1, var(υj) is asymptotically equal to V(Pj) ≡ [njPj(1-Pj)]
-1, wherenj is the number of

observations associated with bidAj. A consistent estimate of V(Pj) is given by V(P̂j) ≡ [njP̂j(1-P̂j)]
-1. The

weighted least squares estimator of (15") minimizes

Σj (ẑj - zj)
2 / V(P̂j).

57 A similar transform can be applied to the logit version of the Box-Cox model (11) by substituting
[α - byλ + b(y-Aj)

λ] for [α - βAj] in (15’) and (15"). This leads to a nonlinear least squares regression.
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The expression being minimized is a transformed version of the Pearson chi-squared statistic (57), and the
resulting estimate ofα andβ is known as the minimum chi-squared estimator. This estimator is consistent
and asymptotically normal, and has the same asymptotic covariance matrix as the maximum likelihood
estimator. Following Berkson, Amemiya (1980) showed that it has a smaller mean square error than the
maximum likelihood estimator. Minimum chi-squared estimators have been developed for probit and other
quantal response models where there exists some appropriate transform of the response variable that
generates a linear (or simple nonlinear) least squares regression like (15"); details can be found in Maddala
(1983).

By construction, when an appropriate transformation exists, the minimum chi-squared estimator
is simpler to estimate than the maximum likelihood estimator, since it involves weighted least squares
regressions (sometimes iterated, if either the transformationψ(·) or var(υ) depend on the parameters to
be estimated) and has the same asymptotic covariance matrix as the maximum likelihood estimator. Since
the approximation to the asymptotic variance breaks down whenP̂j = 0 or 1, the method cannot be applied
to individual data, just to grouped data where the observed proportions lie between 0 and 1. This is not
a problem with single-bounded CV where multiple subjects receive the same bid, Aj, unless one wants to
include covariates in the response probability model as determinants ofα and/orβ. In that case, one needs
enough data so that there are multiple observations for each given value of the covariates, a requirement
that is difficult to satisfy unless covariates take only a small number of discrete values.

In the generalized linear model (GLM), introduced by Nelder and Wedderburn (1972) and
discussed in detail in McCullagh and Nelder (1989), it is assumed that the responses {y1,...,yn} are
independent observations drawn from theexponential familyof distributions. The distribution of a random
variable Y belongs to the exponential family if the density function takes form

(67) fY(y) = exp [ (yζ - b(ζ))/a(φ) + c(y,φ) ]

where a(·), b(·), and c(·) are specified functions, andζ andφ are parameters. It follows from (67) that E(Y)
≡ µ = b’(ζ), where b’ is the first derivative of b(·), and var(Y) = a(φ)b"(ζ), where b" is the second
derivative of b(·). The parameterζ is known as the natural parameter of the distribution. The parameter
φ is known as the scale or dispersion parameter. In general, the variance can be a function of the mean,
via its dependence onζ. Different specifications of a(·), b(·), and c(·) give rise to different distributions.
For example, if a(φ) = φ ≡ σ2, b(ζ) = ζ2/2, and c(y,ζ) = {y 2/σ2 + ln (2πσ2)}/2, one has the normal
distribution with µ = ζ. Other members of this family include the Poisson, gamma, and binomial
distributions. Covariates may enter the model through the natural parameterζ, which can be written as
a functionζ = ζ(X). In a GLM, this is assumed to be a linear function,ζ = Σ Xkβk, and in this context
ζ is referred to as alinear predictor. Also, in GLM terminology, the relation between the mean, µ, and
the linear predictor,ζ, is known as thelink function: ζ = g(µ). It follows that the inverse of the link
function coincides with the derivative of the b(·) function: µ = g-1(ζ) = b’(ζ). The logit model, for example,
when viewed as a GLM, has E{Y} ≡ µ, the link function is simply the transformζ = ψ(µπ) = ln[µ/(1-µ)],
and the linear predictor isζ ≡ α - βA.

Given the GLM structure, when the method of scoring -- see (A.6) in the Appendix -- is applied
to a GLM model, the coefficient estimates obtained at each Newton-Raphson iteration turn out to be the
same as the regression coefficients that one would obtain in a weighted least squares regression with a
certain weight matrix and a certain dependent variable regressed on the covariatesX1,...,XK. Hence, the
maximum likelihood estimator can be obtained via a series of weighted least squares regressions, which
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significantly simplifies the computation.58 In the case of the logit model, the weighted least squares
regression is essentially the same as that in minimum chi-squared estimation.

Since the original work of Nelder and Wedderburn (1972) there have been several refinements and
extensions of the GLM structure. Theoverdispersionmodel of Williams (1982) provides a generalization
of the binomial and Poisson distributions. The binomial distribution imposes a tight link between mean
and variance: var (Y) =π(1-π). However, it sometimes happens that data on binary outcomes possess a
larger variance than permitted by the binomial model. This extra-binomial variation may be due to the
omission of explanatory variables or other forms of misspecification captured in the model’s random
component. If it is not possible to eliminate the extra-binomial variation by including extra covariates, the
alternative is to model it explicitly. For this purpose, Williams introduces an additional parameter,ω, the
overdispersion parameter. His model has the same linear predictorζ ≡ α - βA and the same link function
ζ = ln[π/(1-π)] as in logit, but the variance is specified as var(Y) =ωπ(1-π), whereω is estimated along
with α and β within the GLM framework. Williams iterates onω, α and β until the extra-binomial
variation is eliminated, based on a goodness of fit statistic such as the Pearson chi-square statistic (57).
Under the assumption of binomial residual dispersion, this statistic has an expected value equal to the
degrees of freedom (N-K), whereN is the number of distinct groups andK the number of parameters
estimated; reaching this value is the convergence criterion.59

Another refinement is the method of estimation known asquasi-likelihood(Wedderburn, 1974),
which extends GLM to statistical models that arenot a member of the exponential family but have first
and second moments with the same type of structure, i.e, E(Y)≡ µ = b’(ζ) and var(Y) = a(φ)b"(ζ) where
a(·) and b(·) are specified functions. Nothing else is specified about the distribution other than these two
moments. Therefore, if one proceeds to estimate the model as though applying maximum likelihood to
an exponential family, this would be a form of specification error. Althoughin general the desirable
properties of maximum likelihood estimators are lost when a model is incorrectly specified, this turns out
to be an exception where applying maximum likelihood in a situation where it is not strictly valid still
produces consistent and asymptotically normal estimators.60 The quasi-likelihood approach has come to
serve as the basis for various recent extensions of GLM, including random-coefficient versions of GLM
discussed in Section 4.1.4.

3.5 Optimal Experimental Design

In quantal response models, the bias and variance ofθ^ are functions of not only the underlying
parameters of the WTP distribution and the sample size, but also the explanatory variables, including the
bid values. This is evident from (51) and (54) for the logit model but it also applies to other binary

58 This is implemented in the statistical packages GLIM and GENSTAT.

59 Langford (1994) applies the overdispersion model to (15) and finds that, while it has little effect
on the point estimate of µ =α/β, it increases the covariance matrix for (α,β) and widens the confidence
interval for µ. Langford concludes that a conventional logit model ignoring the overdispersion would
seriously understate the true confidence interval for median WTP.

60 For the general theory of quasi-maximum likelihood estimation see Gourieroux, Montfort and
Trognon (1984), who use the term pseudo-maximum likelihood estimation, or White (1994).
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response models as well. This has led researchers to pursue the study of optimal experimental design as
an additional technique for improving the efficiency of estimates of welfare measures obtained from
discrete response CV studies. The goal of optimal experimental design is to find the bid values that
provide the maximum possible information about the parameters of the WTP distribution, given the size
of the sample. Similar issues have been studied extensively in the bioassay and applied statistics literatures
for some time (Abdelbasit and Placket 1983, Chaloner 1986, Finney 1978, Minkin 1987, Tsutakawa 1972,
1980, Wu 1985, 1988). More recently, a literature has developed on optimal design for CV experiments
(Alberini 1995b, Alberini and Carson 1993, Cameron and Huppert 1991, Cooper 1993, Duffield and
Patterson 1991, Kanninen 1993a, 1993b, Nyquist 1992). Most of this literature has focused on the logit
model (15) because of its simplicity and because, in this case, it is possible to obtain analytical results.
None of the existing design literature has dealt with the models presented in Appendix Tables 2 - 4, but
it is reasonable to assume that the many of the qualitative properties of the optimal bid design for the logit
model would carry over to these other models. Our discussion, therefore, focuses on bid design for the
logit model. We start by reviewing the impact of bid values on the bias and variance of estimators and
then go on to discuss the broad principles of optimal bid design for this model.

3.5.1 Bias and Variance in the Logit Model

Table 1 presents estimates of bias and variance for parameter values and welfare measures in the
logit model for several alternative bid designs. The biases ofα^ andβ^ are calculated using the formulas
in (51). The bias of estimated median WTP is the difference between estimated and actual median WTP:
(-α^ /β^ ) - (-α/β), whereα^ = α + bias(α^ ) andβ^ = β + bias(β^ ). The asymptotic variance of estimated median
WTP is calculated using (54). The true values of the parameters (α, β) are set at (2.5, -0.01), which yields
a median WTP value of $250. Five bid designs are compared. In each case, it is assumed that, while
respondents in the CV survey are presented with a single bid, this is drawn with equal probability from
one of several possible bid values. The first three examples involve two-point bid designs -- i.e., there are
two possible bid values, half the respondents receive one bid value and half the other.61 The first design
places the bid values fairly close to the median of the WTP distribution at $200 and $300 (38th and 62nd
percentiles). The second design has bid values of $100 and $400 (18th and 82nd percentiles). The third
design is a "tails only" design with bids in the tails of the WTP distribution: $5 and $500 (8th and 92nd
percentiles). The fourth design combines the first and third designs to create a four-point design; the aim
is to investigate how multiple-point designs perform relative to two-point designs. All of these designs are
symmetric, in that the bid values are spaced symmetrically around the median WTP. The fifth design is
an asymmetric, one-sided design involving three bid values, all greater than the median.

As Copas (1988) predicted on the basis of (51), the maximum likelihood estimates of both
parameters tend to be overstated in a small sample. Because the welfare measures involve the ratio of
parameters, the bias in the estimates of the welfare measures is substantially smaller than the biases in
the estimates of the individual parameters. Consequently, so long as the bid design does not boost the
precision of one parameter at the expense of the other, the estimate of the welfare measure may not be
too biased.

61 With a two-parameter model like logit, two design points are sufficient to identify the two
parameters of the response probability distribution. See Kanninen (1995) for a similar analysis of bias
where more than two design points are used. Previous studies of the bias in WTP estimation have involved
empirical examples using actual data (Cooper and Loomis, 1992) and Monte Carlo simulations (Kanninen
and Kriström 1993, Cooper and Loomis 1993) rather than the analytic approach employed here.
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The bias and variance of the individual parameters and the welfare measures all increase as the
bid values are placed further out into the tails of the distribution. The best design is the first one where
the bid values are fairly close to the middle of the distribution; the worst design is the one that places the
bids in the tails.62 63 The combined design, where some bids are placed in the middle and others are
placed in the tails, performs better than the "tails only" design in terms of variance but not bias. The one-
sided design does not perform well for either bias or variance.

The biases decrease with sample size. Table 1 uses a sample size of 250. The effects of increasing
sample size are easily calculated by dividing the bias by the proportionate increase in sample size. For
example, if sample size were 500, the bias ofα^ and β^ would be half of the values in the table. The
corresponding biases in the estimated welfare measure do not decrease in exactly the same proportion as
for the parameter estimates, but in practice they decrease roughly proportionately. It follows that, if there
were no financial constraints, the simplest solution for avoiding bias due to poor bid design is to have a
large sample.

The sample size and the specific value ofβ play crucial roles in the value of asymptotic variance.
As shown in Kanninen (1993a), the asymptotic variance is inversely proportional to Nβ2; this result
extends directly to non-optimal bid designs such as those presented here. As sample size increases, the
asymptotic variance decreases proportionately. Also, asβ increases, the asymptotic variance decreases.
This is becauseβ is inversely proportional to the standard deviation of the WTP distribution. Ifβ is small,
a large asymptotic variance of WTP is unavoidable.

Provided that one wants to estimate median WTP and the response probability model is correctly
specified, these results suggest that choice of bid design may not have much impact on the point estimate
of welfare measures. It can, however, have a substantial effect on the variance of the estimated welfare
measure. This is especially problematic in small samples. Consequently, our recommendations are (1)
increase the sample size, which has the effect of reducing both bias and variance; and (2) keep the bids
away from the tails, because excessively high or low bids inflate the variance of the estimated welfare
measure. While the sample size is obviously constrained by the researcher’s budget, we would typically
recommend samples of at least 500 respondents, and preferably closer to 1,000, to keep confidence
intervals down to a reasonable size.

3.5.2 Basic Principles of Optimal Design

Optimal design may seem odd to an econometrician used to taking the data as given. But, in a
discrete response CV experiment the researcher has the opportunity to influence the data by setting the
bids. To do this optimally, the researcher must first make an assumption about the form of the underlying
WTP distribution and the value of its parameters. Moreover, the researcher must decide which particular

62 In addition to losing statistical information when bid values are located in the tails, excessive high
or low bid values may strike respondents as implausible and thereby undermine the credibility of the CV
survey. They can also distort welfare estimates if outliers occur in the data (Kanninen, 1995).

63 Desvousges et al. (1993) are sometimes cited as evidence that about a third of respondents say "yes"
to a bid as high as $1,000. This is extremely unrepresentative of the general experience in CV, and reflects
the peculiar circumstances in which that survey was administered (Hanemann, 1996); in fact, such high
bids typically receive a very small proportion of "yes" responses.
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welfare measure she wishes to estimate, and must select a particular criterion for the precision of the
estimate. Those decisions will reflect her interests and priorities. For example, she might be concerned to
reduce the variance of the estimate of median WTP. This implies minimizing the asymptotic variance of
the median, given in (54) for the logit model, with respect to the bid values. In the experimental design
literature, minimizing a function of parameter estimates is known as a C-optimal design criterion.64

Alternatively, the researcher could choose a D-optimal design, based on maximizing the determinant of
the Fisher information matrix, (52). In the case of the logit model, this corresponds to jointly minimizing
the confidence intervals around the parametersα and β. This criterion would be of most use for a
researcher who is primarily interested in obtaining efficient parameter estimates, perhaps for predictive
purposes or for benefits transfer.

Optimal bid designs for the minimum variance (C-optimal) and D-optimal design criteria are
presented in Table 2. These are expressed in terms of percentiles of the underlying true WTP distribution.
Of course, since that distribution is unknown, one has to rely on estimates or guesses of the distribution
in order to identify the bid points. This is the basic paradox of optimal experimental design in nonlinear
models. The optimal design depends on the true parameter values. Therefore, one must know these in
order to engineer the best design for collecting the data. But, there would be no point in collecting the data
if one already knew the true parameter values. As indicated, one resolves this paradox in practice by
relying on prior information. In addition, it highlights a second important role for optimal design analysis,
namely interpreting the results after the data have been collected and analyzed, by helping one to
understand,ex post,which data points were influential or contributed the most statistical information.

The design results in Table 2 have several interesting features. For example, the designs are all
quite simple, consisting of no more than two different bid values each. The single-bounded C-optimal
design is especially simple, consisting of a single bid point located at what one believes to be the median
of the WTP distribution. Note that such a design does not identify the two underlying parameters,α and
β. But then it was not the goal of the optimal design to estimate these parameters -- the aim was to
estimate their ratio,α/β. The result tells us something about where the most informative bids are located:
the bid values near the center of the WTP distribution are best for obtaining an efficient estimate of
median WTP.65 Conversely, we note that no optimal design contains bids in the outer 12% of each tail
of the distribution. The outer tails of the normal and logistic distributions are quite flat, and consequently,
responses to bids lying on these parts of the distribution offer very little information about the WTP
distribution. If one wanted to obtain reliable point estimates of response probabilities in the tails of the
distribution, the sample size would have to be very large: for example, we expect to have to collect 100
observations at the 95th percentile in order to receive just five positive responses. This gets even worse
as one moves further out into the tails.

64 Other examples of C-optimal designs in the CV literature are the minimization of the variance of
a nonparametric estimator of truncated mean WTP, (44) (Duffield and Patterson, 1991) and the
minimization of the mean squared error of mean WTP (Cooper, 1993).

65 Alberini and Carson (1993) derived optimal designs for this case using higher order Taylor series
approximations to the asymptotic distribution of median WTP. They found that, while a first-order
approximation (leading to a one-point design) was generally unreliable, there was little gain from using
more than a third-order Taylor series term. They obtained two-point designs that tend to be within one
standard deviation of the center of the WTP distribution.
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3.5.3 Sequential Design

One way to resolve the paradox of optimal experimental design is to conduct the survey in stages,
using data from the earlier stages to optimize the design in the later stages. Most CV researchers do this,
at least to some degree. For example, a common practice is to employ a two-step procedure: first, perform
a pre-test to obtain preliminary information about the WTP distribution, then survey the full sample. The
pre-test results are used to design optimal bids for the full survey based on the parameter values estimated
from the pre-test data. Typically, however, pre-test sample sizes are small relative to the size of main
sample; this allocation of survey effort generates only a modest quantity of initial information.66

To take better advantage of the optimal design results available, a sequential estimation procedure
should be used, preferably with more than two stages (Kanninen 1993a, Nyquist 1992). After each
iteration of the survey, provided the survey instrument has not changed, the WTP distribution can be
estimated using all available observations so that a new (optimal) bid design can be derived for use with
the subsequent iteration of the survey. This approach can asymptotically attain the efficiency of the
theoretical optimal design results.

Kanninen (1993a) demonstrates the efficiency of sequentially updating the bid design by
performing a simulation where the initial bid design is poor, but is updated after a set number of
observations is collected. If, for example, the sample size is 500 and two iterations are performed, then
each iteration collects 250 observations; if three iterations are performed, each iteration collects 166
observations, etc. Table 3 presents the results of this experiment, comparing the simulated mean squared
error with the asymptotic mean squared error that would be obtained from a C-optimal design. For a total
sample of 500 observations split equally among iterations, the results show that the mean squared error
decreases monotonically with the number of iterations. The rate of improvement slows after three
iterations. With five iterations, the single-bounded model has a mean squared error that is only 23% larger
than the C-optimal design.

Two lessons can be learned from the CV sequential design literature. First, there are substantial
efficiency gains from increasing the number of iterations of data collection and bid design update.
Second, the use of a sequential procedure relieves concerns arising from the fact that optimal design
results call for just two bid values. With a sequential design, only two bid values are employed at each
iteration, but the values change between iterations as information is accumulated. How many bid values
are ultimately employed depends on how many iterations are performed.67 How much the bid values
differ between iterations depends on how close the initial assessment of parameter values was to the true
distribution.

3.5.4 Concluding Comments on Optimal Design

Because optimal bid designs tend to require only one or two bid points, CV researchers are

66 Pre-testing is also essential for honing the questionnaire and checking its field implementation. In
our experience, inadequacies of pre-testing are often the greatest flaw in academic CV studies. Not only
should there be a reasonably large sample for a pre-test (say, 100-200 observations), but also there needs
to be at least two and perhaps three pre-tests for a high quality survey.

67 Alberini (1995a) investigates how many design points are needed to obtain a powerful Pearson chi-
square test.
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sometimes reluctant to employ them in practice. There are clearly reasons to be concerned about using
two-point designs. First, because there isa priori uncertainty about parameter values, it is unwise to limit
the range of bid points collected. Second, because optimal bid designs vary depending on the functional
form of the underlying distribution, it is risky to base the optimal design on a particular assumption about
functional form when it is unknowna priori. For both reasons, one wants to modify optimal design results
somewhat for practical application.

As discussed above, one solution is to conduct the CV survey sequentially. This approach gives
the researcher flexibility for updating the bid designs so that the final bid design, given several iterations,
can be close to optimal. The researcher maintains the ability of adapting to new information about the
shape and position of the WTP distribution. If several iterations are performed, the data will contain
several different bid points because of the different iterations of the survey, but by the end the researcher
will have achieved an optimal set of bids to maximize efficiency.

The other solution is to hedge one’s bets by making several guesses at the true parameter values,
and then using multiple bids corresponding to the optimum designs for the various possible parameter
values. By doing this, one might end up with, say, four to six bid points. As a matter of general practice,
we would caution against having many more bid points than this. While it may seem attractive to multiply
the number of bids in the face of uncertainty about the true WTP distribution, we believe that this is
generally an unwise practice for two reasons. First, for a fixed sample size, having more bid points means
fewer observations and therefore less information at each point. Second, as noted earlier, bid points from
the tails of a distribution are generally uninformative -- for the logistic distribution, we observed that this
ruled out bid points in the outer 12% tails of the distribution. Collecting observations in those tails
typically wastes the observations; to obtain useful and reliable data so far out in the tails of the
distribution, one would need an inordinately large sample.

4. ADDITIONAL TOPICS

In this section we consider some additional statistical issues connected with discrete-response CV.
We have chosen five topics that interest us and are at the current frontiers of research, although we treat
them briefly because of space limitations. The topics are valuing multiple items, the double-bounded CV
format, extensions of the response probability model, nonparametric response probability models, and non-
response bias.

4.1 Valuing Multiple Items

So far we have focused on valuing a single item. In this section, we discuss the statistical issues
that arise when respondents value multiple items. We also briefly consider situations where the same
individual provides multiple valuations of the same item; this is then considered at greater length in
Section 4.2.

From one point of view, valuing multiple items adds nothing of substance and raises no new
issues: one merely takes each item by itself and fits a separate response probability model for that item,
using the methods discussed above. However, if the analyst believes that the response probability models
are related because they share parts of the utility function in common, there is a distinct advantage to
treating the items simultaneously. One can obtain a more efficient estimate of the model parameters by
pooling the responses, or at least analyzing them in a linked manner, thus taking advantage of the
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additional information embodied in the valuations of the other items. In this section we discuss some ways
for doing this. Our discussion is divided into three parts. Section 4.1.1 focuses on ways of formulating
hedonic models that can be applied to the valuation of multiple items. Section 4.1.2 focuses on the
stochastic specification of such models. Section 4.1.3 deals with the ways in which valuations of multiple
items can be elicited, including contingent ranking and related techniques. Section 4.1.4 considers the
connection with random coefficient models.

4.1.1 Hedonic Utility Formulations

The various items that respondents are asked to value could be either different things (e.g.,
preserving forests, preserving wetlands, preserving lakes, etc.) or different quantities of the same thing
(e.g., preserving 1 forest, preserving 2 forests, preserving 3 forests, etc). In either case, the utility function
associated with the kth item will be written uk = vk(q

k,y,εk). The baseline utility in the absence of the item
is v0(q

0,y,ε0), which may or may not vary with k. The elements that are related or shared in common may
involve the deterministic or the stochastic components of vk(q

k,y,εk), or both. We start with models where
the commonality involves just the deterministic components of the utility function. In effect, this defines
a hedonicutility model. Such models can take various forms. For example, suppose that the underlying
utility model is the Box-Cox model (11) whereβ and λ are the same for all k, whileα varies across
programs according to some functionαk = φ(qk). Thus, the utility associated with the kth program is

(68) uk φ (q k) β 







y λ 1
λ

εk

and the individual’s WTP for the kth program is

(68’) Ck y










y λ φ (q k) φ (q 0)
b

ηk

b

1
λ

where ηk ≡ εk - ε0 and b ≡ β/λ. Given the specification of a joint distribution for theηk’s, response
probability formulas can readily be generated from (68’).68 If the programs involve different quantities
of the same item, qk is a scalar andφ(·) is a univariate, and presumably quasiconcave, function. If the
programs involve different items, qk is a vector andφ(·) is a multivariate quasiconcave function. For this
purpose, one could use a standard formula from the literature such as the translog multivariate utility
function or some other flexible form. Hoehn (1991) uses a quadratic approximation to represent the change
in φ(·):69

(69) φ(qk) - φ(q0) = e + g∆k + ∆k’H∆k,

where∆k ≡ qk - q0 is the vector of changes in q, e and g are vectors of coefficients, and H is a matrix of
coefficients whose off-diagonal elements, hij, i ≠ j, reflect the utility interactions among the separate
program components. If hij < 0, i ≠ j, the ith and jth components of q are substitutes for one another, and
an increase in qj lowers the individual’s WTP for an improvement in qi; if hij > 0, i ≠ j, they are
complements, and an increase in qj raises the WTP for an improvement in qi.

68 The restrictions on stochastic specification discussed in Section 2.3 would still need to be imposed
in order to ensure that 0≤ Ck ≤ y.

69 In addition, he uses the version of (68) whereλ = 1.
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If there are only a few discrete values of the qi’s, it may be simpler to replaceφ(q), viewed as a
function of continuous variable(s), with a step function consisting of a set of constant terms and dummy
variables. Suppose, for example, that the programs involve three different items (e.g., i = 1 is forests, i
= 2 is wetlands, and i = 3 is lakes), each of which can be either left in a baseline condition or improved
by some specific amount. The change in an item is represented by a scalar index∆i, where∆i = 1 if the
item is improved, and∆i = 0 otherwise. The kth program consists of some combination∆k = (∆k

1, ∆k
2, ∆k

3).
Given that there are three resources and two possible states for each resource, there are 23 = 8 possible
programs. There are several ways to representφ(·). One model in the literature sets

(70) φ(qk) = Σi gi∆k
i + h12 ∆k

1∆k
2 + h13 ∆k

1∆k
3 + h23 ∆k

2∆k
3,

where the gi’s and hij’s are coefficients to be estimated. Another model adds a three-way interaction term

(71) φ(qk) = Σi gi∆k
i + h12 ∆k

1∆k
2 + h13 ∆k

1∆k
3 + h23 ∆k

2∆k
3 + h123 ∆k

1∆k
2∆k

3.

Both models satisfy the normalization thatφ(0,0,0) = 0. The formulation in (70) is closer to Hoehn’s
quadratic approximation in (69).70 The formulation in (71) is what is known as a fully saturated model.
Using (71), the baseline utility associated with no improvement in any resource (denoted k = 000) is

(71a) ,u000 β 







y λ 1
λ

ε000

while the utility associated with a program which improves just forests (k = 100) is

(71b) ,u100 g1 β 







y λ 1
λ

ε100

that associated with a program which improves both forests and wetlands (k = 110) is

(71c) ,u110 g1 g2 h12 β 
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ε110

and that associated with a program which improves all three resources (k =111) is

(71d) .u111 g1 g2 g3 h12 h13 h23 h123 β 




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

y λ 1
λ

ε111

The utilities associated with the other four possible programs (k= 001, 010, 011, and 101) are calculated
similarly. The corresponding formulas for the individual’s WTP to have improvement program k =xxx
instead of the baseline k = 000 are obtained by substituting (71) into (68’), from which response
probability formulas can be generated.

What is gained by using the step function hedonic model in (71)? Suppose that, instead of using
the formulation in (71), one simply used (68) but with a separate constantαk ≡ φ(qk) for each of the seven
improvement programs, yielding

70 Hoehn and Loomis (1993) use a version of (70) whereλ = 1 and apply this to a case where there
are two discrete levels of qki in addition to the baseline q0

i .
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(72) .uk αk β 
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In this case, it would be natural to impose the normalization thatα000 = 0. Fitting (72) to CV data covering
all of the improvement programs provides estimates of the constantsα100, α110, α111, α101, α001, α010 and
α011. A comparison of (72) with (71b,c) shows thatα100 = g1, α010 = g2, andα110 = g1 + g2 + h12. Hence,
h12 = α110 - α100 - α010. The other parameters h13, h23 and h123 can similarly be obtained as linear
combinations of theαk’s. Thus, there is a one-to-one mapping between the sevenαk’s in (72) and the
seven parameters (g’s and h’s) in (71). It follows that (72) is equivalent to the fully saturated model in
(71). By contrast, the model in (70) is not equivalent to (72) because it has fewer parameters -- given
estimates of theαk’s from (72), the h’s in (70) are over-identified.

Within the framework of the Box-Cox model (68), the formulation in (71) can be regarded as the
most general, non-parametric representation of theφ(·) function that can be estimated from responses to
CV questions about the seven programs. Other formulations such as (70) are restrictions of this general
model. If the components of q really can take on more than two discrete values associated with the
programs in the CV survey, estimating (68) with some particular parametric representation ofφ(·) has the
advantage that it allows one to predict the individual’s WTP for a range of programs different from those
covered in the survey. But, this advantage comes at the cost of imposing a particular parametric
representation onφ(·).

4.1.2 Multivariate WTP Distributions

We have focused so far on ways to model the deterministic component of v(qk,y,εk) that allow for
linkage in preferences for the various items. We have said nothing about the stochastic specification of
theεk’s. Existing empirical models of multi-item valuation generally assume that these are independently
and identically distributed (iid) -- i.e., there isno linkage among the stochastic components of preferences
for the various items. There are two reasons why this may be inadequate. First, there may be unobserved
attributes of the programs which induce some correlation in preferences for them (two programs which
the analyst is treating as separate may actually be related because of factors that the analyst has
overlooked, and this will appear to the analyst as inducing correlation among people’s preferences for
them). Second, there may be unobserved attributes of the respondents which induce correlation in
preferences for programs (an individual who particularly likes one type of program may be more inclined
to like (or dislike) another type). In these cases, one needs to introduce some joint density for theεk’s,
fε(ε0,ε1,..,εK), with a non-diagonal covariance matrix. How one might do that is the subject of this section.

Continuing with the Box-Cox model, the dependence among theεk’s in (68) carries over to the
ηk’s and the Ck’s. The joint density fε(ε0,ε1,..,εK) induces a joint density fη(η1,..,ηK) and, via (68’), a joint
density gC(C1,..,CK). The latter is used to represent the response probability formula for the suite of
program valuations. Suppose, for example, that there are K = 3 programs which are evaluated using the
single-bounded, discrete-response format. Let Ak denote the dollar cost presented to the individual for the
kth program. Suppose, the individual answers "no" to programs 1 and 3, but "yes" to program 2. From
(6a,b), the probability of these responses is given by

(73) Pr{"no" to 1 and 3, "yes" to 2} = Pr{C1 ≤ A1, C2 ≥ A2, and C3 ≤ A3}
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= gC(C1,C2,C3) dc1 dc2 dc3⌡
⌠A1

0 ⌡
⌠C max

2

A2
⌡
⌠A3

0

where Cm
k

ax ≤ y is the upper bound on the individual’s WTP for program k. Let GC(C1,..,CK) be the joint
distribution function associated with the density gC(C1,..,CK), and let G(k)(C1,..,CK) denote the partial
derivative of this joint distribution with respect to the kth argument: G(k)(C1,..,CK) ≡ ∂GC(C1,..,CK)/∂Ck. An
equivalent way of expressing (73) is

(73’) Pr{C1 ≤ A1, C2 ≥ A2, and C3 ≤ A3} = G(2)(A1,C2,A3) dc2.⌡
⌠C max

2

A2

As noted above, the existing CV literature on multi-item valuation generally assumes independence among
the Ck’s (Loomis, Hanemann and Wegge 1990, Hoehn 1991, Hoehn and Loomis 1993). In that case, the
response probability formula for the suite of responses is the product of the marginal response probabilities
for the individual programs

(74) Pr{C1 ≤ A1, C2 ≥ A2, and C3 ≤ A3} = Pr{C1 ≤ A1}·Pr{C2 ≥ A2}·Pr{C3 ≤ A3}.

With stochastic dependence among the Ck’s, however, the factoring into marginal probabilities does not
apply, and one must deal directly with the joint response probability. In general, this involves a K-
dimensional integral, as in (73). The question is whether there are stochastic specifications that yield
tractable formulations for this integral while still allowing for a general covariance structure among the
random components of preferences. Achieving this is not simple.

A natural starting point is to look for some multivariate generalization of the logistic distribution
that retains a closed-form representation of the multivariate cdf for theηk’s. Arnold (1992) reviews a
variety of multivariate distributions that have the univariate logistic as their marginal distribution. But,
most of these entail severe restrictions on the covariance structure. For example, the simplest formulation
of a multivariate logistic cdf is

(75) Fη(η1,..,ηK) = ,(1 k e ηk) 1

but this imposes a correlation among values for pairs of programs ofρ(ηk,ηl) = 0.5. Arnold describes some
other multivariate logistic distributions, but these still involve correlation coefficients restricted to a subset
of the interval [-1,1] that is likely to be unsuitable for CV applications. Wu, Cosslett and Randall (1992)
use McFadden’s (1978) Generalized Extreme Value distribution for theεk’s to generate a nested logistic
distribution for theηk’s. Suppose, for example, that (ε0, ε1,..,εK) can be partitioned in a two-level
clustering. In the top level, there are R groups; in the rth group, there are Sr elements. The multivariate cdf
for the εk’s then takes the form

(76) Fε(ε) = exp













R

r 1











Sr

s 1

exp εS

1
θr

θr

where theθr’s are parameters that determine within-group correlation.71 The correlation coefficients are

71 The distribution in (75) is essentially a special case of (76) with R = 1. It should be emphasized
that the distributions of stochastic components discussed in Sections 4.1.2-4 may all need to be modified
by censoring or truncation, along the lines described in Section 2.3, in order to satisfy the economic
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(Johnson and Kotz 1972, p.256):
1 - θr

2 if εk andεl are both in the rth group,
corr(εk,εl) =

0 if εk andεl are in different groups.

Since there is usually a restriction thatθr ≤ 1, this does not allow for any negative correlation among the
εk’s. More generally, there does not appear to be any multivariate logistic distribution that would allow
for a full range of positive or negative correlation among preferences for programs.

When K = 2, the problem can be solved by using Mardia’s (1970) method for generating a
bivariate distribution with specified marginals and an unrestricted correlation. Let Fi(ηi) be the marginal
distribution forηi, i = 1, 2. Let G(x,y;ρ) be some bivariate cdf with an unrestricted correlation coefficient,
ρ, and with marginal distributions GX(x) and GY(y). One creates the transformed variablesη*1 = GX

-

1[F1(η1)] ≡ J1(η1) andη*2 = GY
-1[F2(η2)] ≡ J2(η2) and endows them with the specified bivariate distribution,

thereby inducing a joint distribution forη1 andη2, G[J1(η1), J2(η2); ρ]. For example, one could use the
standard logistic distribution, Fi(η) = (1 + eη)-1, combined with a standard bivariate normal for G(x,y;ρ).
This is convenient way to generate bivariate distributions with a general correlation structure, but it does
not readily extend to multivariate distributions for K > 2.72

In the multivariate case, the best approach is to use a multivariate normal distribution. While this
requires numerical evaluation it permits a general covariance structure that offers maximum flexibility in
modelling preferences for multiple programs. Until recently, this would not have been regarded as a
feasible option. While many software packages will evaluate a bivariate normal integral, numerical
integration methods are required for K > 2 that until recently were considered impractical.73 For
multivariate probit models (discussed further in Section 4.1.3), numerical approximations were used based
on formulas developed by Clark (1961) for the moments of the maximum of (non-iid) normal random
variables; this maximum is not itself a normal variate, but the approximation treats it as though it were.
In practice, however, the approximation turns out to be poor when individual variances are highly
dissimilar or there are negative correlations (Horowitz, Sparmonn and Daganzo, 1984), and this approach
is rarely used now. Lerman and Manski (1981) proposed an alternative approach based on sampling from
multivariate normal distributions via Monte Carlo simulation and evaluating multinomial choice
probabilities based on the proportion of outcomes in the empirical simulation. Since the empirical
cumulative distribution (ecdf) converges to the true cdf (given certain regularity conditions), any function
of the ecdf will converge to the corresponding function of the cdf itself. The Lerman and Manski method
combined simulation of the likelihood function for given parameter values with iteration over parameter
values to achieve numerical maximization of the likelihood function. In application, this proved to be
almost as burdensome as numerical quadrature of the integrals. A breakthrough occurred when McFadden
(1989) and Pakes and Pollard (1989) found a different method of simulating multinomial probabilities that
required far fewer simulations yet provided consistent and almost efficient parameter estimates. This has
led to the development of a variety of highly efficient simulation algorithms; the leading algorithm is

restriction that 0≤ Ck ≤ y and perhaps also to ensure some pattern of stochastic ordering among the uk’s.
72 Lee (1983) applies this method to create a generalized selectivity bias model; Ward (1995) uses it

for double-bounded CV.
73 Chapman and Hanemann (1993) use the bivariate normal distribution combined with the Box-Cox

model (72) in a CV study where K = 2.
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currently the Geweke-Hajivassiliou-Keane (GHK) simulator.74 This has been applied to the analysis of
contingent ranking data by Hajivassiliou and Ruud (1994) and Layton (1995).

So far, we have focused on dependent multivariate distributions for theεk’s, ηk’s or Ck’s. The Ck’s
can be thought of as latent variables which generate the observed binary responses via the crossing of a
threshold, as in (3) or (6a,b). Instead of modelling dependence among these latent continuous variables,
an alternative is to model dependence among the binary response variables directly. This type of model,
known as multivariate logit or simultaneous logit, was introduced by Cox (1972), Nerlove and Press
(1973) and Schmidt and Strauss (1975), and has recently been the focus of much attention in the
biometrics literature. Let Yk denote the binary response for the kth program in a single-bounded CV format
with bid Ak, and let yk = 0 or 1 denote the realization of this variable. The quadratic exponential model
(Cox, 1972; Zhao and Prentice, 1990) characterizes the joint distribution of the Yk’s as a log-linear model
with third order and higher terms zeroed out

(77) Pr{Y1 = y1,..,YK = yK} = (1/∆) exp ( Σk γkyk + Σk<l γklykyl )

where∆ is a normalization constant which ensures that the probabilities sum to unity. This implies that
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Pr Yk 1 Yl yl, Yk 0, k ≠ k,l
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Pr Yl 1 Yk yk, Yk 0, k ≠ k,l

Pr Yl 0 Yk yk, Yk 0, k ≠ k,l
γl γklyk

Hence, in this model,γk is the log of the odds ratio for Yk conditional on Yk’ = 0 all k’ ≠ k

,ln
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Pr Yk 1 Yk 0, k ≠ k

Pr Yk 0 Yk 0, k ≠ k
γk

which, in the Box-Cox model (72), would take the form

γk = αk + b(y-Ak)
λ - byλ.

Theγkl term measures the association between Yk and Yl; it characterizes how the conditional distribution
of Yk depends on Yl,

ln

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


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Pr{ Yk 1,Yl 1 Yk′ 0, k′ ≠ k, l} Pr{ Yk 0,Yl 0 Yk′ 0,k′ ≠ k, l}

Pr{ Yk 1,Yl 0 Yk′ 0, k′ ≠ k, l} Pr{( Yk′ 0,Yl 1 Yk′ 0,k ≠ k, l}
γkl

74 For further discussion of these approaches see Hajivassiliou (1993), Keane (1993), and Hajivassiliou
and Ruud (1994).
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and, equally, how the conditional distribution of Yl depends on Yk. Yk and Yl are positively associated if
γkl > 0, and negatively ifγkl < 0. The parameters to be estimated are b,λ, the αk’s (or an underlying
parametric function,φ(qk), which generates them) and theγkl’s, which may themselves be expressed as
functions of covariates. Estimation is by maximum likelihood (Fitzmaurice and Laird, 1993) or the method
of moments (Liang, Zeger and Qaqish, 1992).

Though it is relatively tractable, this approach to creating a stochastic dependence among the
evaluations of multiple programs has the disadvantage that one cannot directly recover from (77) an
explicit multivariate distribution of the Ck’s. Moreover, when applied to different elicitation formats that
generate different types of discrete response such as single-bounded versus double-bounded (discussed in
Section 4.2) or referendum-style voting versus ranking (discussed immediately below), the approach in
(77) implies a separate and distinct underlying distribution of the Ck’s for each format. In effect, this
method of modelling stochastic dependence provides a statistical association among the dependent
variables but not a structural association, a criticism made in a different context by Heckman (1978) and
Maddala (1983). In contrast, directly specifying a dependent multivariate WTP distribution yields a
structural model that can be applied consistently across different elicitation formats.

4.1.3 Contingent Ranking and Related Techniques

In this section we discuss contingent ranking and two related techniques, contingent choice and
mixed choice/ranking. In the referendum CV format, the respondent is presented with a set of programs,
each offering some set of environmental amenities qk at a cost Ak, and votes "yes" or "no" on each
program. An alternative is to have the respondentrank the programs from most to least preferred. This
is known as contingent ranking. It was introduced by Beggs et al. (1981) and Chapman and Staelin (1982)
for automobile and college choices, respectively, and first applied to environmental valuation by Rae
(1982, 1983); recent applications are summarized in Layton (1995). In this case, the response is not a set
of 1’s and 0’s but a set of integers from 1 to K giving each program’s rank. Index the items so that k =
1 is rated highest and k = K lowest. Given the RUM setting, the probability of this ranking is

Pr {item 1 ranked 1st, item 2 ranked 2nd, ... , item K ranked last} =
(78)

Pr{v1(q
1,y-A1,ε1) ≥ v2(q

2,y-A2,ε2) ≥ ···≥ vK(qK,y-AK,εK)}.

Suppose the utility functions have an additively random structure as described in footnote 12, uk = vk(q
k,y-

Ak) + εk; the Box-Cox models (11) and (68) would be examples. Define the utility differencesδk ≡
vk(q

k,y-Ak) - vk+1(q
k+1,y-Ak+1) and let ηk ≡ εk+1 - εk, k = 1,..,K-1. The ranking response can then be

expressed in terms of fη(η1,..,ηK-1), the joint density of theηk’s, as

(79) Pr {item 1 ranked 1st, item 2 ranked 2nd, ... , item K ranked last} =

.⌡
⌠δ1

∞ ⌡
⌠δK 1

∞
fη(η1, ,ηK 1) dη1 dηK 1

Before discussing the statistical models that can be generated from (78) or (79), four points should
be noted about the economic implications of ranking responses. First, with ranking responses as with
referendum choices, the response probabilities depend essentially on differences in utilities. Therefore,
there will generally be some identifiability restrictions like those noted in footnote 11. Second, with
contingent ranking and related techniques, it is not necessary that the baseline status quo (receive q0, pay
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A0 = 0) be included among the items for respondents to consider. There may be practical advantages in
doing this, for example with the mixed choice/ranking model to be described below, but it is not required
in order to obtain a valid measure of individual preferences. Of course, if the status quo is not included,
one cannot recover from (78) or (79) an estimate of the parameters uniquely associated with the utility
function v0(q0,y,ε0); but, one will be able to recover an estimate of those associated with vk(q

k,y,εk), k ≠
0.75 Third, regardless of whether or not the status quo is included as an item to be ranked, it isnot
generally possible to characterize the ranking response in terms of the multivariate WTP distribution. With
referendum responses, as we noted in Section 2.2, it makes no difference whether one follows the
approach to model formulation associated with Hanemann (1984a) based on the specification of indirect
utility functions, or the approach associated with Cameron (1988) which directly specifies a WTP
distribution. Both approaches lead to exactly the same response probability formula for referendum
responses. This does not carry over to contingent ranking or contingent choice. In those cases, the
responses generally cannot be expressed in term of the WTP’s for the individual items (the Ck’s). For
example, suppose that K = 2 and theindividual ranks the items such that

v1(q
1,y-A1,ε1) ≥ v2(q

2,y-A2,ε2).

This is not equivalent to the condition that

C1 - A1 ≥ C2 - A2.

Therefore, the joint density of C1 and C2 cannot usefully be employed to characterize the probability of
the ranking responses.76

Fourth, when one thinks of the observed responses in terms of an underlying RUM model, there
is an obvious link between ranking andchoice. In a standard choice exercise, respondents are presented
with K items and asked to choose one of them. Choice thus corresponds to apartial ranking where just
one item is ranked, the most preferred:77

(80) Pr{kth item chosen} = Pr{kth item ranked first} = Pr{vk(q
k,y-Ak,εk) ≥ vl(q

l,y-Al,εl), l = 1,..,K}.

Assume the utility functions have an additively random structure like that leading to (79). For simplicity,
let k = 1 be theitem chosen. Define the utility differencesδk ≡ v1(q

1,y-A1) - vk(q
k,y-Ak) and letηk ≡ εk -

ε1, k = 2,..,K; the choice probability can then be expressed in terms of fη(η2,..,ηK), the joint density of
the ηk’s, as

75 If one uses some form of hedonic model, it may be possible to extrapolate the parameters of
v0(q0,y,ε0) from those of the utility functions vk(q

k,y,εk), k ≠ 0. Freeman’s (1991) objection to the use of
rating or ranking for preference elicitation is essentially that the omission of a status quo alternative
prevents one from recovering v0(q0,y,ε0).

76 An exception occurs when there are no income effects, as in (18a,b). In that case, the two conditions
are equivalent and the ranking response can be characterized in terms of the multivariate WTP distribution.
The general non-equivalence of the two characterizations arises because of the non-additivity of WTP and
WTA -- the sum of the WTP (WTA) for a change from q0 to q1 plus the WTP (WTA) for a change from
q1 to q2 doesnot in general equal the WTP (WTA) for the change from q0 to q2.

77 This equivalence requires a regularity condition which is described in Barbera and Pattanaik (1986).
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(81) Pr{item 1 chosen} = .⌡
⌠δ2

∞ ⌡
⌠δK

∞
fη(η2, ,ηK) dη2 dηK

If there are only 2 items, item 1 with (q1, A1) and item 0 with (q0, A0 = 0), (81) reduces to (4). That is to
say, referendum-like voting of the type considered in sections 2 and 3 is simply a choice among K = 2
alternatives; conversely, the contingent choice model is a generalization of voting to more than two
courses of action. If theεk’s are multivariate normal, then fη(η2,..,ηK) is also multivariate normal and (81)
is a multivariate generalization of the probit model in (14), known as multinomial probit (Hausman and
Wise, 1978). If theεk’s are iid extreme value variates with scale parameterτ, the ηk’s are iid logistic
variates with scale parameterτ and (81) is a multivariate generalization of the logit model in (15), known
as multinomial logit (McFadden, 1974). In that case, the joint distribution function, Fη(η2,..,ηK), takes the
form78

(82a) Fη(η2,..,ηK) = Π
K

k 2
1 e ηk /τ 1

and the choice probability in (81) has a closed-form representation79

(82b) Pr{item 1 chosen} = ev1(q 1,y A1)/τ
K

k 1
evk(q

k,y Ak)/τ

=










1
K

k 2

evk(q
k,y Ak) /τ v1(q 1,y A1) /τ

1

.

Let P(k|C) denote the probability that item k is the one chosen when the alternatives available are the set
C. The multinomial logit choice probabilities possess the property that, for any sets C and T, where C⊆
T, and for any alternatives k, l∈ C,

(83) = .P ( i | C )
P ( j | C )

P ( i | T )
P ( j | T )

This is theindependence of irrelevant alternatives (IIA)property of choice (Luce, 1959). McFadden (1974)
and Yellot (1977) establish that RUM choice probabilities satisfy IIA if and only if the uk’s are
independent extreme value variates with a common scale parameter. However, as Debreu (1960) first
observed, IIA is not necessarily a plausible or reasonable property for choice behavior since it generates
what is known as the "red bus/blue bus" paradox (Ben-Akiva and Lerman, 1985). The generalized extreme
value distribution (76) relaxes IIA partially, but not within individual groups; the multivariate normal
distribution eliminates it entirely.

Just as choice is a form of ranking, the converse also holds: ranking can be seen as a series of
choices. Suppose there are four items and the individual ranks items 1, 2, 3, and 4 in descending order.
Given some regularity conditions, the joint probability of this ranking response can be expressed as a
product of conditional choice probabilities

78 Note the difference between this and (75), in which theηk’s are not independent.
79 In addition to identification problems with the utility differences, there may also be a problem

associated with the scaling parameterτ; conventionally one imposes the restriction thatτ = 1.
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(84) Pr {item 1 ranked 1st, item 2 ranked 2nd, item 3 ranked 3rd, item 4 ranked last} =

P ( 1 | 1,2,3,4 ) · P ( 2 | 2,3,4 ) · P ( 3 | 3,4 )

where the first term on the RHS is the conditional probability that 1 is chosen out of {1,2,3,4}, conditional
on 2 being chosen out of {2,3,4} and 3 being chosen out of {3,4}; the second term is the conditional
probability that 2 is chosen out of {2,3,4} conditional on 3 being chosen out of {3,4}; and the third term
is the unconditional probability that 3 is chosen out of {3,4}. In general, however, these conditional
probabilities involve complex expressions because the conditional probability of the utility associated with
the most favored item depends on the ordering of the other items. Thecascading choice theoremof Luce
and Suppes (1965) establishes that, when the uk’s satisfy the IIA property, these conditional probabilities
are independentof the ordering of the less favored choices. Hence, (84) holds as a simple product of
unconditionalchoice probabilities on the RHS. This comes about if and only if the individual uk’s are
independent extreme value variates with a common scale parameter (Strauss, 1979; Yellot, 1980). In that
case the RHS of (84) involves the product of a set of multinomial logit choice probabilities; with the
additively random formulation used above, this takes the form

(85) Pr {item 1 ranked 1st, item 2 ranked 2nd, ... , item K ranked last} =

Π
K 1

k 1
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evk(q
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K

l k

evl(q
l, y Al) /τ

where one conventionally setsτ = 1.80

To summarize, if theεk’s in an additively random model have the extreme value distribution, the
ranking response probabilities take the form in (85). In all other cases, including additive models where
theεk’s follow the normal or generalized extreme value distribution, the ranking response probabilities take
the form given in (78) or (79). Until recently, applications of contingent ranking used the logit
formulation. As noted above, the multivariate normal distribution affords a more general covariance
structure for the uk’s and, while there is no closed form representation for the choice probabilities in (79),
Layton (1995) finds that simulation techniques such as GHK are eminently practical.

Compared to contingent choice, contingent ranking offers two advantages. First, some parameters
of the utility function not estimable with data on only the single most preferred choice may be estimable
with data on the complete ranking; this can occur when the distribution of the most preferred item in the
sample data is highly skewed. Second, rankings provide more statistical information than choice, which
leads to tighter confidence intervals around parameter estimates.81 In practice, however, it turns out that
the extra information comes at a cost; the general experience is that some rankings are often inconsistent
and they tend to become increasingly noisy as the lower ranked items are included, causing attenuation
in the estimated coefficients of explanatory variables. When one thinks of the cognitive burden involved,
this should not be a surprise. Ranking every item in the set is harder than identifying the best item. Some
items may be easier to rank than others and, as Ben-Akiva et al. (1992) suggest, people may use different
decision criteria for different rankings (e.g., the weights on attributes change when they are selecting the
best item versus lower-ranked items). Growing respondent fatigue could explain why lower rankings might

80 The ranked probit and logit models in (79) and (85) are not be confused with ordered probit and
logit models, presented below in equation (88).

81 For an exploration of both these issues, see Waldman (1983).
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be less reliable. Alternatively, while the top- and bottom-ranked items might be easy to discern, it could
be harder to discriminate among the items in the middle.

Chapman and Staelin (1982) framed the issue as a trade-off between reducing sampling variance
when one incorporates more of the rankings versus greater bias due to increasing unreliability. They
suggested systematically varying the number of ranks included in the analysis and stopping when there
was a significant decrease in goodness of fit or significant evidence of changing estimates of coefficients.
In their empirical study, which involved the linear model (12) applied to rankings of 3 or 4 items, they
found it desirable to restrict the analysis to the ranking of the top two items. Hausman and Ruud (1987)
estimate a similar utility model for rankings of 8 items and apply both a Durbin-Hausman specification
test for the IIA property and a consistency test for constant ratios of attribute coefficients; both tests reject
the logit ranking model (85). The same result was obtained by Ben-Akiva at el. (1992) when they
analyzed rankings of four items. To deal with this, Hausman and Ruud propose a modification of (85)
whereby the scale parameter,τ, varies across rankings. This allows for differences in cognitive burden,
decision criterion, or carefulness among the rankings. Letτk be the scaling parameter associated with the
kth ranking, k = 1,..,K-1, whereτK-1 is normalized to unity; smaller values ofτk correspond to less noisy
rankings. Hausman and Ruud’s rank-ordered heteroscedastic logit model is82 83

(86) Pr {item 1 ranked 1st, item 2 ranked 2nd, ... , item K ranked last} =
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They find that theτk’s significantly increase with k, though not monotically. Ben-Akiva et al. (1992) find
the same. But, they also find that, while their first two rankings can be combined together, their third is
still not consistent with the other two rankings; even after re-scaling, the rankings still violate the IIA
property assumed by (86). When Layton (1995) analyzed partial rankings data, he found that the rank-
ordered heteroscedastic logit model was inappropriate; he concluded that the variation in parameter
estimates for different rankings was caused not by heteroscedasticity across rankings but rather by a
violation of IIA. To handle this, he employed a rank-ordered heteroscedastic multivariate normal model
(79), derived from a random coefficient version of (12). He found this fitted the data well and eliminated
the inconsistency among the rankings.

While more experience is needed, the rank-ordered heteroscedastic multivariate normal model
seems promising since it provides considerable flexibility and permits one to model a variety of response
phenomena. For example, the variances of the uk’s could be made a function of the degree to which the
item is similar in its characteristics to other items in the set, as measured by some distance metric. One
hypothesis is that greater similarity among items makes it harder to rank them. An alternative hypothesis

82 It should be noted that (86) does not appear to be strictly consistent with the RUM framework. If
the uk’s are extreme value variates with a common scale parameter, as noted above, (85) is equivalent to
(78). But, if they havedifferentscale parameters, one no longer obtains the logistic for the distribution
of their differences. We are not aware of a stochastic specification of the uk’s that would make (86)
equivalent to (78). In effect, (86) implies a separate set of preferences for each ranking activity.

83 The heteroscedastic logit model is also used for choices where data from separate choice tasks are
to be combined in a single estimation; the choice probabilities for each task are given by (82b), with the
τk’s varying across the data sets. For examples and references, see the chapter by Adamowicz et al.
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is that greaterdivergencemakes it harder to rank items.84 One might also be able to obtain from
respondents an assessment of how hard they found the rankings, and then parametrize the variances of the
uk’s as a function of task difficulty.85

In addition to changing the stochastic specification of RUM preferences, another way to improve
the results from ranking experiments is to modify the ranking task so as to lighten the cognitive burden
on respondents. Since respondent fatigue could be a problem, it may be desirable to limit the number of
items in the set to be considered. It may also be useful to mix ranking with choice, in order to limit the
number of ranking evaluations. Suppose the survey includes the status quo along with other programs. One
might ask respondents to separate the programs into those that are better than the status quo, and therefore
worth paying for, versus those that are not, and then have them rank the former but not the latter. Ranking
items which one does not want may be a futile task (Mitchell and Carson, 1989). Suppose the individual
considers that items 1,..,I are an improvement over the status quo, while items I+1,.,,K are not, and she
ranks the former in descending order; with this mixture of choice and ranking, the response probability
is the following blend of (78) and (80) :

Pr {item 1 ranked 1st, item 2 ranked 2nd, .., item I ranked Ith, and items I+1,..,K deemed unacceptable} =

(87) Pr{v1(q
1,y-A1,ε1) ≥ v2(q

2,y-A2,ε2) ≥ ···≥ vI(q
I,y-AI,εI) ≥ v0(q

0,y,ε0),
and v0(q

0,y,ε0) ≥ vk(q
k,y-Ak,εk), k = I+1,..,K}.

With the additively random formulation of (79) and (81) the response probability formula becomes:

Pr {item 1 ranked 1st, item 2 ranked 2nd, .., item I ranked Ith, and items I+1,..,K deemed unacceptable} =

(87a) ,⌡
⌠δ1

∞ ⌡
⌠δI

∞ ⌡
⌠δI 1

∞ ⌡
⌠δK

∞
fηη(η1, ,ηI,ηI 1, ηK) dη1 dηI dηI 1 dηK

where δk ≡ vk(q
k,y-Ak) - vk+1(q

k+1,y-Ak+1), k = 1,..,I-1, δI ≡ vI(q
I,y-AI) - v0(q

0,y-A0), δk ≡ vk(q
k,y-Ak) -

v0(q
0,y-A0), k = I+1,..,K, ηk ≡ εk+1 - εk, k = 1,..,I-1, ηI ≡ εI - ε0, ηk ≡ εk - ε0, k = I+1,..,K. While an

extreme value distribution for theεk’s yields a closed form expression for (87a), a multivariate normal
distribution seems preferable for the reasons given above.

We end this discussion of contingent ranking and choice with some comments on (1) welfare
evaluation with these preference elicitation methods, and (2) their relation to conjoint analysis. Contingent
choice and ranking differ from referendum CV in two ways. Instead of valuing a single item, as in
referendum CV, the goal with choice and ranking is to estimate a utility function, or a system of utility
functions, that can be used to valuemanyitems, perhaps including items not covered in the CV survey
whose value can be extrapolated from the utility model fitted to the survey responses. Second, contingent
choice and ranking break the direct tie between response probabilities and welfare measures that is present
in referendum (binary choice) CV. The response probability for ranking or multivariate choice is
constructed from a multivariate utility distribution rather than a multivariate WTP distribution (i.e., from

84 The results in Mazzotta and Opaluch (1995) provide some support for the second hypothesis; these
are consistent with observing a higher variance when items differ on more attributes.

85 For example, an interesting model by Swait and Adamowicz (1996) makes the variances a function
of an entropy measure of the differences in attribute vectors.
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the joint distribution of the uk’s rather than the Ck’s). Formulation and estimation of monetary measures
of value proceeds separately from, and subsequent to, the modelling of survey responses.

It should also be noted that, in a multivariate setting, there is an important distinction between
conditional and unconditionalwelfare evaluation. The welfare measures used with referendum CV, as
discussed in Section 2, are conditional since they measure the WTP or WTA to have one specific qk versus
another; the Ck in (5) is constructed so as to equate the conditional utility uk with the conditional utility
u0. Multivariate choice, by contrast, generally takes an unconditional approach to welfare evaluation and
focuses on the WTP or WTA for a change in the attributes of one or more of the items unconditional on
the individual’s selecting those items. It values a change in the entire vector of qk’s, from, say, Q0 ≡
(q10,..,qk0,..,qK0) to Q1 ≡ (q11,..,qk1,..,qK1) and employs the unconditional indirect utility function, v(Q,A,y,ε)
≡ max {v1(q

1,y-A1,ε1),..,vK(qK,y-AK,εK)}; the welfare measure is the monetary compensation that equates
the post-change unconditional utility with the pre-change unconditional utility. This turns out to be
somewhat like taking conditional welfare measures and then weighing them by the probability that the
item involved is the one selected.86

The termconjoint analysiswas coined by Green and Srinivasan (1978) to cover a variety of
preference elicitation techniques used in psychometrics and market research.87 These include forms of
ranking and choice, as well asrating, where respondents are asked to rate a set of items on a scale from,
say, 1 to 10 or 1 to 100.88 A distinctive feature is that respondents typically perform multiple tasks, and
a separate preference model is often fitted for each respondent.89 The items to which subjects respond
are selected by the researcher to span some attribute space, often with special designs such as fractionated
sampling (Green, 1974; Louviere, 1988). Data collected through one form of elicitation may be converted
into another equivalent form for the purposes of analysis. For example, subjects may be asked to rate a
large set of items but, for model fitting, their ratings are converted into implied rankings or choices. Or,
subjects may be asked to make a sequence of choices among pairs of items, but their pairwise choices are
then converted into an implied ranking over the entire set of items. The statistical models used to analyze
conjoint responses are typically not designed to satisfy the economic restrictions discussed in Section 2.3.
They tend to be either linear models of the form uk = Σr βrxkr + εk, where xkr is the level of the rth attribute
in item k, which is essentially equivalent to (12), orideal pointmodels where uk = - Σr βr(xkr - x*k r)

2 + εk,
where x*k r is the individual’s ideal level for the rth attribute.90 Aside from the multiple responses per

86 For a formal development of unconditional welfare measurement in multivariate RUM choice
models, see Hanemann (1983a, 1985b).

87 For summaries of what is now a vast literature, see Green and Srinivasan (1990) or Carroll and
Green (1995). The review by Louviere (1994) emphasizes choice-based conjoint analysis, which we have
called contingent choice.

88 Sometimes, the rating scale is cast in terms likelihood of purchase -- e.g., 1 means "I would never
buy this," while 100 means "I would definitely buy it." In that case, it may be possible to apply to the
conjoint ratings the statistical models of preference uncertainty discussed at the end of Section 4.3.

89 Some form of cluster analysis may be used to group subjects into market segments for the purposes
of demand analysis and projection.

90 The x*k r’s may be elicited directly as part of the survey, or they may be estimated from subjects’
responses. Another model commonly used in conjoint analysis, besides linear and ideal point utility
models, is thepart-worth function; this posits an additively separable utility function uk = Σr ψr(xkr) + εk

where ψr(·) is the sub-utility (part-worth) function for the rth attribute. In practice,ψr(xkr) is usually
estimated for only a few selected levels of xkr, with the value for other levels of xkr obtained by
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subject and the form of the statistical model, to the extent that conjoint data are analyzed as ranking or
choices, there is no essential difference with the contingent ranking or choice techniques described above.

The older tradition in conjoint analysis is to take the ratings as a cardinal measure of preference
and fit a utility function directly to them, uk = vk(q

k,y-Ak,εk), using ordinary least squares regression, linear
programming or some other method of estimation.91 92 As cardinal measures of utility, ratings have the
advantage of providing more information since they convey intensity of preference, unlike the ordinal
measures of preference associated with ranking or choice. However, the extra information comes at some
cost. Pooling responses across individuals presumes inter-personal comparability of utility, the practical
feasibility of which has been debated in economics since the 1930’s.93 For example, a rating of "5" may
mean different things to different people. Certainly, it often happens that different subjects center their
ratings on different parts of the scale. Fitting a separate response model for each subject can be viewed
as one way of circumventing inter-personal comparisons; but the problem reappears as soon as one
extrapolates from individual subjects to market segments. A recent CV application of conjoint analysis
by Roe et al. (forthcoming), which pooled ratings across individuals, attempted to control for differences
in centering by having one scenario (the status quo) that was rated by everybody and then estimating
utility difference functions where the differences in ratings between the common scenario and each other
scenario were regressed on the differences in attributes between the scenarios. This appeared to reduce the

extrapolation. This corresponds to estimating the step function hedonic model (71) without cross-product
terms, and then making a piecewise linear approximation to an additively separable function.

91 CV applications of traditional conjoint analysis, where the fitted utility model is used to compute
monetary welfare measures for changes in attributes, appear to have started with Mackenzie (1993).

92 Ordinary least squares and linear programming are known asdecompositionalmethods of
estimation, since they fit the utility function in one step.Compositionalmethods of conjoint analysis, by
contrast, fit the function in stages, first estimating part-worth functions for individual attributes (for
example, by asking subjects to scale alternative levels of each attribute taken separately) and then
estimating weights for combining the part-worth functions into an overall utility index. The compositional
approach is also used inmultiattribute utility assessment(MAUA) (Keeney and Raiffa, 1976; von
Winterfeldt and Edwards, 1986). As with conjoint analysis, the general practice in MAUA is to estimate
a separate utility function for each subject. The multivariate utility models used in MAUA generally allow
for some interaction among the part-worth functions; the particular form is chosen by testing whether the
subject’s preferences satisfy certain axioms. To elicit the part-worth functions, MAUA generally uses
pairwise choices ormatching(essentially equivalent to open-ended CV, in which subjects are asked to
identify the level of an attribute required to adjust the utility of one item so that it exactly matches that
of another); for model fitting, calibration is generally used rather than statistical estimation. MAUA
typically involves more intensive data collection from subjects than conjoint analysis. How this affects the
results in prediction of behavior or assessment of value is still an open question. Gregory et al. (1993)
advocate switching from conventional CV to MAUA because they consider the compositional approach
to preference elicitation more reliable. In our view, the case for a compositional approach is more
normative than positive: this may be how individualsshouldmake judgments, but we are not sure it is
how theydo make judgments.

93 Approaches which model behavior in terms of ordinal preferences, such as referendum CV,
contingent ranking and choice, or demand function estimation, avoid inter-personal comparisons of utility
because they allow a separate monotone transformation of the utility index for each individual.
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noise in the data and it produced the most significant coefficients.94 But, even if it corrected for
differences in centering, it does not preclude other factors, e.g., differences in range or variance, that could
invalidate inter-personal utility comparisons.

Aside from the problem of inter-personal comparisons, one may doubt whether subjects can always
measure their preferences with the precision implied by a cardinal rating. To ease the burden on
respondents, some conjoint researchers employ scales with only a few integer ratings; for example, both
Mackenzie and Roe et al. use a scale from 1 ("very undesirable") to 10 ("very desirable"). This may be
more convenient, but it also can turn the ratings into anordinal measure of preference; it is not clear
whether, on this scale, subjects treat an "8" as twice a "4", or a "4" as twice a "2". With this scale it may
be more appropriate to applyorderedprobit or logit models, due originally to Aitchison and Silvey (1957)
and Ashford (1959) and popularized in the social sciences by Zavoina and McElvey (1975), which treat
the dependent variable as an ordering and permit one to test whether it is measured on an ordinal or
cardinal scale. These models postulate that, while the observed dependent variable is an ordinally-ranked
categorical variable, it is derived from a latent continuous variable reflecting the respondent’s underlying
sentiment. Let the stated rating of the kth item by Rk; in this case Rk = 1, 2, 3,.., 9 or 10. In addition to
the underlying conditional indirect utility function uk = vk(q

k,y-Ak,εk), the model involves a set of
thresholds r1,..,r9, which can be treated as constants or as functions of covariates. The relation mapping
the subject’s underlying utility for the item into her stated rating is given by:95 96

Rk = 1 if vk(q
k,y-Ak,εk) ≤ r1

Rk = 2 if r1 ≤ vk(q
k,y-Ak,εk) ≤ r2

Rk = 3 if r2 ≤ vk(q
k,y-Ak,εk) ≤ r3

(88) . .
. .

Rk = 9 if r8 ≤ vk(q
k,y-Ak,εk) ≤ r9

Rk = 10 if vk(q
k,y-Ak,εk) ≥ r9.

If εk enters vk(q
k,y-Ak,εk) additively and is normally distributed, this is an ordered probit model; if it is

logistic, this is an ordered logit model. The coefficients to be estimated include the parameters of vk(·),
the parameters of the joint distribution of theεk’s, and the rk’s (possibly subject to a normalization

94 Faced with the same problem, Mackenzie (1993) simply included the subject’s mean rating over
all items as an explanatory variable in each rating regression; first differencing is a better solution.

95 In their analysis, Roe et al. use a double-hurdle tobit model for regressions of ratings or ratings
differences. This gives Rk a censored normal distribution with spikes at "1" and "10"; within the interval
(1,10), it makes Rk a continuous variable, not an integer.

96 The model could be adjusted for differences among subjects in the centering of ratings by
compressing and relabelling some of the ratings categories. Suppose some subjects’ ratings fall in the
interval (1,5) while others’ fall in the interval (5,9); one could, for example, convert the ratings to a
common, five-point scale, making "5" the highest rating and relabelling the second group’s ratings so that
they range from "1" to "5" instead of "5" to "9."
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restriction);97 estimation is by maximum likelihood or, if there are grouped data, by minimum chi-
squared. If the rk’s are equally spaced, i.e., r2 ≡ r1 + ∆, r3 ≡ r1 + 2∆, .. , r9 ≡ r1 + 8∆, the Rk’s are an
approximately cardinal measure of preference. This can be tested as a restriction on the estimated rk’s.

In summary, while there is a close relationship at the conceptual level between rating, ranking,
and choice, there are important practical differences in terms of the cognitive burden on respondents and
the implications for inter-personal comparability of utility. When comparisons have been made among
alternative modes of preference expression, the general experience is that inconsistencies appear: different
modes imply different preferences even though, in theory, a single utility function should suffice to
generate all the various types of response. The differences in welfare measures estimated from the fitted
utility functions can be quite substantial (Mackenzie; Roe et al.). The evidence suggests that this task-
dependence is a general phenomenon, and is not confined to non-use values, environmental goods, or
contingent valuation. For researchers, it has two implications. First, it creates a challenge to develop
explicit models of task-dependence in the stochastic and/or deterministic components of the response
model. Second, it requires the researcher to exercise judgment in deciding which set of results is the most
appropriate to her research goal.

4.1.4 Random Coefficient Models

So far we have discussed how the deterministic or stochastic components of RUM models can be
made to reflect variation in the item being valued. In this section we touch on aspects of model
specification dealing with variationamong respondents. This can arise, for example, from socio-economic
differences, or from heterogeneity in preferences for programs.

From a statistical perspective, the CV evaluations of programs can be viewed as panel data -- we
pool observations on individuals over programs, rather than over time. To illustrate this, we employ the
linear model (12), adding subscript i to denote the ith individual. Some or all of the program attributes
mentioned in the preceding paragraph may vary across individuals; therefore, let xikr denote the rth attribute
of program k for the ith individual. In addition, xis denotes the sth attribute or socio-demographic
characteristic of the ith individual. Thus, we write (12) as uik = αik + βyyi + εik whereαik ≡ intercept+ Σr

βrxikr + Σs βsxis; different models correspond to different treatments of the intercept and different stochastic
specifications forεik. In panel data terminology, many of the models discussed above would be categorized
asone-way fixed effectsmodels. This applies, for example, to the model in (72) withλ = 1,

(89) uik = αk + Σr βrxikr + Σs βsxis + βyi + εik

where theεik’s are all iid with mean zero and varianceσ2
ε and theαk’s are fixed parameters to be estimated

from the data along withσ2
ε and the variousβ’s. This formulation is appropriate if preferences for different

programs are viewed as parametric shifts of a utility function. An alternative is theone-way random effects
model, which treats the program-specific terms as varying randomly across programs; this would apply
if one saw the sampled programs as drawn from a larger set of programs. This model takes the form

(90) uik = α + Σr βrxikr + Σs βsxis + βyi + υk + ωik

97 To the extent that the rk’s are taken to be the same across subjects, this makes the uk’s cardinal
utility measures and implies inter-personal comparability of utility.
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where υk is a stochastic component which is constant across respondents and represents unmeasured
factors specific to the kth program. We assume that E{υk} = E{ ωik} = 0, E{υk

2} = σ2
υ, E{ωik

2} = σ2
ω,

E{υkυl} = 0 if k ≠ l, E{ωikωjl} = 0 if i ≠ j or k ≠ l, and E{υkωil} = 0 for all i,k and l; σ2
υ andσ2

ω are to
be estimated from the data along withα and the variousβ’s. In addition to (89) and (90),two-wayfixed-
and random-effects models are possible, with both program-specific and individual-specific parameters or
variance components. The two-way fixed-effect model is98

(89’) uik = γi + αk + Σr βrxikr + Σs βsxis + βyi + εik

where theγi’s andαk’s are fixed parameters and, as before, theεik’s are iid with mean zero and variance
σ2

ε. The two-way random effect model is

(90’) uik = α + Σr βrxikr + Σs βsxis + βyi + νi + υk + ωik

where, in addition to the above specification of the variances and covariances of theυk’s andωik’s, one
has E{νi} = 0, E{ νi

2} = σ2
ν, E{νiνj} = 0 if i ≠ j, and E{νiυk} = E{ νiωjk} = 0 for all i,j and k. The two-way

fixed-effect formulation is appropriate if individual differences in preferences for a program are viewed
as parametric shifts of the utility function for that program; the random-effects formulation is appropriate
if one sees the respondents as drawn from a larger population with randomly varying preferences. It is also
possible to have amixedtwo-way model combining, say, fixed-effects over programs with random effects
over individuals:

(91) uik = αk + Σr βrxikr + Σs βsxis + βyi + νi + ωik

where E{νi
2} = σ2

ν, E{ωik
2} = σ2

ω, and E{νiωjk} = 0 for all i,j and k.

The choice between fixed- and random-effects formulations has been the subject of much debate.
This originally focused on conventional linear regression, but has recently been extended to quantal
response models. From the point of view of estimation, an important difference is that, while the random-
effects approach adds only two parameters,σ2

υ andσ2
ν, the fixed-effects approach adds Nγi’s and Kαk’s.

This is computationally burdensome when K or, more likely, N is large. In linear models, the ordinary
least squares estimate of theγi’s andαk’s is unbiased. In quantal response models estimated by maximum
likelihood, there are only asymptotic properties. In both cases, the estimates ofγi’s andαk’s are consistent
only as N and K approach infinity. In practice, K will be small with panel data, making the estimate of
theγi’s inconsistent. This is theincidental parametersproblem (Neyman and Scott, 1948): an increase in
N provides no extra information aboutγi, but just raises the number ofγi’s. For large-sample properties,
any estimate of the fixed-effectγi’s is unreliable when K is finite, even if N tends to infinity.

In linear models, the inability to obtain consistent estimates of theγi’s does not affect estimation
of theβ’s; fixed- and random-effects estimators of theβ’s are unbiased and consistent as long as N tends
to infinity. In quantal response models, unlike linear models, the maximum likelihood estimators of
parameters are not independent of each other (Hsiao, 1986). In fixed-effect quantal models with finite K,
the inconsistency ofγi is transmitted to the estimators of theαk’s and β’s. Hence, even if N tends to

98 We noted above the common practice in conjoint analysis of eliciting multiple responses from
subjects and then fitting a separate response probability model for each subject. That is equivalent to a
fixed-effects formulation, with individual-specific intercepts and slope coefficients.
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infinity, the maximum likelihood estimate of theβ’s remains inconsistent. Generalizing Neyman and Scott
(1948), Anderson (1970) showed a way to obtain consistent estimates of structural parameters by
maximizing a conditional likelihood function conditioned on a minimum sufficient statistic for the
incidental parameters, if one exists that is independent of the structural parameters. Chamberlain (1980)
applied this to obtain a computationally convenient and consistent estimate of theβ’s in fixed-effects logit
models. For fixed-effects probit models, however, there does not appear to exist a consistent estimator of
the β’s.

In random-effects quantal models, maximum likelihood estimation does provide consistent
estimation of theβ’s. However, the estimation is computationally burdensome because of the complex
nature of the likelihood function in this case. For simplicity, we focus on the mixed model (91). Even
when theωik’s are independently distributed over i and k in (91), E{uikuil} = σ2

ν ≠ 0, and the joint log-
likelihood of a sample of responses (y11,..,yit,..,yNT), where yit is the ith individual’s response to the tth

discrete-response CV question, can no longer be written as the sum of the marginal log-likelihoods of the
yit’s, as in (47). Let P(yit | ν; Xit, θ) denote the probability formula for the ith individual’s response to the
tth CV question conditional on the random effectνi, given the vector of individual-specific and item-
specific attributes, Xit, whereθ is the vector of parameters not associated with the random effects (i.e. the
β’s and σ2

ω). Let the density ofν be gν(ν;σ2
ν). With this random-effects formulation, the log-likelihood

function takes the form

(92) .L (θ ,σ2
ν | y,X) i ln ⌡

⌠ Πt P(yit | v;Xit ,θ) gν (ν;σ2
ν) dν

By contrast, if there is no heterogeneity among individuals (theωik are iid and the individual-specific
effectsνi do not exist), the log-likelihood takes the far simpler form

(93) L(θ | y,X) = Σi Σt ln P(yit | Xit, θ).

Maximizing the random-effects log-likelihood, (92), is computationally challenging since, in general, there
are integrals in each of the response probabilities P(yit | ν; Xit, θ). The first application to random-effects
probit was by Heckman and Willis (1975); a faster computational algorithm was developed by Butler and
Moffitt (1982). There are also several alternatives to maximum likelihood estimation. Chamberlain (1984)
proposes a minimum distance estimator, and Avery, Hansen and Hotz (1983) describe a related generalized
method of moments estimator. The biometrics literature tends to emphasize quasi-likelihood and similar
techniques (Longford, 1993).99

In both linear and nonlinear models, empirically it can make a substantial difference to the
estimates of theβ’s whether one adopts a fixed- or random-effects formulation. Hence, the choice of
model is contentious. Mundlak (1978) suggests two criteria. One is the type of inference desired: the
effects can always be considered random but, when using the fixed-effects model, the researcher makes
inferencesconditional on the effects in the observed sample. When the random-effects model is used, the

99 Another possibility, mentioned by Maddala (1986), is to simply ignore the correlation among
responses and maximize (93) instead of (92); this yields estimates of theβ’s which are consistent but
inefficient. However, the conventional formula for the variance-covariance matrix of these estimates is
incorrect (Robinson, 1982). In a Monte Carlo study, Guilkey and Murphy (1993) find that, despite the mis-
specification of the error structure, standard probit with a corrected covariance matrix often works
relatively well.
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researcher makes specific assumptions about the distribution of the random effects, and this permits
unconditionalor marginal inferences. The other is robustness to specification error. If the distributional
assumptions about the error components are correct, the random-effects estimator is more efficient. But,
if the distributional assumptions are incorrect, the random-effects estimator is inconsistent. Because the
fixed-effects approach does not make any specific distributional assumption about the error components
of the model, it is more robust. For example, Mundlak argued that the conventional random-effects
formulation assumes no correlation between the individual-specific effect,νi, and the individual-specific
covariates, xik, whereas there is likely to be some correlation in practice. As an alternative, Chamberlain
(1980) suggested estimating random-effects models with a linear dependence between the xit andνi. Hsiao
(1986) provides details, along with a description of specification tests for the independence of theνi’s. In
addition, he discusses specification tests for the random-effects model (92) against the no-correlation
formulation (93). Lechner (1995) and Hamerle and Ronning (1995) are also useful on these topics.

We have focused so far on fixed- versus random-effects with respect to theinterceptof the utility
function; the same types of formulation can also be applied to theslope coefficients. For example,
compared to (11), the Box-Cox model (10) is a one-way fixed-effect slope-coefficient model, since the
income coefficient,β, varies with the item (program) being valued -- in the set-up of (89), whereλ = 1,
we write this as

(94) uik = αk + Σr βrxikr + Σs βsxis + βkyi + εik.

The corresponding one-way, random-effect formulation is

(95) uik = αk + Σr βrxikr + Σs βsxis + (β + υk)yi + ωik.

where E{υk} = 0, E{ υk
2} = σ2

υ, E{υkυl} = 0 if k ≠ l, and E{υkωil } = 0 for all i,k and l. This can also be
written

(95’) uik = αk + Σr βrxikr + Σs βsxis + βyi + ζik

where ζik ≡ υkyi + ωik; because of the dependence on yi, the error term is now heteroscedastic. Such
models, also known asrandom coefficientmodels, were first introduced by Swamy (1970); Hausman and
Wise (1978) give a probit application. A two-way, slope coefficient model is

(96) uik = αk + Σr βrxikr + Σs βsxis + (β + νi + υk)yi + εik,

where the individual-specific component,νi, and the program-specific component,υk, of the income
coefficient are either fixed parameters to be estimated (the fixed-effect model) or random variables with
some covariance structure to be estimated (the random-effect model). Estimation of these models raises
essentially the same issues as varying intercept models.

The random-effect formulation can be extended to more general error component structures. In
presenting (90), for example, we assumed thatσ2

υ = E{uikujk} is the same for every pair of individuals and
does not vary with k, whileσ2

ν = E{uikuil} is the same for every pair of programs and does not vary with
i. Random coefficient models such as (95) are one way to introduce some heteroscedasticity and relax
these restrictions. Another way is to specify directly a more complex covariance matrix for the error
components; an example, mentioned in the previous section, is parameterizing the covariance terms in a
multivariate normal distribution for contingent ranking as functions of similarity indices. Another extension
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is to have multiple levels of nesting for the variance components. For example, instead of the one-way
individual effects assumed so far, one might identify a hierarchy of groups such that individuals in the
same group are more similar than individuals in different groups.100 The random terms in uik have both
individual and group components. Individual components are all independent. Group components are
independent between groups but perfectly correlated within groups. Some groups might be more
homogeneous than other groups, which means that the variance of the group components can differ. Such
hierarchicalor multi-levelmodels can be rich enough to provide a good fit to complex survey data, while
still being parsimonious with the number of parameters. They can be estimated by the EM procedure
(Raudenbush and Bryk, 1986), quasi-likelihood (Longford, 1988), iterated generalized least squares
(Goldstein, 1991), or two-stage probit (Borjas and Sueyoshi, 1994). Chapter 12 provides a CV application.

In closing, we note that (92) is an example ofcompounding, where heterogeneity among
individuals leads to the averaging or integration over a response probability formula. In this case, the
compounding is with respect to a variance component, but one can also have compounding with respect
to a location parameter; a classic example is the generation of the beta-binomial distribution by
compounding a binomial distribution with a beta distribution for the binomial parameter. Another example
is aggregationof quantal responses. This can occur when there is aggregate rather than individual data
on CV responses, or when there is data on individual responses but no observations for one or more
variables believed to affect the individual responses. Let X be some such variables; the aim is to estimate
the structural coefficients associated with X despite the fact that X is not observed. For this purpose, we
assume that the values which X can take follow some density, fX(X). For example, X could be the
respondent’s income, which is unobserved in the data, and fX(·) is the income distribution that applies to
the sample of respondents. Given the ith observed response, yi, the probability of this response can be
written

(97) P(yi) = ∫ P(yi|X) fX(X) dX.

The functional form of fX(·) is assumed to be known by the researcher. If its parameters are known (e.g.
it is log-normally distributed with mean and variance known from some external source), one uses the
aggregate response probability formula in (97) to estimate the parameters of P(yi|X). If the parameters of
fX(·) are not known, they are estimated along with those of P(yi|X) by maximizing the likelihood function
based on (97).

4.2 Double-Bounded CV

The double-bounded version of discrete response CV, proposed by Hanemann (1985a) and Carson
(1985), follows up on the initial question with a second question, again involving a specific dollar cost
to which the respondent can respond with a "yes" or a "no." Let A denote the amount of the first bid. The
amount presented in the second bid depends on the response to first bid; if the individual answered "no"
to A, the second bid is some lower amount Ad < A, while if she answered "yes" it is some higher amount
Au > A. Thus, there are four possible response sequences: (a) both answers are yes; (b) both answers are
no; (c) a yes followed by a no; and (d) a no followed by a yes. Following the logic of (6b), for any given
underlying WTP distribution GC(·), the probability of the responses is given by

100 In educational statistics, where this originated, one might have information about individual
students, class-level information, and school-level information.
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Pr{yes/yes}≡ Pyy = 1 - GC(Au)

Pr{no/no} ≡ Pnn = GC(Ad)
(98)

Pr{yes/no} ≡ Pyn = GC(Au) - GC(A)

Pr{no/yes} ≡ Pny = GC(A) - GC(Ad).

Any of the WTP distributions in Appendix Tables 2-4 can be used to construct these response probability
formulas. Given these, the log-likelihood function for the double-bounded model is

(99) lnL
n

i 1

[ Iyyln P yy
i Iynln P yn

i Inyln P ny
i Innln P nn

i ]

where Ixz is an indicator function that equals one when the two responses arexz, and zero otherwise.
Estimation is by maximum likelihood or one of the other techniques described in Section 3.4.101

Using maximum likelihood, Hanemann, Loomis and Kanninen (1991) compared this double-
bounded model with a single-bounded model estimated from the responses to the initial bid, A, using the
logit model (15). They found that the double-bounded model provided a substantial gain in precision for
the variance-covariance matrix of the coefficient estimates, leading to much tighter confidence intervals
for the estimate of median WTP. Similar results have been obtained by other researchers who have
compared the double- and single-bounded approach. Hanemann, Loomis and Kanninen also found that the
double-bounded data yielded a lower point estimate of median WTP than the single-bounded data. The
same result has been found in many other applications. Both the gain in efficiency and the direction of
change in the estimate of median WTP can be explained by a poor selection of the initial bid. When
setting their bids, Hanemann, Loomis and Kanninen had very limited pre-test results and their guess at
the point value of median WTP turned out to be far too low. With the hindsight of the field survey results,
an optimal design would have used a higher initial bid, A. The double-bounded format corrected for this
on the second bid—the follow-up bid Au came closer to where an optimal design would have placed the
bid, and this helped considerably to pin down the estimate of median WTP. In effect, Au provides
insurance against too low a choice of A, and Ad provides insurance against too high a choice of A.

Table 4, which parallels Table 1 for the single-bounded logit model (15), presents calculations of
the bias and asymptotic variance of the maximum likelihood estimator for the double-bounded logit model.
In the first three examples, the initial bid amount is the median value and the follow-up bid amounts are
placed at increasing distances from the median value.102 As in the single-bounded case, as the bid
amounts are placed further away from the middle of the distribution, the biases and variances increase.

101 Alberini (1995c) calls the normal version of (99)interval-data probit. As noted in the introduction,
this is formally identical to the likelihood function for failure time data with censoring, where the analyst
knows upper and lower bounds but not the exact time of failure. Kalbfleisch and Prentice (1980) is a
standard reference on such models; Lancaster (1990) covers economic applications to unemployment etc.

102 In general, a one-point design will not identify the two parameters of the model. But with the
double-bounded model, two pieces of information are elicited from each respondent, yielding enough
information to estimate both parameters.
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The fourth example places the initial bid amounts on one side of the median value—at the 62nd, 82nd and
92nd percentiles of the distribution—with follow-up bid amounts placed $100 on either side of these initial
bids. In this case, most of the biases and the asymptotic variance are greater than any of the cases where
the initial bid is the median value. But the biases and variance are far less than in the analogous single-
bounded model. This is due to the adaptive nature of the double-bounded model. Even though the initial
bid design is poor, the follow-up bids provide a second chance to recoup the situation.

With the double-bounded model, experimental design involves the specification of three bid
amounts per observation. Although each respondent is offered only two bids, an initial and a follow-up,
three bids enter the log-likelihood function becausea priori it is not known which follow-up bid amount
will be offered. Optimal designs for the double-bounded logit and probit models are presented in Table
5. In each case, the initial bid amount is the median value, and follow-up bid amounts are symmetrically
placed around the median. The results in Table 5 have interesting implications for the importance of
"bounding" individuals’ WTP values. We can derive the probability of receiving a "yes" response to the
follow-up bid conditionalon the probability of receiving a "yes" response to the initial bid. If the initial
bid is the median value, then the probability of receiving a "yes" response to the initial bid is exactly equal
to .5 as is the probability of receiving a "no" response. Given the initial response, we can derive the
conditional probability for the response to the follow-up bid by dividing the unconditional c.d.f. of the
second bid value by .5. We obtain the result that the D-optimal bid design for the logit model "bounds"
slightly over 75% of the respondents’ WTP values, while that for the C-optimal bid design "bounds"
exactly half. A general rule of thumb might be that it is best to bound between 50% and 75% of
observations. Note that this implies that the follow-up bids should not be so high or so low that all
observations are bounded.

After the second valuation question, one could follow up with a third or fourth closed-ended
valuation question, again using with a higher bid amount if the individual responded"yes" to the previous
bid and a lower bid amount if the response was "no." The additional questions should give sharper bounds
on the individual’s WTP. An empirical application of the triple-bounded approach is described in Bateman,
Langford and Rasbash (this volume). However, in a Monte Carlo simulation analysis, Cooper and
Hanemann (1995) found that, compared to the double-bounded approach, adding a third round of closed-
ended questions produced a relatively small gain in efficiency. Most of the statistical benefit from the extra
information was reaped in going from the single- to the double-bounded format.

Although there is a gain in efficiency, there can also be some bias in going from a single- to a
double-bounded format because there is evidence that some of the responses to the second bid are
inconsistent with the responses to the first bid. We have assumed so far that, for a given individual, the
sameutility model and stochastic process generate the answers to both valuation questions. If so, this
implies certain relations between the response probabilities for first and second bids which can be used
to construct nonparametric tests of consistency among the responses. Suppose, for example, that there are
two separate overlapping sets of bids: {A = $10, Au = $20, Ad = $5) and (A = $20, Au = $40, Ad = $10).
The first set starts with $10, and then either goes up to $20 or down to $5; the second starts with $20,
and then goes up to $40 or down to $10. Individuals would be assigned one or the other bid structures
at random. It is a standard result in probability that:

(100) Pr{"yes" to $20} = Pr{"yes" to $20 | "yes" to $10} · Pr{"yes" to $10}.

The LHS of (100) can be estimated by taking the respondents who received the second set of bids and
calculating the proportion who said yes to the first bid in that set. The RHS of (100) can be estimated by
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taking the respondents who received the first set of bids and multiplying the proportion who said yes to
the first bid in that set by the proportion of those respondents who subsequently said yes to the second
bid in that set. If the responses to the first and second bids come from the same stochastic generating
process, the estimates of the LHS and RHS of (100) should be the same, except for sampling variation.
An alternative versions of this test is to compare two estimates of the probability Pr {$10≤ WTP ≤ $20}.
One estimate takes the respondents who received the first bid structure and calculates the proportion of
yes/no responses. The other estimate takes those who received the second bid structure and calculates the
proportion of no/yes responses. Again, these two proportions should be the same, except for sampling
variation. The first test was used by Hanemann (1991), and the second by McFadden and Leonard (1993);
in both cases, the test failed. Similar failures of consistency tests have been observed in other applications
of double-bounded CV.103 104

How should one deal with the inconsistency? Several approaches are found in the literature. One
approach is to continue pooling the responses to the first and second bids despite the inconsistency; while
there may be some bias in the coefficient estimates, there also can be a gain in efficiency which offsets
this (Alberini, 1995c). A second approach, due originally to Cameron and Quiggin (1994), is to treat the
responses to the two bids as though they were valuations of separate items, using one or another of the
models described in Section 4.1.105 In Cameron and Quiggin’s general model, there are separate WTP
distributions for the first and second responses, both based on the linear utility function (12), leading to
marginal cdf’s Gk(Ck), k = 1, 2, with marginal means E{Ck} ≡ µk = αk/βk and variances var{Ck} ≡ σ2

k =
1/βk. In terms of the underlying utility functions, this is a one-way fixed-effects formulation with separate
response-specific intercepts,αk, and slope coefficients,βk. In addition, there is a non-zero correlation
between the first and second responses, represented by a correlation coefficientρ. Thus, the two WTP
distributions are neither identical nor independent. Let g12(C1, C2; ρ) be the resulting bivariate WTP
density. Instead of (98), the double-bounded response probabilities now take a form analogous to (73):

P yy

⌡
⌠C max

1

A ⌡
⌠C max

2

AU

g12 C1,C2; ρ dC1dC2

(101) P yn

⌡
⌠C max

1

A ⌡
⌠AU

C min
2

g12 C1,C2; ρ dC1dC2

P ny

⌡
⌠A

C min
1

⌡
⌠C max

2

AL

g12 C1,C2; ρ dC1dC2

.P nn

⌡
⌠A

C min
1

⌡
⌠AL

C min
2

g12 C1,C2; ρ dC1dC2

103 There are also various parametric tests of consistency. For example, one can analyze the two sets
of responses separately, and then test whether they come from the same distribution.

104 The results obtained by Bateman, Langford and Rabash (this volume) suggest that there may be
an additional inconsistency in going from the double- to the triple-bounded format. Almost all the existing
literature has focused on consistency between the single- and double-bounded formats.

105 This is analogous to the practice in contingent ranking, discussed in footnote 82, of dealing with
inconsistencies in rankings by assuming a separate set of preferences for each ranking.
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In their empirical application, Cameron and Quiggin make g12(C1,C2; ρ) a bivariate normal, so that (101)
becomes a correlated, bivariate version of the probit model (14).106

Cameron and Quiggin also consider formulations that lie somewhere between (98) and (101). They
find empirically that they cannot reject the hypotheses that µ1 = µ2 andσ2

1 = σ2
2 (i.e, α1 = α2 andβ1 = β2).

If it were also the case thatρ = 1, then (101) would reduce to (98), where GC(·) is the common univariate
WTP distribution that generates both responses. With their data, however, Cameron and Quiggin find they
can reject the hypothesis thatρ = 1; ρ is significantly positive but less than unity.107 Thus, the two WTP
distributions are identical, not independent, but not perfectly correlated either. In terms of the underlying
utility functions, this is equivalent to a one-way random-effects formulation for (12) with common (fixed)
slope coefficient,β, and random intercepts,α, that are correlated draws from a common distribution. Let
G(·,·;ρ) be a correlated, bivariate WTP distribution with common marginal cdf’s given by GC(·); in
Cameron and Quiggin’s empirical application these are bivariate and univariate normal, respectively.
Instead of (101), the double-bounded response probabilities now take the form108

Pyy = 1 - GC(A) - GC(Au) + G(A,Au;ρ)

Pyn = GC(Au) - G(A,Au;ρ)

(102) Pny = GC(A) - G(A,Ad;ρ)

Pnn = G(A,Ad;ρ).

Alberini, Kanninen and Carson (1994a) develop a two-way random-effect version of this model, with
individual-specific as well as response-specific effects.

A third approach postulates that the inconsistency arises as some form of response effect, and
models this effect explicitly. This can be done in various ways, depending on the type of response effect
believed to occur. For example, many CV studies implement the double-bounded approach in a manner
that makes the second valuation question come as something of a surprise. After having been assured
during the presentation of the first bid that the item will cost $A, the respondent is suddenly informed that
the cost could instead be $Au (or $Ad). She may not react to this new information in a neutral manner.

106 Cameron and Quiggin consider that negative as well as positive preferences are possible, and they
model this along the lines illustrated in the lower panel of Figure 3, rather than through a mixture model
as in the upper panel of Figure 3. They set Cmin = -∞ and Cmax = ∞, but their WTP distribution needs to
be modified by censoring or truncation for the reasons mentioned in Section 2.3.

107 Ward (1995) notes that these hypotheses tests may not be robust if the true WTP distribution is
non-normal. Even if the distribution were normal, Alberini (1995c) points out that, since testing forρ =
1 involves a hypothesis at the boundary of the parameter space, the distribution of the test statistic is non-
standard and the size of the test statistic is likely to diverge from its nominal level, making the test results
in Cameron and Quiggin somewhat unreliable.

108 Alberini (1995c) conducts a Monte Carlo analysis of the bivariate normal version of (102) and the
normal version of the double-bounded model (98), simulating the error that arises when one model is
erroneously fitted to data actually generated by the other. She finds that the double-bounded estimates of
mean/median WTP can be surprisingly robust to low values ofρ; even if the double-bounded model is
technically misspecified, it is often superior to the bivariate model in terms of mean square error.
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If she had said "yes" to the initial bid, she might see the increased second bid as a crude attempt at
bargaining, which she could well resent (Altaf and DeShazo, 1994). Or, she might view it as implying a
possible cost overrun, which she could similarly resent. In both cases, she might then be inclined to say
"no" to the second bid, not because she doesn’t like the item but because she objects to the way in which
it is now being offered to her. If so, this would cause a greater preponderance of yes/no responses than
would be anticipated on the basis of the "yes" response to the first question alone. In a similar vein, if she
had said "no" to the initial bid, she might see the reduced second bid as an attempt to pressure her to
change her mind, which she could resent, or she might view it as an indication that she is now being
offered an inferior and cheaper version of the commodity. If so, this would cause a greater preponderance
of no/no responses than would be anticipated on the basis of the "no" response to the first question alone.
Some researchers have suggested a different scenario. Under this scenario, respondents who say "yes"
initially feel called upon to assert and expand their commitment in the face of the "challenge" implied by
the raised follow-up bid; hence, there could be a greater preponderance of yes/yes responses than would
be anticipated on the basis of the "yes" response to the first question. Conversely, those who say "no"
initially may feel guilty and decide that they should at least agree to the second bid, causing a greater
preponderance of no/yes responses than would be anticipated on the basis of the "no" response to the first
question. In one scenario, the second bid creates resentment; in the other, acquiescence.

Both of these scenarios can lead to the Cameron-Quiggin model (101), where there are two WTP
distributions because the second bid induces a shift in the location parameter of the WTP distribution
generating the second response. In terms of the of the Cameron-Quiggin model, these scenarios explain
why µ2 might be different from µ1. In the resentment scenario, the second bid causes µ2 < µ1; in the
acquiescence scenario, it causes µ2 > µ1. However, they can also be modelled directly as a single WTP
distribution combined with a response effect. For the resentment scenario, one extends (98) by introducing
a background disposition to say "no" that applies to the second but not the first valuation question. This
changes the response probabilities fromPyy, Pyn, Pny, Pnn as given in (98) to

Pyy = (1 - θu) Pyy

Pyn = θu Py + (1 - θu) Pyn

(103) Pny = (1 - θd) Pny

Pnn = θd Pn + (1 - θd) Pnn

whereθu is the background probability of saying "no" to the second bid given that the respondent said
"yes" initially, θd is the background probability of saying "no" to the second bid given that the respondent
said "no" initially, Py = 1 - GC(A) is the probability of saying "yes" initially, andPn = GC(A) is the
probability of saying "no" initially. Under the resentment hypothesis,θu > 0 and θd > 0.109 The
acquiescence hypothesis is treated similarly by introducing into (98) a background disposition to say "yes",
which leads to a modified set of response probabilities analogous to (103).

Instead of modelling the second response in terms of resentment or acquiescence, Herriges and

109 We leave open the possibility thatθu ≠ θd. Both of these background probabilities could be
parametrized as functions of covariates. Kanninen (1995) develops a model similar to (103) but with a
background probability of saying "yes/yes."
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Shogren (1996) approach it in terms of anchoring. They postulate that the respondent’s revises her
valuation of the item after the first bid, forming some weighted average of the bid and her original WTP.
In linear models like (12) they use an arithmetic average while, in the nonlinear model (19), they assume
a geometric average; for simplicity, we focus here on the linear model. If C1 is the individual’s WTP for
the item on receiving the first bid, GC(·) is the cdf of C1, A is the first bid, and C2 is her WTP after the
first bid, Herriges and Shogren postulate that

(104) C2 = (1 - γ)C1 + γA.

for someγ ε [0, 1]; if γ = 0, there is no anchoring. Given (104), the double-bounded response probability
formulas take the following form instead of (98)110

Pyy = 1 - GC[(Au - γA)/(1-γ)])

Pnn = GC[(A d - γA)/(1-γ)]
(105)

Pyn = GC[(A u - γA)/(1-γ)] - GC(A)

Pny = GC(A) - GC[(Ad - γA)/(1-γ)].

In their empirical application, Herriges and Shogren find no evidence of anchoring in the valuation of an
improvement in water quality by local residents, but definite evidence of anchoring for visiting
recreationists.

Alternatively, instead of operating on the location parameter, Alberini, Kanninen and Carson
(1994a) suggest that the response effect might shift the dispersion of the WTP distribution. They propose
a model where, while µ≡ E{Ck} is the same for both questions,σ2

k ≡ var{Ck} varies as a function of the
difference between the bid presented to the respondent in the kth question and the central tendency of her
WTP for the item. Their formula allows for differences in the strength of this effect among questions

(106) σ2
k = exp [φ + ψk·(µ - Ak)

2], k = 1, 2

where Ak is the bid used in the kth question.111 Different signs forψk correspond to different models of
cognitive behavior. Ifψk < 0, this is model where, the closer the individual is to indifference (i.e., what
she has to pay for the item nearly exhausts what it is worth to her), the less certain she is about how to
answer the CV question. Ifψk > 0, this is a model where the individual is less certain of her response
when the bid is more surprising or implausible, in the sense that the costs strikes her as unusually high

110 These are slightly different from the formulas published by Herriges and Shogren.
111 In this case, some care must be exercised in translating back from the parameters of the WTP

distribution to those of the underlying utility function. In cognitive heteroscedasticity models like (106),
it would be natural to identifytwo separatecomponents of var{C}: one (denotedσ̃2) arises from the
variation in preferences implied by the RUM formulation, while the other reflects the respondent’s
cognitive burden in answering the CV question. In terms of the linear model (12), for example, where µ
= a/β, the variance associated with RUM preferences isσ̃2 = 1/β. Theφ in (106) is intended to reflectσ̃2;
the formulation there implies a multiplicative relation between the two components of variance. It might
instead be more natural to have an additive formulation:σ2

k = σ̃2 + exp[ψk·(µ - Ak)
2].
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or unusually low. The model is thus a particular case of the Cameron-Quiggin model (101) whereρ = 1,
µ1 = µ2, andσ2

1 andσ2
2 are given by (106). When Alberini, Kanninen and Carson apply this model to three

different double-bounded data sets, they find no evidence of heteroscedasticity in two cases but significant
evidence in the third case, withψ positive and decreasing across questions (ψ1 > ψ2 > 0).

Several conclusions can be drawn from the literature on the double-bounded CV format. While,
a variety of response-effect models exist for which there is some empirical support, most analyses apply
a particular model to the data at hand rather than pitting many of them against one another. Thus, while
it is clear that response effects can occur with the double-bounded format, there is less certainty about
their specific form. Moreover, this is something that may vary with the circumstances of the interview.
Whether or not the second question connotes bargaining or induces surprise, resentment or guilt, and
whether or not the first question is seen as providing a hint as to how subjects should value the item,
could depend on just what is said in the interview and how it is conducted.

For example, it might be possible to eliminate the surprise effect of the second valuation question
by arranging for the interviewer to state, well before the first valuation question, that the cost of the item
is expected to fall within a range from Al to Ah. In the first valuation question, the interviewer selects one
end of that range at random and asks whether the subject is willing to pay this amount. Suppose the
interviewer selects Al; if the subject says yes, the interviewer follows up with a second question about
paying Ah, but he doesnot follow up with a second question if the subject says no to Al. Conversely, if
the interviewer starts with Ah for the first bid and the subject says no, he follows up with a second
question about paying Al, but doesnot follow up with a second question if the subject says yes to Ah. On
average, the interviewer follows up with a second bid only half as often as with the conventional double-
bounded format. Therefore, Cooper and Hanemann (1995) call this the "one-and-a-half-bounded" format.
Through a simulation analysis they find that it provides parameter estimates much closer in efficiency to
those associated with the double-bounded than the single-bounded format. Thus, it may offer most of the
statistical advantages of the double-bounded format without the response effects.

Pending testing of the one-and-a-half-bounded format, we would recommend using the double-
bounded format when collecting CV data because of the extra information it provides.112 To be sure,
statistical information could be maximized by just asking an open-ended WTP question. But, this ignores
considerations of cognitive capacity. In our experience, even for market commodities, people often cannot
simply state their maximum WTP off the top of their head; they go through a thought process of
considering particular amounts and deciding whether or not they would be willing to pay those amounts.
Thus, asking people directly for their WTP, even for many market commodities, is asking for more
precision than many people can offer. The closed-ended format comes closer to how they think and what
they can answer. The double-bounded approach stays within this constraint while providing more
information. Our own experience has been that, even if it produces some bias compared to the single-
bounded approach, the bias is in a conservative direction and is outweighed by the gain in efficiency.

4.3 Extending the Response Probability Model

Most of the response probability models considered so far—including the logistic, normal, log-

112 We wouldnot recommend the triple-bounded format, because it appears to offer only a small gain
in efficiency while having a greater chance of inducing response effects.
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logistic, lognormal and Weibull—involve two-parameter probability distributions, with one location
parameter and one scale parameter.113 Adding more location or scale parameters can give greater
flexibility, which allows a more sensitive modelling of the data, especially in the tails of the
distribution.114 This is important if the goal is to predict tail probabilities or to measure quantities, such
as mean WTP, which are particularly sensitive to them.

There are several reason why a more flexible response probability model could be appropriate.
First, even at the level of the individual respondent, the WTP distribution could possess a more complex
shape than that yielded by conventional, two-parameter models. Second, the researcher may want to draw
a distinction between the individual’s underlying preferences and the way these are expressed through the
survey medium; the additional parameters could be used to model response effects or the individual’s
uncertainty about her preferences. Third, even if the WTP distribution has a simple shape at the individual
level, heterogeneity among respondents due to variation in preferences or unmeasured covariates may
produce a more complex shape in the aggregate, population-level WTP distribution. Rather than explicitly
compounding a two-parameter model as in (97), it may be convenient to use a three- or four-parameter
distribution to approximate the aggregate response probability model.

The overdispersion model in Section 3.4. can be regarded as an instance where one adds a
parameter to get a more realistic shape for a WTP distribution. Another example is the model with a spike
at zero in (33). Besides this, the statistical literature contains a number of multi-parameter distributions
which generalize the logistic, including Aranda-Ordaz’s (1981) standardized asymmetric distribution115

(107) Fη(η) = 1 - [1 + λeη]1/λ,

which yields the logistic cdf whenλ = 1 and the extreme value cdf whenλ = 0, and the cubic-logistic of
Morgan (1985) with parameters µ,γ > 0 andδ > 0

(108) .Fη(η) 1 e γ (η µ) δ (η µ)3 1

There are also Prentice’s (1976) generalization of probit and logit, Stukel’s (1988) generalized logistic
model, and several other distributions reviewed in El-Saidi, Singh and Moussa (1992). The mixing
approach to generalizing the logistic is discussed by Follmann and Lambert (1989), who apply a
nonparametric mixture model with cdf

(109) ,Fη(η)
M

m 1

γm 1 e θm η 1

where M (the number of atoms in the mixture), theαm’s (coefficients unique to each atom), and theγm’s
(non-negative weights that sum to unity and constitute the nonparametric cdf of the logistic parameterθ)
are all to be estimated from the data. Follmann and Lambert show that, in the case of a single covariate
(e.g., the CV bid) which takes k distinct values, there is a restriction that M≤ [(k+2)0.5 - 1] for parameter

113 There are additional coefficients in the model when other covariates are used along with the bid
variable, but these all form part of the location and/or shape parameters.

114 While adding parameters reduces the bias estimates of welfare measures and other quantities of
interest, it also increases the variance because of the extra variation associated with the estimates of the
additional parameters (Taylor, 1988).

115 This was applied to discrete-response CV data by Johansson and Kristrom (1988).
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identifiability.116

The double-bounded model with a background disposition to answer "yes" or "no," as in (103),
is an example of a model that introduces an additional parameter in order to represent a response effect
in a CV survey. The single-bounded version was introduced by Hanemann (1983b); instead of (6b), the
response probability is given by117

(110) Pr {response is "yes"} =θ + (1-θ) [1 - GC(A)]

whereθ ∈ [0,1] is the background probability of saying "yes," which could be taken as a constant or made
a function of covariates other than the bid, A; this model was derived from the concept of a background
mortality rate in biometrics (Hasselblad et al., 1980). Kanninen (1995) notes an alternative interpretation
based on an asymmetric version of Copas’ (1988) transposition model, (62): if some proportion,θ, of the
"no" responses is wrongly recorded as a "yes," but there is no error in recording the "yes" responses, this
generates the response probability in (110).

Another model that uses a parameter to represent response effects is the model of "thick"
indifference curves where a parameterδ ≥ 0 determines a zone of indifference or ambivalence. The idea
that consumers might be insensitive to small differences in utility, thus creating a threshold which must
be exceeded in order for them to express a preference for one alternative over another, goes back to
Georgescu-Roegen (1936, 1958) and Luce (1956). It was first linked to the concept of a RUM model by
Quandt (1956), and was formally incorporated into binary choice models by Deacon and Shapiro (1975)
and Krishnan (1977). The first application to discrete-response CV was by Svento (1993).118 In the
single-bounded context, the respondent answers yes only if v(q1, y - A, ε) ≥ v(q0, y, ε) + δ; she answers
no only if v(q1, y - A, ε) ≤ v(q0, y, ε) - δ; otherwise, if [v(q1, y - A, ε) - v(q0, y, ε)] ≤ |δ|, she answers
"don’t know" or abstains from making a choice. Recasting the indifference zone into monetary units via
a parameter∆, instead of the utility units measured byδ, one obtains a trichotomous choice model where,
instead of (6b),

(111a) Pr {response is "yes"} = 1 - GC(A + ∆)

(111b) Pr {response is "no"} = GC(A - ∆)

(111c) Pr {response is "don’t know"} = GC(A + ∆) - GC(A - ∆).

To estimate the model -- and to identify∆ -- one needs explicit data on abstentions or "don’t knows."119

116 If one uses these distributions, it will still be necessary to apply censoring or truncation to ensure
that the resulting WTP distribution satisfies the economic restriction that 0≤ C ≤ y.

117 This should be distinguished from the spike model, (33), where the response probability takes the
form: Pr {response is "yes"} =θ[1-GC(A)], where θ ≡ 1- γ.

118 Opaluch and Segerson (1989) propose that thick indifference curves can explain CV responses
without formally modelling it in this way; Mazzotta and Opaluch (1995) model ambivalence as an increase
in the variance of the random utility associated with the item being valued.

119 While it is always good practice to record a response of "don’t know" when this is spontaneously
volunteered by a respondent, there is some question about the necessity of automatically providing an
explicit "don’t know" option, as suggested by the NOAA Panel (Arrow et al., 1993). A split-sample
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Svento (1993) used the linear probit and logit models (14) and (15) in (111), and parametrized∆ on
attributes of the respondent, finding that it increased slightly with income. Svento and Mantymaa (1994)
tested for separate (asymmetric)∆’s in (111a) and (111b) and found that this actually provided a better
fit than the symmetric formulation.120

The heteroscedastic model in (106) is an example of an approach where one represents response
effects in terms of increased dispersion in preferences. In general with this approach, in addition to the
random termsε andη used above to represent variation in preferences among individuals in a population,
one adds a new random termυ which represents the individual’s uncertainty about her own preferences.
As in (106), the extent of this uncertainty may vary with the circumstances of the CV survey. We now
distinguish between C, as defined in (5), which is the individual’s underlying preference for the item in
terms of her true WTP, and C˜ , which is how she perceives or expresses her WTP in the survey context.
We assume that

(112a) C̃ ≡ C + υ

whereυ is a random variable with a mean of zero (in the absence of incentives for strategic behavior) and
some cdf Fυ(·). It is the cdf of C̃, G̃C(·), rather than GC(·) which governs the responses to the CV survey.
Thus, instead of (6b), the probability that the respondent answers yes in the survey is

(112b) Pr {response is "yes"} = 1 - G˜
C(A).

Whether or not Fυ(·) and GC(·) can both be recovered depends on the stochastic specification and the form
of the data.

Li and Mattsson (1995), who first introduced this model, used the linear model (12) for C with
η a standard normal, which generates the probit model (14), combined with a normal distribution forυ
having a mean of zero and a variance ofσυ

2 . Thus, C̃= C + υ ≡ (α/β) + ω is normally distributed with
a mean of E{C̃} = E{C} ≡ µ = α/β,121 and a variance ofσC̃

2 ≡ var{C̃) = σω
2 = σ2 + συ

2, whereσ2 ≡
var{C} = 1/β2. With this specification,σ2 andσυ

2 cannot be separately identified from data on the discrete
CV responses alone. However, Li and Mattsson had conducted a survey in which, after presenting a
closed-ended, single-bounded valuation question, they asked "How certain were you of your answer to the
previous question?" Respondents were asked to record their reply on a scale from 0% to 100%.122 Li

experiment by Carson et al. (1995) found that, if one treats "don’t know" as "no" in analyzing CV
responses, offering the "don’t know" option doesnot change the breakdown of yes/no responses or alter
the estimate of WTP.

120 The trichotomous choice model in (111) and the asymmetric model of Svento and Mantymaa can
also be viewed as versions of the ordered categorical dependent variable model in (88).

121 This is also the median of C and C˜ . For the purpose of exposition, we ignore the restriction that
0 ≤ C ≤ y.

122 Qualitative follow-up questions about how confident one is in one’s answer, or how strongly one
supports the program, are not uncommon in CV surveys. For example, Ready et al. (1995) offered subjects
six responses in a single-bounded survey: "definitely yes", "probably yes", "maybe yes", "maybe no",
"probably no", and "definitely no". To use Li and Mattsson’s approach based on respondents’ preference
uncertainty, one has to convert the qualitative response into some sort of quantitative probability level or
range. Instead, Ready et al. treat this as a case of varying intensity of preference and model it on the lines
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and Mattsson interpreted the answer to the confidence question as information about Fυ(·) that would
suffice to recover the unknown parameters.

Suppose the individual said yes to a bid of A and then said 30% in response to the confidence
question. The probability of this joint answer can be factored into

(113) Pr{says "yes" to A and 30% confident} = Pr{says 30% | "yes" to A}·Pr{says "yes" to A},

where the second probability on the RHS corresponds to (112b). To obtain the first term on the RHS, Li
and Mattsson assume that, if the subject says she is 30% confident of her response, she means "exactly
30%" in the sense that

(114a) 0.3 = Pr{C˜ ≥ A | C}

= Pr{C + υ ≥ A}

= 1 - Fυ(A - C).

Hence, the first term on the RHS of (113) is given by

Pr{says 30% | "yes" to A} = Pr{0.3 = 1 - Fυ(A - C)] | "yes" to A}

(114b) = Pr{C = A - Fυ
-1(0.7) | C̃≥ A}

= Pr{C = A - Fυ
-1(0.7) | C + υ ≥ A}

where Fυ
-1(·) is the inverse of Fυ(·). Rather than estimating the joint probability on the LHS of (113)

directly, Li and Mattsson estimate it in two stages. First, they estimate (112b) from the CV responses
alone, which produces an estimate of (α/β) andσC̃

2. Taking these as given, they estimate (114b) from the
answers to the confidence question, which produces an estimate ofσυ

2. The estimate ofσ2 is recovered
by subtracting the estimate ofσυ

2 from that ofσC̃
2. Li and Mattsson find that this provides more efficient

coefficient estimates than the conventional approach based on (6b).

It would be still more efficient to estimate the LHS of (113) in one step directly. When the answer
to the confidence question is interpreted as "exactly 30%", as in (114a), one obtains the following direct
expression for (113):

(114c) Pr{says "yes" to A and 30% confident} = Pr{η = A - (α/β) - Fυ
-1(0.7)}.

A more interesting model is obtained when one changes the interpretation or format of the confidence
question. Two other formulations are possible. One is that, when the respondent says she is 30% confident,
she means "at least30%" in the sense that

(115a) 0.3 ≤ Pr{C̃ ≥ A | C}

of an ordered categorical dependent variable model.
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= Pr{C + υ ≥ A}.

In this case, instead of (114c), the joint probability of the responses to the CV question and the confidence
question takes the form

(115b) Pr{says "yes" to A and 30% confident} = ⌡
⌠ η max

A µ F 1
υ (0.7)

[1 Fυ(A µ η) ] g(η) dη

where, for the sake of generality, we write C = µ +η, whereη is assumed to be independent ofυ with
an upper support ofηmax and a density g(η).123 The other formulation is that, when the respondent says
she is 30% confident, this is taken to imply a particularprobability range, e.g., from 25% to 35%, so that

(116a) 0.25 ≤ Pr{C̃ ≥ A | C} = Pr{C + υ ≥ A} ≤ 0.35.

The joint probability of the responses to the CV question and the confidence question then becomes

(116b) Pr{says "yes" to A and 25-35% confident} = .⌡
⌠ A µ F 1

υ (0.65)

A µ F 1
υ (0.75)

[1 Fυ(A µ η) ] g(η) dη

Hanemann, Kriström and Li (1995) develop an alternative specification of preference uncertainty
which uses (112a) but assumes that, conditional on C, the uncertainty termυ is uniformlydistributed over
an interval [C-h,C+h] for some parameter h≥ 0. This creates a probabilistic zone of indifference with
width ∆ = 2h. It can be shown that, with this stochastic specification, G˜

C(·) takes the form

(117) .G̃C(x) (1/2h)⌡
⌠x h

x h
GC(x) dx

Thus, for example, when GC(·) is the standard logistic, (15), one obtains

(118) G̃C(x) = (2hβ)-1 ln[(1 + eα + β(x+h))/(1 + eα + β(x-h))].

This cdf can be regarded as a multi-parameter generalization of the logistic that is an alternative to those
in (107) - (109). Like them, it can be estimated from the CV responses alone, using (112b), without
requiring a question about confidence in one’s answer. Li, Lofgren and Hanemann (1995) apply a version
of this model to Bishop and Heberlein’s (1979) data on WTA responses in real and hypothetical markets
for goose hunting permits, based on a multiplicative formulation, C˜ = Ceυ rather than the linear
formulation in (112a) and using the Bishop-Heberlein model utility model, (19a), for GC(·). They find a
substantial and interesting difference in the value of h for the two sets of data: h is not significantly
different from zero in the real WTA experiment, but it is significantly positive in the hypothetical
experiment and its inclusion brings the estimated welfare measure from the hypothetical experiment much
closer to the value of the welfare measure estimated from the real data. Given the difference in the
temporal resolution of choice, it is not surprising that responses in hypothetical markets exhibit
substantially more preference uncertainty than those in actual markets.

In this section we have reviewed recent efforts to generalize the response probability distribution
so as to provide a more flexible and realistic framework for modelling CV responses. When tested against
CV data, each of the models has been found to have some validity in the sense of providing a better fit

123 For example, when the probit model (14) is modified to ensure that C≤ y, ηmax is given by (24).
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than the conventional logit and probit models in the earlier literature. This creates quite a strong case for
considering a multi-parameter generalization of the conventional models. However, it still remains to be
seen which is themore appropriategeneralization. The next step in CV research is to test these
generalized models against one another in order to gain a better of understanding of their relative
merits.124

4.4 Nonparametric and Semiparametric Models

4.4.1 Single-Bounded Data

We first consider nonparametric and semiparametric estimation for single-bounded CV data, and
then address double-bounded data in section 4.4.2. Our starting point is the log-likelihood function (48),
which we repeat here for convenience

(119) ,ln L
N

i 1

yi ln Pi (1 yi) ln (1 Pi)

wherePi ≡ Pr{i th observation is a "yes"}. Focusing for the moment on the bid, Ai, and ignoring all other
covariates, following (1) - (3) and (6) we can write

Pi ≡ H(Ai) = 1 - GC(Ai)
(120)

= 1 - Fη[∆v(Ai)],

where the second line uses the utility difference formulation associated with an additively random utility
model, as noted in footnote 12. In a parametric statistical model one adopts a parametric cdf (or survivor
function) for H(·) in (120). In a parametric RUM model, one adopts a parametric specification for the
WTP distribution, GC(·), or parametric specifications for the indirect utility function, v(q,y,ε), and the cdf
of ε. A fully nonparametric approach estimates H(A) -- or GC(A) -- nonparametrically, without specifying
a parametric formula. A semiparametric approach estimates either Fη(·) or∆v(·) in the second line of (120)
-- but not both -- nonparametrically. We start with the nonparametric approach and then consider various
semiparametric approaches.

With binary response data, nonparametric estimation involves estimation of an unknown function
of a variable, H(A), whose value is observed at a discrete set of points Aj, j = 1,..,J, (we assume these are
arrayed from low to high). The function can be estimated only at those points, not at other points which
are unobserved. Economic theory restricts H(A) to be monotonically non-increasing in A (see footnote 8).
Ayer et al. (1955) developed a nonparametric maximum likelihood estimator for H(A) by treating Pj =
H(Aj), j = 1,..,J, as a set of unknowns to be estimated, subject to the constraints that Pj ≥ Pj+1—this is the
ultimate extension of the idea of adding extra parameters to better model the observed data. Let Pˆ

j be the
observed sample proportion of respondents who said yes to the jth bid. Ayer et al. proved that, if the Pˆ

j’s
form a non-increasing sequence, they are the nonparametric maximum likelihood estimator of H(A).
Otherwise, if they are increasing in some region (i.e., Pˆ

j < P̂j+1 for some j), one simply combines the

124 Also, bid design for generalized parametric response models is an important area for future
research.

75



responses for adjacent bids until the revised sequence of sample proportionsis monotonically non-
increasing. Ayer et al. proved that this "pool-adjacent-violators" algorithm generates a consistent estimate
of the true H(A).125 This estimator was first applied to single-bounded CV data by Kristrom (1990).

An alternative to the Ayer et al. nonparametric estimator of H(·) is smoothing of the empirical
distribution of responses via a kernel function. This was first applied to binary response data in biometrics
by Copas (1983), who saw it as being especially useful when there are so few observations at each bid
(dose) that one cannot obtain a reliable estimate of the sample proportions of "yes" and "no" responses
without resorting to some smoothing procedure. Copas describes a method of correcting for the bias due
to smoothing, and he presents an estimate of the variance of the estimated response probability. Kernel
estimation of dose response models, together with confidence intervals for estimated response probabilities,
is also considered by Kappenman (1987) and Staniswalis and Cooper (1988). We are not aware of any
CV applications as yet.

In the last decade or so, several approaches have been developed for modeling binary data in the
semiparametric case where the response probability function H(·) can be decomposed, as in (2) or the
second line of (120), into a cdf, Fη(·), which is of unknown form and what is called anindex function, T(·)
or ∆v(·), which has a known functional form but with unknown coefficients.126 This formulation allows
for other covariates besides the bid. The index function is written T(Z,θ), where Z is a set of covariates
(including A) andθ is a vector of coefficients to be estimated along with Fη(·). Some normalization is
imposed onθ and it is usually assumed that T(Z,θ) = Zθ, which would correspond to a linear Box-Cox
utility model (12’) where Zθ = α - βA, but nonlinear formulations are also possible.

Coslett’s (1983) semiparametric estimator extends the Ayer et al. estimator to the case where H(A)
= Fη(T(Z,θ)) using a two-part maximization of the likelihood function. Given the current estimate ofθ,
sayθ̂, evaluate the index function for each observation. Let Tˆ

j, j = 1,..,J denote the resulting distinct values
of the index function, indexed so that they are in increasing order. Estimate Fη(·) nonparametrically as a
set of constants corresponding to Pˆ

j = Fη(T̂j), using the pool-adjacent-violators algorithm. Then, concentrate
the log-likelihood function and numerically maximize with respect toθ. This is difficult since the
concentrated likelihood function varies in discrete steps overθ-space, which precludes conventional
maximization techniques based on analytical or numerical derivatives. Instead, following Manski (1975),
Coslett takes random sets of orthogonal directions inθ-space, searching for the maximum until a
convergence criterion is satisfied. He established that this yields a consistent estimate ofθ and Fη(·). Li
(1996) applied Coslett’s estimator to single-bounded CV data and found that, while computer intensive,
it was certainly feasible. He compared it to conventional probit, based on (14), using Monte Carlo
simulation and found that, although probit gave more efficient coefficient estimates whenη actually was
normally distributed, it produced seriously biased estimates whenη was non-normal while the
semiparametric estimates remained close to the true values and had a considerably lower mean squared
error.

Because the concentrated likelihood in Coslett’s approach is not a smooth function ofθ, the

125 Applications of the Ayer et al. estimator are discussed in Barlow et al. (1972). Schmoyer (1984)
extends their approach to nonparametric estimation where the unknown WTP distribution is assumed to
be unimodal, so that H(A) is sigmoidal as well as non-increasing. Glasbey (1987) extends it to cases where
the WTP distribution is assumed to be symmetric and/or bell-shaped.

126 Horowitz (1993) has an excellent survey of this literature.
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asymptotic distribution of his estimator is not known; while it is consistent, there is no reason to believe
that it is asymptotically normal or efficient. To circumvent this problem, Klein and Spady (1993) replace
Coslett’s concentrated likelihood function with a nonparametrically estimated function that locally
approximates the true likelihood but is a smooth function ofθ. They apply Bayes Rule to obtain

(121) Pj(θ) = Fη(Zjθ) = Pr{"yes" | Tj = Zjθ} =

Pr{Tj = Zjθ | "yes"} · Pr{"yes"} / [Pr{Tj = Zjθ | "yes"}·Pr{"yes"} + Pr{Tj = Zjθ | "no"}·Pr{"no"}].

Although Fη(·) is unknown, they estimate the RHS of (121) by using the sample proportions of "yes" and
"no" responses as estimates of Pr{"yes"} and Pr{"no"}, and nonparametric kernel estimates of the
conditional densities Pr{Tj = Zjθ | "yes"} and Pr{Tj = Zjθ | "no"}, which are smooth functions ofθ.
Because of this, the RHS of (121) can be maximized with respect toθ in a conventional manner. Klein
and Spady establish that the resulting estimator ofθ is N1/2 consistent and asymptotically normal, and
attains the asymptotic efficiency bound of Coslett (1987) ifη and Z are independent. It has not yet been
applied to CV data.

There are several other semiparametric estimators for the case where Fη(·) is of unknown form
while the index function has a known form, including Han’s (1987) maximum rank correlation estimator,
the Powell et al. (1989) weighted average derivative estimator, Ichimura’s (1993) semiparametric least
squares estimator, Manski’s (1975) maximum score estimator, and Horowitz’s (1992) smoothed maximum
score estimator. However, these provide estimates of the coefficientsθ but not of Fη(·), which makes them
less useful in a CV context where the interest lies not just inθ but also in welfare measures that depend
on Fη(·) or its quantiles.

The other major approach to semiparametric estimation of a binary response model reverses this
assumption and postulates a known, parametric cdf for Fη(·) combined with an unknown form for the
index function which is approximated by some flexible form. For example, one might assume that Fη(·)
is a logistic or normal cdf, while∆v(A) is a spline function of the bid and other covariates (O’Sullivan,
Yandell and Raynor, 1986), a generalized additive function (Hastie and Tibshirani, 1987; Preisler, 1989),
or Gallant’s (1981) Fourier flexible form. Estimation is by maximum likelihood or, for grouped data, by
some form of least squares; in the logistic case, the analog of minimum chi-squared estimates the RHS
of (15’) as a spline, generalized additive function, or Fourier function of A. The logistic-Fourier model
has been applied to single-bounded CV data by Chen (1993) and Creel and Loomis (1995).

4.4.2 Double-Bounded Data

The log-likelihood function for double bounded data, (98)-(99), can be written equivalently in
terms of the J distinct values used for the initial bid A and the follow-up bids Au and Ad, augmented by
two "artificial" bid values of A0 ≡ 0 and AJ+1 ≡ ∞, as

(122) ,ln L
J 1

j 1

Nj ln [ GC(Aj ) GC(Aj 1) ] ≡
J 1

j 1

Nj ln πj

where GC(·) is the WTP distribution function and Nj is the number of respondents for whom Aj-1 < C ≤
Aj. The aim is to estimate GC(·) nonparametrically. Define Sj ≡ GC(Aj) = Pr{says "no" to Aj}; then Sj =
Σ j

k=1 πk. Turnbull (1974, 1976) developed an analog of the Ayer et al. non-parametric estimator for
likelihood functions like (122), treating theπj’s as a set of unknowns to be estimated, subject to the
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constraints thatπj ≥ 0 (which makes the Sj’s monotone non-decreasing) andΣπj = 1. Turnbull shows that
the first order conditions for the likelihood maximization imply the pool-adjacent-violators principle, so
that if the observed sample Sˆ

j’s are decreasing in some region one combines adjacent bids until the
sequence is non-decreasing.127 This was first applied to double-bounded CV data by Carson and
Steinberg (1990); recent applications include Carson et al. (1992), Carson, Wilks and Imber (1994), and
Huhtala (1994). In principle, the Turnbull estimator can be extended to the semiparametric case where
GC(A) = Fη(T(Z,θ)), where Z includes covariates besides A and T(·) has a known parametric form while
Fη(·) is estimated nonparametrically, in the same way that Coslett (1983) and Klein and Spady (1993)
extend the Ayer et al. estimator. This would be computationally challenging, however, and no applications
are yet known. The alternative semiparametric formulation where Fη(·) is a known cdf and T(·) is
estimated nonparametrically as some flexible function of covariates might not be as difficult to implement
with double-bounded data.

4.4.3 Nonparametric Welfare Measurement

With nonparametric methods that estimate H(A) by smoothing, and semiparametric methods that
assume a known Fη(·) such as the logistic-Fourier model, the estimated response probability distribution
is a continuous function to which (36) and (37) can be applied directly to obtain an estimate of the median
WTP, C*, or any other quantile of the WTP distribution. For the mean, C+, one must resort to some form
of numerical analysis to evaluate the area under the empirical response probability graph based on (45)
or (46).128 The situation is more complicated when the Ayer et al., Coslett or Klein and Spady estimators
are used with single-bounded data, or the Turnbull estimator with double-bounded data. In those cases,
the resulting estimate of the response probability function is a step function consisting of J (or fewer, if
there is pooling) distinct estimates, Pˆ

1,..,P̂J which are monotonically decreasing and are located at the bid
values, A1,..,AJ, where P̂j is the nonparametric estimate of H(Aj) = Pr{"yes" to Aj}. An example of what
the researcher might face is given in Figure 5(a), which graphs estimated Pˆ

j’s against Aj’s. Unless one of
the P̂j’s just happens to take the value 0.5, the estimate of C* cannot be obtained without some form of
interpolation; in Figure 5(a), for example, the point estimate of C* lies somewhere in the interval [A4, A5].
Thus, C* no longer has a computational advantage over the C+, since both require numerical evaluation.

One way to proceed is via linear interpolation, which produces the trapezoidal approximation to
the unknown H(A) shown in Figure 5(b). The resulting estimate of median WTP, Cˆ *, is marked on the
horizontal axis.129 We noted earlier that the estimate of C+ is sensitive to the tails of the WTP
distribution. In the nonparametric case, it is heavily influenced by what one assumes about the shape of
the WTP distribution to the left of A1 and to the right of AJ. Suppose one assumes that P0 ≡ H(A0) = 1,
thus ruling out negative preferences. Suppose one also assumes that there is some Cmax ≤ y such that

127 In (122), the observations on WTP are said to be interval censored for j = 1,..,J, and left (right)
censored for j = 0 (j = J+1). The case where observations are right censored was treated by Kaplan and
Meier (1958), who showed that what is known as the product limit estimate of the Pj’s constitutes the
nonparametric maximum likelihood estimator of GC(·). Turnbull extended this to more complex models,
including (122). Statistical packages for survival analysis generally include the Kaplan-Meier estimator
and sometimes the Turnbull estimator.

128 Staniswalis and Cooper (1988) show how to construct a confidence interval for C* when H(A) is
estimated by smoothing. Otherwise, confidence intervals for these estimates of C* and C+ can be obtained
by bootstrapping.

129 This is how Kristrom (1990) estimated C* when using the Ayer et al. estimator with CV data.
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H(Cmax) = 0. The graph in Figure 5(b) applies the linear interpolation between A0 and A1 and between A7
and Cmax. In biometrics, the estimate of C+ obtained by integrating the area under the linearly interpolated
graph in Figure 5(b) is known as the Spearman-Karber estimate of mean WTP, µˆSK.

130

An alternative approach to calculating C+ from the nonparametrically estimated Pˆ
j’s is shown in

Figure 5(c). This graph differs from that in Figure 5(b) in three ways, all of which cause it to produce a
more conservative estimate of C+. First, in the main body of the graph it assumes that, over the interval
[A j, Aj+1], H(A) = P̂j+1, j = 1,..,J-1. This is a conservative assumption since, with H(·) monotone
nonincreasing, we know that H(A)≥ H(Aj+1) over the interval. Second, in the left tail, it assumes that H(A)
= P̂1 for 0 < A ≤ A1, which is conservative for the same reason; in effect, this introduces a spike ofγ =
P̂1 into the estimated WTP distribution at C = 0. Third, it censors the WTP distribution from above by
imposing a spike at the highest observed bid, AJ. The estimate obtained by integrating the area under the
graph in Figure 5(c) is known as the Kaplan-Meier-Turnbull estimate of mean WTP, µˆKMT.131

The formulas for these two estimators are

(123) µ̂KMT

J

j 1

( P̂j P̂j 1) Aj ≡
J

j 1

π̂j Aj

(124) µ̂KS µ̂KMT ( 1
2

)
J

j 1

( P̂j P̂j 1 ) (Aj 1 Aj )

J

j 1

( P̂j P̂j 1 ) [ ( Aj Aj 1 ) /2 ]

where P̂J+1 ≡ 0 and AJ+1 ≡ Cmax. The Spearman-Karber estimator µˆSK has been shown to be a uniform
minimum variance unbiased estimator and a nonparametric maximum likelihood estimator of the
discretized mean of the WTP distribution (Miller, 1973; Church and Cobb, 1973). Morgan (1992) gives
the formula for the variance of µˆSK, from which a confidence interval can be constructed. Hamilton et al.
(1977) proposed that µˆKS could be made more robust by first trimming the data, dropping, say, 5% or 10%
of the observations corresponding to the lowest and highest bids. Morgan reviews the results of a number
of simulation studies comparing alternative estimators and concludes that a moderately trimmed Spearman-
Karber estimator is often a good general-purpose estimator of the mean of a quantal response distribution.
In contrast, the Kaplan-Meier-Turnbull measure µˆKMT is an estimator of alower boundon the mean of the
WTP distribution, C+, since it is constructed from a lower bound on the graph of H(A) = [1-GC(A)]. This
makes it a conservative estimate if the mean is the chosen welfare measure. Carson et al. (1994) give the
formula for the variance of µˆKMT, from which a confidence interval can be obtained.

Nonparametric or semiparametric estimation of the response probability distribution fundamentally
changes the nature of bid design in CV experiments. With parametric response models, the probability

130 In the CV literature, this is used by Kristrom (1990) and Duffield and Patterson (1991).
131 CV applications include Carson et al. (1992), Carson, Wilks and Imber (1994) and Huhtala (1994).
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distribution is given (assumed by the researcher) and has some small number of parameters which are to
be estimated from the data. The bid design takes the distribution into account and makes an initial
assumption about the parameter values; in those circumstances, a small number of well-placed design
points suffices to provide good estimates of the parameters. Nonparametric or semiparametric response
models eliminate the crutch of a predetermined distributional form, resorting instead to a greatly expanded
number of parameters to represent the response distribution. Indeed, with the Ayer et al., Coslett, Klein
and Spady or Turnbull estimators, the design points literally determine all that can be known about the
response distribution, as Figure 5(a) illustrates. Even more than with parametric models, the optimal design
depends crucially on what the researcher wants to estimate -- the mean, the median, or some other quantile
of the WTP distribution.

If the goal is to estimate median WTP and it is possible to vary the bids between experiments,
the classic sequential estimator of C* is the "up and down" estimator (Dixon and Mood, 1948; Dixon,
1965). In the single-bounded version, one starts with an initial bid, A, obtains some CV responses,
computes the proportion of "yes" responses, Pˆ , and then revises the bid if Pˆ ≠ 0.5; the bid is raised by
some predetermined amount if Pˆ > 0.5, and lowered if Pˆ < 0.5, and the sequence is repeated until
convergence. Modifications designed to make the estimate of C* more robust or efficient include
incorporating an initial delay, corresponding to excluding initial trials (Brownlee et al, 1953), and allowing
the step length to decrease as the iterations progress (Cochran and Davis, 1965). There is now an extensive
literature on nonparametric sequential estimation of C*, which is summarized in Morgan (1992).

If sequential estimation is impossible and one is restricted to a single bid vector, Muller and
Schmitt (1990) recommend identifying an interval in which C* is expected to fall and then using as many
bid points as possible evenly dispersed over this interval, with only one or a few observations at each bid.
McFadden (1994) gives similar advice for estimating C+ -- he recommends a relatively large number of
closely-spaced bids, spread widely over the interval [Cmin, Cmax]. There certainly is some logic to both
recommendations. The fewer the design points, the cruder is the interpolation required to pin down C*.
And, since C+ depends on the shape of the WTP distribution over its entire length, maximizing the number
of bid levels maximizes the number of points at which the WTP distribution is observed. Indeed, this
would minimize the bias of estimated mean WTP. But, in our view the argument does not pay enough
attention to thevarianceof the estimated response proportions. With a fixed total sample size, when there
is an increase in the number of distinct bid levels, J, the number of observations at each bid declines,
thereby raising the variance associated with the estimated Pˆ

j. Moreover, the increase in var(Pˆ
j) raises the

likelihood that some of the observed Pˆ
j’s will violate the monotonicity requirement, thereby causing the

pool-adjacent-violators algorithm to shrink the effective number of bid levels and dilute the information
associated with the bids that were pooled. These considerations are not adequately addressed in either
paper. Just how one should balance the benefits from having many distinct bid points against the benefits
from having a reasonable number of observations at each point remains an open question that merits
further research.

4.4.4 Concluding Observations on Nonparametric Estimation

There is currently much interest in nonparametric and semi-parametric approaches to the analysis
of discrete-response CV data. Compared to parametric models, these are more robust against possible
misspecification of the response probability distribution, and they offer the least restricted characterization
of what the data have to say. Whether or not this makes much of a difference in practice depends partly
on the goal of the analysis. The experience to date suggests that the estimates of median WTP obtained
using nonparametric or semiparametric estimation do not differ greatly from those obtained with a
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parametric approach; however, the estimates of mean WTP can differ considerably. Moreover, the lack
of structure implied by the nonparametric or semiparametric approach entails some costs as well as some
benefits. Since there is no parametric specification of the underlying RUM model, it is not possible to
extrapolate from the observed CV responses to the measurement of other items not directly covered in the
survey. For example, one cannot derive an estimate of the WTA distribution from the fitted WTP
distribution as indicated in footnote 33. The nonparametric and semiparametric estimators are often
computationally demanding and, as noted above, some of them make it difficult to include covariates
besides the bid. Moreover, in the absence of a parametric structure it may be difficult or impossible to
model response effects using the approaches described in Section 4.3.

4.5 Analysis of Nonresponse Bias

There are two general classes of nonresponse: unit nonresponse where survey recipients may
simply choose not to respond to the survey at all, and item nonresponse where they may choose to not
answer certain questions, either out of protest, or because the questions are too difficult, time-consuming,
or confusing. Bias occurs when nonresponses are not random over the sample population, but instead are
correlated with WTP. Although a survey researcher cannot fully account for this bias without collecting
responses from the nonrespondents, there are techniques available for addressing the component of
nonresponse bias that can be linked to observable sociodemographic or attitudinal characteristics.

4.5.1 Unit Nonresponse

Let the total number of survey recipients beN. For the ith recipient let Ri be an indicator which
equals one if the recipient responds to the survey and zero if the recipient does not respond. As before,
yi is the discrete response to the WTP question, which is observed only if the individual responds, and Pi

is the probability of a positive response. Thus, we can write the log-likelihood function as follows:

(125) ln L
n

i 1

Ri [ yi ln Pi (1 yi) ln (1 Pi ) ]

which is simply the sum of the individual log-likelihood functions for units that responded to the survey.
The consistency of the maximum likelihood estimators is dependent on the response process which
determines R = (R1,...Ri,...Rn). If R is randomly and independently distributed across survey recipients, and
uncorrelated with factors related to WTP, then unit nonresponse merely enters as an additional level of
sampling in the data collection process. That is, instead of the sample size beingn, the number of survey
recipients, it ism, the number of survey respondents. The response rate then, affects small sample
properties but does not affect the maximum likelihood consistency and efficiency results. If however, the
probability of responding to the survey varies systematically over the sample population, by demographic
characteristics, attitudes, or directly by WTP, then maximization of (119) instead of (125) will result in
inconsistent estimation, due to the heavier influence of certain groups with high response rates, relative
to those with low response rates.

The best solution is to minimize nonresponse in the first place, by designing a data collection
process which encourages high participation rates for all groups. This aside, the researcher must rely on
what she knows about the characteristics of the population and the sample, and on what she knows or can
assume about the response process, in order to infer something about the characteristics of the non-
respondents. A key issue is whether, conditional on the observed covariates, members of the sample are
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missing from the set of respondents at random or not at random (Little and Rubin, 1987). If they are
missing at random, there is an unconfounded probability process with Pr(R | Y) = Pr(R), and Pr(Ri = 1
| Y) > 0 for all i and all possible Y, where Y = (y1,...yi,...yn). Furthermore, assume that the response
probabilities are all equal, positive, and independent, so that the response process is an independent
Bernoulli sampling process with probability of responseΦ > 0. Given the number of survey respondents,
m, and the total number of survey recipients,n, we have Pr(Ri = 1) = m/n, or E(Ri) = m/n for all i. Then,
taking the expectation of (125), we have:

(126) E(ln L) ( m
n

) E
n

i 1

[ yi ln Pi (1 yi) ln (1 Pi ) ]

which implies that maximum likelihood estimation is, on average, unaffected by nonresponses drawn from
an unconfounded probability responding mechanism. The unit nonresponses represent an additional level
of sampling which reduces the total sample size, but does not distort the maximum likelihood estimation
in any systematic manner.

It is possible, however, that the probability of responding is correlated with demographics, and
possibly other unobservable factors, that are themselves correlated with WTP responses. In that case,
taking the expectation of (125) does not eliminate the variation in R across individuals. Thus, maximum
likelihood estimation will be inconsistent unless the weights imposed by R are appropriately adjusted with
a weighing scheme. We might therefore, assume that the response probabilities are functions of the
demographics only, with demographic groups stratified by characteristics such as age, education and
income. Within each demographic group, the responses are assumed to follow an unconfounded response
probability process; between groups, the response process isnot unconfounded. Under these assumptions,
we can write the likelihood function as:

(127) lnL
H

h 1

ln Lh

where h = 1,..,H is the index of the demographic group, nh is the sample size of group h,

(128) ln Lh

nh

i 1

Rhi [ yi ln Pi (1 yi ) ln (1 Pi ) ],

and, within group h, we have E(Rhi) = mh/nh.

If we specify weight adjustments wh so that the different groups carry the same weight as they do
in the sample population, then we overcome the problem. In particular, we let

(129) wh

nh/n

mh/m

where mh/m is the response rate for group h in the sample, and nh/n is the relative weight of group h in
the sample population. The weighted likelihood function is:

(130) ln L W
H

h 1

wh ln Lh

82



H

h 1

wh

nh

i 1

Rhi [ yi ln Pi (1 yi) ln (1 Pi ) ].

This weighted likelihood function has the same expected value as (126). Thus, the stratified weighing
scheme effectively removes the unit nonresponse distortions in the sample, provided that the stratification
fully accounts for the distorted response rates.

4.5.2 Item Nonresponse

If there are systematic differences between those who do and do not respond to the WTP question,
there will be bias in the estimation of mean or median WTP. The only way to prevent this bias is to
collect a complete sample at the start. Short of this, the most common practical remedy for item
nonresponse is imputation. This is where values are imputed for the missing responses using existing
information about the respondents and some prediction method based on the responses provided by the
other survey respondents.

By substituting predicted values for the missing values, one creates a complete data set, but the
data set lacks the variability found in a truly complete data set. The imputed values are typically predicted
values based on some model derived from the existing data. But these models will not account for any
differences between respondents and non-respondents. The researcher must therefore make assumptions,
based on prior information, about the non-respondents’ behavior; either they are assumed to be no
different, or they are assumed to be different in some specific, quantifiable way. Either way, it is clear that
the assumptions made by the researcher and the resulting predictive model used for imputation will not
adequately substitute for the real data. Several alternative procedures have been used that provide a greater
amount of variability in imputed responses. One alternative is to use a hot deck procedure, of which there
are several varieties132 where it is assumed that non-respondents and respondents within a classification
group follow the same distribution, and the missing values are imputed by drawing randomly from the
existing data within the corresponding classification groups and substituting the drawn responses for the
missing values.

Another method which provides more variability of responses is the multiple imputation method
(Rubin, 1987). Here, multiple data sets are created using different imputation algorithms, and estimation
is performed separately, using each data set. The collection of resulting estimates should be stable in terms
of their expected values, but should demonstrate adequate variability for inference purposes.

As indicated, the imputation procedure chosen is based on the instincts of the survey researcher
about the behavior of the non-respondents. The validity of the imputations is not verifiable unless actual
responses are eventually obtained from the nonrespondents. The researcher must therefore be careful about
making assumptions and using point estimates derived using the imputed values based on these
assumptions. Alternatively, the researcher must be careful about making inferences using estimates derived
without accounting for the missing responses, because these estimates might be systematically biased.

It is impossible to be certain about survey nonresponse biases. In order to adjust for biases in
survey responses, the researcher must make assumptions about what types of biases exist and believe these

132 See Madow, Olkin and Rubin (1983, Chapter 14) for a review of hot deck procedures.

83



biases can be addressed using other information, either theoretical or empirical. If assumptions are correct,
then the resulting adjusted estimation is an improvement over unadjusted estimation. Unfortunately, in the
case of nonresponse, the researcher is unable to verify assumptions. We recommend examining the
sensitivity of WTP estimates to the assumptions made about nonrespondents. The greater the variation
among estimates, the more cautious one must be about drawing inferences based upon any imputation
scheme, including no imputation.

5. CONCLUSIONS

In this survey of the statistical issues in discrete-response CV, we have sought to emphasize three
broad themes: the need for thoughtfulness in modelling the stochastic components of the response model;
the importance of modelling the entire data generation mechanism, including the elicitation procedure as
well as individual preferences; and the importance of experimental design.

There is some tendency in conventional demand analysis to treat the stochastic component as an
afterthought when specifying an economic model, and to focus almost exclusively on the deterministic
component. The stochastic component is assumed to arise outside the economic model and to have no real
significance for the economic interpretation of the statistical results. In RUM models, including those used
for discrete-response CV, the situation is different. The stochastic component is an essential part of the
economic model; it interacts with the deterministic component and materially affects the model’s
implications for the prediction of behavior and the evaluation of welfare. Therefore, both components need
to be taken seriously by the researcher. This is illustrated by our analysis in Section 2.3 of issues that arise
in restricting the distribution of the stochastic components in order to ensure that the indirect utility
function is monotone increasing in q. Another example is welfare measurement; with discrete response
CV data one ends up estimating the entire WTP distribution and, as noted in Section 2.4, the welfare
measures -- especially the mean -- can be highly sensitive to the specification of the response probability
model. Until recently, the CV literature generally used two-parameter probability distributions, with a
single location parameter (modelled as a function of covariates) and a single scale parameter. There is
growing awareness that this is too restrictive; one often needs multi-parameter probability models that
permit more flexibility in the shape of the WTP distribution. There are many possible ways to accomplish
this, including inserting a spike at one or both tails of the WTP distribution, adding an overdispersion
parameter, making the distribution heteroscedastic, or using models of thick indifference curves or
preference uncertainty. One can also use various multi-parameter generalizations of the logistic or related
distributions, or switch to a nonparametric approach. The next step in CV research will be comparative
analysis, testing the alternative approaches against one another with a view to identifying which might
work best in different circumstances.

Another recent development is the growing interest in alternative ways to elicit preferences,
including discrete-response CV formats in which individuals can respond with varying degrees of
confidence or certainty, and other procedures such as contingent choice, contingent ranking, scaling or
other forms of conjoint analysis, and multiattribute utility assessment. These are seen as either alternatives
to referendum CV or supplements that can be combined with it in a single interview. We certainly
encourage methodological pluralism for the purpose of discovering which approaches work well with
different items and different types of people. We have three general observations to offer.

First, it is important to decide whether the goal of the exercise is value a particular item or to
estimate an entire valuation function, since that greatly influences the choice of elicitation procedure. There
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is a tradeoff since, although estimating an entire valuation function may more useful, it is also more costly.
To value multiple items with the same precision as a single item, either one must increase the number of
observation collected, or one must assume that preferences for the items are related to one another in a
specific way through a single, underlying hedonic utility model. The hedonic approach makes it possible
to value multiple items without more observations, but at the cost of imposing a maintained assumption
about preferences which could be inaccurate or unduly restrictive.

Second, when using alternative elicitation formats one should not be surprised that different
formats yield different estimates of preferences. In fact one should expect this, because the cognitive
demands are not identical. People find choice different than ranking, ranking the top items different than
ranking all items, rating different than ranking, matching different than choice, and open-ended CV
different than closed-ended CV. Some critics of CV have asserted that one should expect the same results
regardless of the elicitation procedure.133 In our view, this is like asserting that words should have the
same meaning regardless of context; it misunderstands the nature of both the organism and the process.
At any rate, the evidence in market research as well as environmental valuation overwhelmingly rejects
procedural or task invariance.134 In consequence, the researcher should contemplate modelling the
response process itself in combination with the underlying preferences -- in effect, the complete data
generating process. This can be done through heteroscedastic models in which the variance of the
individual’s utility for an item is non-constant, reflecting features of the individual, the item, or the
elicitation task; examples are the heteroscedastic models used in choice experiments, (82b), rankings, (86),
and double-bounded CV, (106). Other ways to incorporate response effects or cognitive burdens in surveys
include the models with background probability of saying "yes," (103) and (110), the model of thick
indifference curves, (111), and the preference uncertainty model, (117).

Third, while we favor experimentation, we believe that researchers should resist the temptation
of going too far in maximizing the amount of information collected per subject. One reason is cognitive
limits. There is no free lunch in collecting information from subjects; wearying them or asking for more
precision than they can supply becomes counterproductive. This is why we prefer closed- to open-ended
CV questions.135 A second reason is the danger of an inadequately sized sample. Collecting more
information from fewer subjects may reduce survey costs, but it is a fragile strategy because, while there
is likely to be considerable heterogeneity in preferences between individuals, successive responses from
the same subject are unlikely to capture the inter-individual variability. Indeed, successive responses are
likely to be correlated because of fatigue or learning, because of anchoring phenomena, or because framing
or other factors create individual-specific effects. Consequently, for the purpose of modelling preferences
in a population, 100 subjects each valuing twenty items may provide much less information than 1,000
subjects each valuing two items.

133 "If people really have this willingness-to-pay, they should shine through. They should shine through
these little variations" (Hausman 1993, p. 214).

134 In addition to cognitive impacts, changing the wording of a question or the survey context may
substantively affect the commodity that is being valued. Specifying the item less precisely may signify
a wider class of environmental commodities; leaving the timing of commitment more flexible makes the
item more economically valuable.

135 Also, the open-ended format is significantly less incentive-compatible than the closed-ended format
(Hoehn and Randall, 1987; Arrow et al., 1993), and subjects tend to respond to open-ended CV questions
by estimating what the item might cost rather than their WTP (Schkade and Payne, 1994).
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In addition to experimentation with alternative elicitation procedures, there is much interest in
comparing preferences elicited in surveys with those exhibited in actual (non-experimental) behavior. In
transportation, where much of the research originated, the termstated preferenceis used to describe the
elicitation of preferences through surveys or experiments, in contrast torevealed preferencefor the
observation of actual behavior from which preferences are inferred.136 It is useful to make a distinction
between comparisons involving thesame task performed in different settings, versus comparisons
involving differenttasks that are derived from the same underlying utility function. Examples of the former
are comparing referendum CV responses with voting in actual referendum elections, comparing stated
preference choices with actual market choices, or comparing self-predictions of demand behavior with
realized demand behavior.137 Examples of the latter are comparing CV with realized demand behavior,
or comparing stated preference rankings with actual market choices.

The practice of comparing the results from CV with those from revealed preference goes back to
the very first CV study, an open-ended survey of visitors to the Maine woods (Davis 1963); Knetsch and
Davis (1966) compared the estimate of WTP with that from a travel cost study and found almost no
difference. The first closed-ended CV study, by Bishop and Heberlein (1979), also contained a comparison
with a travel cost study, and obtained similar results.138 However, those were comparisons of reduced-
form estimates of WTP; instead, Hanemann (1984a) argued for a structural approach in which one tests
for consistency across tasks by reference to a given, underlying utility function that is used to model the
responses to each task. In a comparison of CV with travel cost, for example, the CV response is generated
by an indirect utility function, as in (4) or (6a), while the recreation demand function is generated by
applying Roy’s identity to the indirect utility function:

(131) .

Consequently, there is a mapping between the ordinary demand functions which underpin revealed
preference analysis and the WTP function which underpins stated preference analysis; specifying a
particular model for one implies a particular model for the other.139 This structural approach has now

136 The use of stated preference in transportation was the subject of special issues of theJournal of
Transport Economics and PolicyVolume XXII, No. 1 (January 1988) andTransportationVolume 21, No.
2 (May 1994); its use in market research was the subject of a special issue of theJournal of Business
Research, Volume 24, No. 2 (March 1992). Morikawa (1989) is a seminal work in transportation; Hensher
(1994) provides a summary of the transportation literature.

137 Constructing a utility model for analyzing consumers’ assessments of their response to possible
price changes -- sometimes calledcontingent behavior-- and comparing or combining these with data on
their realized demand behavior is discussed in Dickie, Fisher and Gerking (1987), Hanemann and
Chapman (1988), Carson, Hanemann and Steinberg (1990), Cameron (1992), Chapman et al. (1993),
Englin and Cameron (1996), and Loomis (1996).

138 This is a fairly general finding in the literature. Carson et al. (1996) survey over 80 studies
containing several hundred comparisons between estimates of WTP based on CV and revealed preference;
the results are often fairly close and, overall, the CV estimates are slightly lower.

139 McConnell (1990) showed how this works, identifying the observable implications of an income-
compensation function for ordinary demand functions; see also Whitehead (1995).
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become the standard for comparing or combining preferences elicited through alternative procedures.140

There is one key limitation: a utility model of the form

(132) u = T[v(p,q,y,s,ε),q]

yields the same ordinary demand functions for market goods, hi(p,q,y,s,ε), as the utility function
v(p,q,y,s,ε) because the ratio of price and income derivatives is the same, while producingdifferentWTP
functions, C(p,q,y,s,ε). The revealed preference approach based on integrating an observed system of
ordinary demand functions to obtain the underlying utility function isincapable of recovering
transformations such as T[·,q] in (132). Therefore, it omits the portion of WTP which is associated with
the second argument of the T[·,q].141 This must be taken into consideration when comparing results from
stated and revealed preference approaches.

However, while adopting a model-based approach, much of the current CV literature comparing
stated and revealed preference still pays limited attention to the stochastic specification of the RUM model.
Researchers typically assume that the stochastic structure is identical across elicitation tasks and across
settings (e.g., hypothetical versus actual markets), and focus exclusively on consistency with respect to
the deterministic components of the model. Transportation researchers, by contrast, have allowed for
differences in variances when comparing or combining RUM preferences across tasks or settings, along
the lines of the heteroscedastic logit model, (82b). In discrete choice experiments, they find that the
variances typicallydo differ. If the heteroscedasticity is taken into account, the deterministic components
of the RUM model often turn out to be consistent across tasks or settings, but not if the heteroscedasticity
is ignored.142 The need to allow for heteroscedasticity could arise because of the cognitive differences
mentioned above, differences in task performance (e.g., due to attentiveness or strategic behavior),
differences in perception of the commodity (e.g., there may be a different degree of heterogeneity in
perceptions of attributes for hypothetical versus actual choices, depending on how this is controlled in the
stated preference exercise), or statistical factors such as differences in the degree of variation among the
attributes in stated versus revealed preference. Several studies have found that the revealed preference data
sometimes contain more noise and, without rescaling of variances, produce less reliable estimates of model
parameters than the stated preference data (Morikawa, 1989; Adamowicz et al., 1994).

While heteroscedastic models have clearly proved their worth, we believe that it may be useful
to consider a wider range of models. Examples include models such as (103) or (110) where the
background probability of saying "yes" varies with the task or setting; the model in (111) where the width-
of-indifference parameter varies with the context; or a model such as (117) where the extent of preference
uncertainty varies with the context. For the purpose of comparing or combining stated and revealed
preference data, it may pay to use specifications covering all facets of the data generation process that

140 Examples include Jakus and Smith (1992), Eom and Smith (1994), Jakus (1994), Chen (1994), and
Dickie and Gerking (1996).

141 McConnell (1983) and Hanemann (1988) equate the unrecovered component with what Krutilla
(1967) had calledexistencevalue, also known asnonuseor passive usevalue. The failure to recover T[·,q]
from observed ordinary demand functions arises from optimization at the margin by consumers, i.e., what
Hanemann (1984b) calls theircontinuouschoices. If they make discrete or mixed discrete/continuous
choices, T[·,q] is in principle recoverable from revealed preference data.

142 See the chapter by Adamowicz et al., Swait and Adamowicz (1996), or Louviere (1996), who
contends that allowing variances to change has brought about a "rescaling revolution."
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could vary with the task or the setting.

Since stated preference involves data collection in an experimental rather observational mode,
experimental design is an important component of the research process. Experience has shown that careful
attention to the statistical design of the CV study, no less than the questionnaire design and sampling plan,
can have a large payoff in terms the quality and reliability of the data collected. But, experience also
shows that achieving an effective design requires a clear sense of the goals of the research and the
preference structure being modelled. Optimal bid designs are generally sensitive to what the researcher
wishes to measure -- e.g., mean versus median WTP -- and to what he knows (or thinks he knows) about
the structure of the response probability model.

Current practice in CV research draws on two distinct bodies of design literature. One is the
literature on fractional factorial designs (Winer, 1971). This deals with the problem of estimating the
effects of several factors on a dependent variable where there may be several possible levels of each factor
and the factors can, in principle, vary independently. This creates a large number of potential combinations
among the factors. The aim in fractional sampling is to reduce the number of sampling designs by varying
several factors simultaneously, instead of experimenting with them one at a time. The typical situation
where this arises is the estimation of the models discussed in Section 4.1 for valuing multiple items. The
problem arises with linear regression as well as with nonlinear response probability models, and is
essentially one of dimensionality reduction. Look-up tables can be consulted to find a parsimonious design
with certain given properties regarding the interaction effects the researcher wishes to estimate (Green,
1974; Louviere, 1988). The other literature concerns optimal dose design in bioassay, which underpins our
discussion of optimal bid design in Section 3.5. The context there is estimating the effect of a continuous
exogenous variable (the bid) on the discrete CV response, where the response probability is anonlinear
function of the bid variable. In consequence, the asymptotic variance-covariance matrix for the parameters
of the response probability distribution is itself a function of those parameters. The challenge is to choose
design levels for the bid that will minimize the variance (or some related statistic) of the parameter
estimates, or the welfare measure constructed from them.

In fact, when one takes a hedonic approach to valuing multiple items,bothproblems tend to arise.
On the one hand, CV responses depend on the price associated with each item, which in principle is a
continuous variable that must be specified for the purpose of the experiment. On the other hand,
preferences for the items depend on their characteristics, which are apt to be sufficiently multi-dimensional
as to require some dimensionality reduction. We see combining the two traditions of experimental design
in order to facilitate improved estimation of hedonic valuation models as an important area for future CV
research.

One of our main themes has been the need to model the entire response process in CV, including
the elicitation procedure as well as individual preferences. So far, most of the experimental design research
in CV has not adopted this perspective, focusing on the modelling of preferences rather than elicitation
procedures, and working off standard, simple response models such as the linear logit model (15), rather
than the more complex models discussed in much of this chapter. We see bid design for models of the
entire response process as another important area for future CV research.

We end with a word of caution. Good experimental design is rooted not just in statistics but also
in survey research. This is because there may always be some limit to what information a researcher is
able to convey to subjects, and what she can get them to believe about an item. Those limits constrain
what experiments she can design. One usually discovers the limits the hard way, by testing the instrument
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using various cognitive survey techniques. In this chapter we have focused on what economic theory and
statistics have to say about designing discrete-response CV experiments. The third leg on which CV stands
is survey research. What makes CV such an interesting subject to study is the practical interplay between
economics, statistics, and survey research.
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Appendix: Maximum Likelihood Algorithms

In general, optimization algorithms are iterative procedures that begin with a starting value forθ
and update the estimate at each iteration using some rule of the form:

(A.1) θt 1 θt λt∆t

where t represents the iteration number,∆ represents the direction vector andλ represents step size. The
various algorithms use different specifications for∆ andλ, and vary in their complexity and convergence
properties. When the likelihood function is globally concave, as with the models discussed in this chapter,
the Newton-Raphson Method is a popular, effective choice. It is based on the linear Taylor series
expansion of the first-order condition aroundθ0:

(A.2) ∂L(θ)
∂θ

Lθ L 0
θ H 0 (θ θ0) 0

where the superscript 0 indicates that the function is evaluated atθ = θ0, Lθ is the first derivative of the
log-likelihood function with respect to the parameter vector,θ (also known as the score vector or gradient
vector) and H is the Hessian matrix of second derivatives of the log-likelihood function:

(A.3) H ∂2 ln L(θ)

∂θ ∂θ
Solving for θ as a function of θ0 gives:

(A.4) θ θ0 (H 0) 1 L 0
θ

Letting θt = θ0 andθt+1 = θ gives the Newton-Raphson procedure:

(A.5) θt 1 θt (H t) 1 L t
θ

A disadvantage of this procedure is that it uses the second derivative matrix, H, which can be difficult to
derive analytically and can easily be the source of errors.143 It also does not always perform well when
the current estimate is very far from the maximum. For the cases of logit and probit however, the Hessian
matrix, H, is positive definite for all values ofθ, so the algorithm should always converge.

Other methods are based on equation (A.5) but use different expressions for H. The method of
scoring, for example, uses the negative of the Fisher information matrix for H:

(A.6) θt 1 θt ( I t) 1 L t
θ

The information matrix is the negative of the expected value of the Hessian matrix (- E[H-1] ) and must
be derived analytically. In the case of the logit model, the Hessian is independent of the response vector
so that E(H) = H, and the method of scoring is equivalent to the Newton-Raphson method.

The Berndt, Hall, Hall and Hausman (BHHH) method, uses the outer product of the gradient
vector for H:

143 Numerical derivatives are obtained by taking the difference between a function at two arbitrarily
close points. They require twice as many function evaluations as analytical derivatives and can be
computationally time-consuming.
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(A.7) θt 1 θt (L t
θ L t

θ ) 1 L t
θ

This choice has the advantage of being always positive semi-definite (for any functional form) and less
burdensome to derive analytically because it does not involve the second derivative matrix. Furthermore,
Berndt et al (1974) have shown that the outer product of the score vector is a consistent estimator for the
information matrix.

Another popular algorithm is the Davidon-Fletcher-Powell (DFP) Method which is in the class of
quasi-Newton methods. This method starts with an approximation of H (sometimes the identity matrix,
sometimes the result of the BHHH method), and updates the estimate of H at each iteration using the
previous estimate of H and an estimate of the change in the first derivative vector as a numerical substitute
for the second derivative. In a sense, at each iteration, "information" is added to the estimate of H. The
DFP method has excellent convergence properties but because of its iterative approach to estimating H,
it cannot approximate the Hessian well when only a few iterations are made. Although this method
generally takes more iterations to converge than the Newton-Raphson method, if numerical derivatives are
being used, the DFP method can converge more quickly.
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Table 1: Analytical Bias and Asymptotic Variance of WTP - Single-Bounded Logit Model

(α = 2.5, β = -0.01, median WTP = $250, 250 observations)

Bid Design

(percentile)

% Bias inα % Bias inβ % Bias in
Median WTP

Asymptotic
Variance of

Median WTP

$200, $300
(38%, 62%)

0.83% -0.83% 0.00% 170.21

$100, $400
(18%, 82%)

1.14% 1.14% 0.00% 268.19

$5, $500
(8% , 92%)

1.90% -1.90% -0.03% 588.60

$5, $200,
$300, $500
(8%, 38%,
62%, 92%)

1.94% -1.95% 0.00% 258.85

$300, $400,
$500

(62%,82%,
92%)

4.15% -3.62% 0.51% 1779.19
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Table 2: Some Optimal Designs for Single Bounded CV Dataa

Logit Models Probit Models

Design
Criterion

Criterion
description

Single-
bounded
design

(in
percentiles)

Single-
bounded
design

(in
percentiles)

D-optimal Maximize
Determinant
of Fisher

Information
matrix

Half of
sample each

at:
B = 82.4 %
B = 17.6 %

Half of
sample each

at:
B = 87.25 %
B = 12.75 %

C-optimal Minimize
variance of

median WTP
B = 50.0 %
(parameters

unidentifiable)

B = 50.0 %
(parameters

unidentifiable)

a Results from Alberini (1995b), Minkin (1987), Wu (1988).

Table 3: Performance of Simulated Sequential Single Bounded C-optimal Logit CV Designbc

Number of survey
iterations

Number of observations
per iteration

Mean Squared Error of
WTP relativeto C-

optimal designd

1 500 101.42

2 250 2.46

3 166 1.34

4 125 1.32

5 100 1.23

b These simulations are based on a logistic distribution with parametersα=2.5, β=-0.01; expected median WTP =
250, n = 500.
c Taken from Kanninen (1993a).
d Based on the specified parameters and sample size, a C-optimal design would produce a mean squared error
estimate of 4/nβ2 for the single-bounded model (Kanninen, 1993b).
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Table 4: Analytical Bias and Asymptotic Variance of WTP - Double-Bounded Logit Model
α = 2.5, β = -0.01, median WTP = $250, number of observations =250

Bid Design % Biasα % Biasβ % Bias
Median WTP

Asymptotic
Variance of

Median WTP

B = $250 (50%)
Follow-up = B ± $100

0.53% -0.53% 0.00% 128.15

B = $250 (50%)
Follow-up = B ± $200

0.56% -0.56% 0.00% 135.41

B = $250 (50%)
Follow-up = B + $250

or B - $245

0.66% -0.66% 0.00% 141.45

B = $300, $400, $500
Follow-up = B ± $100

0.90% -0.81% 0.09% 217.11

Table 5: Some Optimal Designs for Double Bounded CV Datae

Logit Models Probit Models

Design
Criterion

Criterion
description

Double-
bounded bid

design
(in

percentiles)

Double-
bounded bid

design
(in

percentiles)

D-optimal Maximize
Determinant
of Fisher

Information
matrix

B = 50.0 %
Bup =87.9 %
Bdn =12.1 %

B =50.0 %
Bup = 91.7 %
Bdn = 8.3 %

C-optimal Minimize
variance of

median WTP

B = 50.0 %
Bup = 75.0 %
Bdn = 25.0 %

B = 50.0 %
Bup = 83.7 %
Bdn = 16.3 %

e Results from Alberini (1995b), Kanninen (1993b), Minkin (1987), Wu (1988).
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Pr yes exp e α β lnA

1



2
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APPENDIX TABLE 2.  CANONICAL RESPONSE PROBABILITY MODELS
SATISFYING C εεεε  [0,y]

(A) MULTIPLICATIVE MODEL C e= +( )α ε β/

(1) TRUNCATION AT εmax

(i) ε Standard Normal

Pr " "
ln

ln
yes

A

y
{ } = −

− +( )
− +( )1

Φ
Φ

α β
α β

C y
y

A dA
y

+ = −
− +( ) − +( )∫1

0Φ
Φ

α β
α β

ln
ln

C C y* *ln lnsolves : Φ Φ− + ( )( ) = − +( )α β α β1
2

(ii) ε Standard Logistic

Pr " "
ln

lnyes
e

e

y

A{ } = − +
+

−

−1
1
1

α β

α β

C y e y e A dA
y

+ − − −
= − +( ) +( )∫1 1

1

0

α β α β

C e

e ya

*

ln

=
− +( )−α

β

β1 2

(iii) ε Standard extreme value

Pr " "
exp

exp

ln

ln
yes

e

e

A

y{ } = −
−( )
−( )

−

−1
α β

α β

C y e e dAe y e A
y

+ −= −
− −∫α β α β

0

C e

e y

*

ln ln

=
− ( )+( )−α

β

α β2

(2) SPIKE AT εmax

(i) ε Normal

Φ α β−( ) <

{ } =
≥

ln

Pr " "

A if A y

yes

if A y0

C A dA
y

+ = −( )∫Φ α β
0

C y e∗ = ( )min , α β

(ii) ε Logistic

1

0

1
+[ ] <

{ } =
≥

− + −
e if A y

yes

if A y

Aα β ln

Pr " "

C e dAA
y

+ − + −
= +( )∫ 1

1

0

α β ln

C y e∗ = ( )min , α β

(iii) ε Extreme value

1

0

− −[ ] <

{ } =
≥

−exp

Pr " "

lne if A y

yes

if A y

Aα β

C y e dAA
y

+ −= − −[ ]∫ exp lnα β

0

C y e∗ −= ( )( )min , lnα β β2 1
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(B)  BOX-COX MODEL C y y
b b

= − − −





λ
λα η 1

(1) DOUBLE TRUNCATION

(i) η Beta

Pr " "
,

yes
by

B r s by
d

S

r S
by b y A

by

{ } =
+( ) − −( )

( )( )












− −

+ −
− −( ) −

−

∫
η α α η

η
α λ

λα

α

λ λ

λ 1 1

1

C
by

B r s by
d dA

S

r S
by b y A

byy
+

− −

+ −
− −( )

−

=
+( ) − −( )

( )( )
























∫∫

η α α η
η

α λ

λ

α

λ λ

λ 1 1

1
0 ,

C
by

B r s by
d

S

r S
by b y C

by
∗

− −

+ −
− −( ) −

− +( ) − −( )
( )( )













=∫solves :
,

.
*

η α α η
η

α λ

λα

α

λ λ

λ 1 1

1 0 5

(ii) η Standard Normal

Pr " "yes
by by b y A

by
{ } =

− +( ) − − + − −( )( )
− +( ) − −( )

Φ Φ

Φ Φ

α α

α α

λ λ λ

λ

      C
by

y by by b y A dA

y

+ =
− +( ) − −( )

− +( ) − − + − −( )( )










∫1

0
Φ Φ

Φ Φ
α α

α αλ
λ λ λ

C by b y C
by∗ ∗− + − −( )( ) =

− +( ) + −( )
solves : Φ

Φ Φ
α

α αλ λ
λ

2

(iii) η Standard Logistic

Pr " "yes
e e

e e

by by b y A

by
{ } =

+[ ] − +[ ]
+[ ] − +[ ]

−
− − + −( ) −

−
− −

1 1

1 1

1 1

1 1

α α

α α

λ λ λ

λ

C

e e
y e e dA

by

by by b y A
y

+

−
− −

−
− − + −( ) −

=

+[ ] − +[ ]
+[ ] − +[ ]



∫1

1 1
1 11 1

1 1

0α α

α α
λ

λ λ λ

C y y
b b e eby

∗

−
− −

= − − +
+[ ] + +[ ]

−






























λ

α α

λ

α
λ

1 2

1 1
11 1

1

ln

(2) SPIKE AT ηmax, TRUNCATION AT ηmin

(i) η Standard Normal

Φ

Φ

α

α

λ λ− + −( )( )
( )

<

{ } =
≥

by b y A
if A y

yes

if A y

Pr " "

0

C by b y A da
y

+ =
( )

− + −( )( )∫1

0Φ
Φ

α
α λ λ

C by b y C if by

C y otherwise

∗ ∗− + −( )( ) = ( ) −( ) <

=

solves : Φ Φ Φα α αλ λ λ1
2

1
2

* ,

(ii) η Standard Logistic

1

1

0

+
+

<

{ } =
≥

−

− + − −( )
e

e
if A y

yes

A y

by b y A

α

α λ λ

Pr " "

C e e dA
y

by b y A+ − − + − −( ) −
= +( ) +( )∫1 1

0

1
α α λ λ

C y y y
b b

e∗ −= − − − +( )











min , lnλ α
λα 1

1 2
1
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(C) LINEAR MODEL C = +α η
β

(1) DOUBLE TRUNCATION

(i) η Standard Normal

Pr " "yes
A y

y
if A y{ } =

−( ) − −( )
( ) − −( ) ≤ ≤

Φ Φ
Φ Φ
α β α β

α α β
0

C
y

A dA y y
y

+ =
( ) − −( ) −( ) − −( )



∫1

0Φ Φ
Φ Φ

α α β
α β α β

C C y∗ ∗−( ) = ( ) + +( )[ ]solves : Φ Φ Φα β α α β1
2

(ii) η Standard Logistic

Pr " "yes
e e

e e
if A y

y A

y
{ } =

+[ ] − +[ ]
+[ ] − +[ ]

≤ ≤
− − − −

− − −

1 1

1 1
0

1 1

1 1

α β α β

α β α

C
e e

y e e dA
y

y A
y

+

− − −
− − − −

=
+[ ] − +[ ]

+[ ] − +[ ]



∫1

1 1
1 11 1

1 1

0α β α
α β α β

C
e ey

∗

− − −= −
+[ ] + +[ ]

−












α
β β α β α

1 2

1 1
11 1ln

(2) SPIKE AT ηmax, TRUNCATION AT ηmin

(i) η Standard Normal

Pr " "yes
A

if A y

if A y

{ } =
−( )
( )

≤ <

≥

Φ
Φ
α β

α
0

0

C A da
y

+ =
( )

−( )∫1

0Φ
Φ

α
α β

C C∗ ∗−( ) = ( )solves : Φ Φα β α1
2

(ii) η Standard Logistic

Pr " "yes
e

e
if A y

if A y

A{ } = +
+

≤ <

≥

−

− +
1

1
0

0

α

α β

C e e dAA
y

+ − − + −
= +( ) +[ ]∫1 1

1

0

α α β

C e* ln= + +( )−α
β β

α1
1 2
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(D) LOG MODEL   C y e= −












− +



1

α η
β

(1) TRUNCATION AT ηmin

(i) η Standard Normal

Pr " "

ln

yes

A

y{ } =
+ −











( )

Φ

Φ

α β

α

1

C
A

y
dA

y
+ =

( )
+ −









∫1

1
0Φ

Φ
α

α β ln

C
C

y
∗

∗

+ −











= ( )solves : Φ Φα β αln 1
1
2

(ii) η Standard Logistic

Pr " "yes
e

e
A

y

{ } = +

+ −





−

−
−

1

1 1

α

α
β

C e e
A

y
dA

y
+ − −

− −

= +( ) + −



























∫1 1 1

0

1

α α
β

C y e∗ −
= − +( )[ ]1 2

1α β
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APPENDIX TABLE 3.  RESPONSE PROBABILITY MODELS SATISFYING
C εεεε [0,y] WITH A SPIKE AT ZERO

(1) MIXTURE MODELS
Pr " " Pr " "yes yes{ } = −( ) ⋅ { }1 γ   where Pr " "yes{ }  is any of the formulas in Table 2.

(2) CENSORED MODELS

(A) BOX-COX MODEL C y y
b b

= − − −





λ λα η
1

TRUNCATION AT ηmax, SPIKE AT ηmin

(i) η Standard Normal

1 0

1 0

if A

yes

by b y A

by
if A y

=

{ } =

−
− + − −( )[ ]

− +( )
< ≤

Pr " "

Φ

Φ

α

α

λ λ

λ

C y
by

by b y A dA
y

+ = −
− +( ) − + − −( )( )∫1

0Φ
Φ

α
αλ

λ λ

C by b y C by

if by

C otherwise

∗ ∗

∗

− + − −( )( ) = − +( )
−( ) < − +( )

=

solves : 2

2

0

Φ Φ

Φ Φ

α α

α α

λ λ λ

λ

(ii) η Standard Logistic

1 0

1
1

1
0

if A

yes

e

e
if A y

by

by b y A

=

{ } =

− +
+

< ≤
−

− + −( )

Pr " "

α

α

λ

λ λ

C y e e dAby by b y A
y

+ − − + −( )
−

= − +[ ] +[ ]∫1 1
0

1
α αλ λ λ

C y
e

b b
y

if e e

C

by

by

*

*

ln
= −

+( )
− +













+ <

=

−

− −

1

2 1

0

1
α

λ

λ

α

λ

λ

α

otherwise

SPIKE AT ηmax AND ηmin

(i) η Standard Normal

1 0

0

0

if A

yes by b y A if A y

if A y

=

{ } = − + −( )( ) < <

≥

Pr " " Φ α λ λ

C by b y A da
y

+ = − + −( )( )∫ Φ α λ λ

0

0 1 2

1 2

1 2

if

C y if by

by b y C

Φ

Φ

Φ

−( ) ≥

= − +( ) ≤

− + − −( )( ) =

∗

∗

α

α

α

λ

λ λ
solves : otherwise

(ii) η Standard Logistic

1 0

1 0

0

1

if A

yes e if A y

if A y

by b y A

=

{ } = +[ ] < <

≥

− + − −( ) −
Pr " " α λ λ

C e dAby b y A
y

+ − + − −( )
−

= +[ ]∫ 1
0

1
α λ λ
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0 0

1

1

α

α β

α

λ

λ
λ

≤

= ≤

− −





∗C y

y y
b

otherwise

(B) LINEAR MODEL C = +α η
β

TRUNCATION AT ηmax, SPIKE AT ηmin

(i) η Standard Normal

1 0

1 0

if A

yes

A

y
if A y

=

{ } =

−
− +( )
− +( ) < ≤

Pr " "

Φ
Φ

α β
α β

C y
y

A dA
y

+ = −
− +( ) − +( )∫1

0Φ
Φ

α β
α β

C C
y

if y

C

∗

∗

− +( ) =
− +( )

−( ) < − +( )

=

solves : *Φ
Φ

Φ Φ

α β α β

α α β
2

2

0 otherwise

(ii) η Standard Logistic

1 0

1
1
1

0

if A

yes

e

e
if A y

y

A

=

{ } =

− +
+

< ≤
−

−

Pr " "
α β

α β

C y e e dAy A
y

+ − − −
= − +( ) +[ ]∫1 1

1

0

α β α β

C
e

if e e

C

y

y∗
−

− −

∗

=
− +( )

+ <

=

α
β

α β
α βln 2 1

2 1

0 otherwise

SPIKE AT ηmax AND ηmin

(i) η Standard Normal

1 0

0

0

if A

yes A if A y

if A y

=

{ } = −( ) < <

≥

Pr " " Φ α β

C A da
y

+ = −( )∫Φ α β
0

0 1 2

1 2

1 2

if

C y if y

C

Φ

Φ

Φ

α

α β

α β

( ) ≤

= −( ) ≥

−( ) =

∗

∗solves : otherwise

(ii) η Standard Logistic

1 0

1 0

0

1

if A

yes e if A y

if A y

A

=

{ } = +[ ] < <

≥

− + −
Pr " " α β

C e dAA
y

+ − + −
= +[ ]∫ 1

1

0

α β
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0 0if

C y if y

α

α β

α
β

≤

= ≤*

otherwise

(C) LOG MODEL C y e= −












− +



1

α η
β

SPIKE AT ηmin

(i) η Standard Normal

1 0

1 0

if A

yes

A

y
if A y

=

{ } =

+ −











< ≤

Pr " "

lnΦ α β

C
A

y
dA

y
+ = + −









∫ Φ α β ln 1

0

0 1 2

1 1 2

if

C

C

y
otherwise

Φ

Φ

α

α β

( ) ≤

=

+ −











=

∗

∗

solves : ln

(ii) η Standard Logistic

1 0

1 1 0

1

if A

yes

e
A

y
if A y

=

{ } =

+ −

















< ≤−
− −

Pr " "

α
β

C e
A

y
dA

y
+ −

− −

= + −















∫ 1 1

1

0

α
β

0 0

1

if

C

y e

α

α β

≤

=

−( )
∗

− otherwise
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APPENDIX TABLE 4.  RESPONSE PROBABILITY MODELS SATISFYING
C εεεε  [-αααα ,y]

(1)  MIXTURE MODELS Pr " " _ Pr " "yes G A yes{ } = − ( )[ ] + { }γ γ1 21  where Pr " "yes{ }  is any of the

formulas in Table 2 and G_(x) is a cdf for negative preferences as described in connection with
equation (34).

(2) BOX-COX MODEL C y y
b b

= − − −





λ
λα η 1

TRUNCATION AT ηmax

(i) η Standard Normal

Pr " "yes
by b A

by
{ } = −

− + − −( )[ ]
− +( )1

Φ

Φ

α

α

λ λ

λ

(ii) η Standard Logistic

Pr " "yes
e

e

by b y A

by
{ } = −

+[ ]
+[ ]

− + −( ) −

−
−1

1

1

1

1

α

α

λ λ

λ

SPIKE AT ηmax

(i) η Standard Normal

Φ α λ λ− + −( )[ ] <

{ } =
≥

by b y A if A y

yes

if y

Pr " "

0 A

(ii)  η Standard Logistic

1

0

1

+[ ] <

{ } =
≥

− + − −( ) −
e if A y

yes

if y

by b y Aα λ λ

Pr " "

A

(3) LOG MODEL C y e= +












− +



1

α η
β

(i) η Standard Normal

Pr " " lnyes
A

y
{ } = + −











Φ α β 1

(ii) η Standard Logistic

Pr " "yes e
A

y
{ } = + −

















−
− −

1 1

1

α
β

(4) LINEAR MODEL C = +α η
β

DOUBLE TRUNCATION AT η α β η α βmax min= − + = − −y yAND

(i) η Standard Normal

Pr " "yes
y A

y y
{ } =

− +( ) − − +( )
− +( ) − − −( )

Φ Φ
Φ Φ

α β α β
α β α β

(i) η Standard Logistic

Pr " "yes
e e

e e

y A

y y
{ } =

+[ ] − +[ ]
+[ ] − +[ ]

− − − −

− − + −

1 1

1 1

1 1

1 1

α β α β

α β α β

DOUBLE SPIKE AT η α β η α βmax min= − + = − −y yAND

(i) η Standard Normal

1

0

if A y

yes A if y A y

if y

≤ −

{ } = −( ) − < <

≥

Pr " " Φ α β

A
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(ii) η
 Standard L

ogistic

1

1

0

1

if
A

y

yes
e

if
y

A
y

if
y

A

≤
−

{
}

=
+

[
]

−
<

<≥

−
+

−
Pr

"
"

α
β

A

T
R

U
N

C
A

T
IO

N
 A

T
 η

m
ax, SPIK

E
 A

T
 η

m
in

(i) η
 Standard N

orm
al

1

1

if
A

y

yes

Ay
if

y
A

y

≤
−

{
}

=

−
−

+
(

)
−

+
(

)
−

<
≤

Pr
"

"

ΦΦ
α

β
α

β

(ii) η
 Standard L

ogistic

1

1
11

if
A

y

yes

ee
if

y
A

y
yA

≤
−

{
}

=

−
++

−
<

≤
−−

Pr
"

"
α

β

α
β

SPIK
E

 A
T

 η
m

ax, T
R

U
N

C
A

T
IO

N
 A

T
 η

m
in

(i) η
 Standard N

orm
al

ΦΦ
α

β
α

β
−

(
)

+
(

)
<

{
}

=
≥

Ay
if

A
y

yes

if
A

y

Pr
"

"

0

(ii) η
 Standard L

ogistic

11

0

++
<

{
}

=
≥

−
−

−
+

ee
if

A
y

yes

if
A

y

yA

α
β

α
β

Pr
"

"


